Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 1 czerwca 2025 15:38
  • Data zakończenia: 1 czerwca 2025 16:01

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Który z poniższych instrumentów geodezyjnych służy do pomiaru kątów poziomych i pionowych?

A. Tachimetr
B. Niwelator
C. Inklinometr
D. Teodolit
Niwelator jest instrumentem geodezyjnym, który służy głównie do wykonywania pomiarów wysokościowych. Używa się go przede wszystkim do określania różnic wysokości między punktami, co jest kluczowe przy niwelacji terenu. O ile niwelator jest nieoceniony przy pomiarach pionowych, nie jest narzędziem przeznaczonym do pomiaru kątów poziomych i pionowych, jak teodolit. Tachimetr to bardziej zaawansowane urządzenie, które łączy funkcje teodolitu i dalmierza, umożliwiając pomiary kątów oraz odległości. Choć tachimetry mogą również mierzyć kąty, ich głównym zastosowaniem jest szybkie i dokładne wykonywanie pomiarów terenowych, łącząc różne funkcje w jednym urządzeniu. Tachimetry są bardzo popularne, jednak nie są stricte przeznaczone tylko do pomiaru kątów, co różni je od teodolitów. Inklinometr, z kolei, to instrument używany do pomiaru nachylenia lub kąta w stosunku do poziomu odniesienia, ale nie do pomiaru kąta poziomego i pionowego. Może być stosowany w różnych dziedzinach, od geotechniki po przemysł naftowy, ale jego funkcja jest specyficzna i nie obejmuje pomiarów kątów w sposób, w jaki robi to teodolit. W przypadku analizowanych odpowiedzi, podstawowym błędem jest niewłaściwe przypisanie funkcji pomiarowych tych instrumentów, co może prowadzić do nieporozumień w zastosowaniach praktycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. teleinformatycznego
B. ewidencyjnego
C. informacyjnego
D. komunikacyjnego
Wybór ewidencyjnego systemu w kontekście pozyskiwania i przechowywania materiałów geodezyjnych nie uwzględnia pełnej funkcjonalności, jaką zapewnia system teleinformatyczny. Systemy ewidencyjne skupiają się głównie na rejestrowaniu danych oraz ich formalnej dokumentacji, co nie pokrywa się z wymaganiami dynamicznego przetwarzania i udostępniania informacji. Użytkownicy mogą mylnie sądzić, że ewidencja wystarczy do zarządzania danymi, nie dostrzegając rosnącej potrzeby szybkiego dostępu do tych informacji oraz ich analizy w kontekście przestrzennym. Wykorzystanie systemu informacyjnego również nie spełni wszystkich wymagań, gdyż koncentruje się na przechowywaniu danych, a nie na integracji z różnymi źródłami informacji i interakcji użytkownika z danymi na poziomie GIS. Z kolei systemy komunikacyjne, jakkolwiek istotne w wymianie danych, nie zapewniają niezbędnych funkcji do zabezpieczania i zarządzania złożonymi zbiorami danych geodezyjnych. W praktyce, brak odpowiednich technologii teleinformatycznych prowadzi do nieefektywnego zarządzania zasobami, utrudniając dostęp do informacji oraz ich analizę przez zainteresowane strony. Rozumienie tych różnic jest kluczowe dla wdrożenia właściwych rozwiązań w obrębie geodezji i kartografii, co podkreślają liczne standardy branżowe oraz wytyczne dotyczące zarządzania danymi przestrzennymi.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 2578,00 m
B. 278,00 m
C. 1578,00 m
D. 578,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 10

W jaki sposób oraz gdzie są przedstawiane rezultaty wywiadu terenowego?

A. Na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym
B. Na kopii mapy zasadniczej, kolorem zielonym
C. Na szkicach polowych, ołówkiem
D. Na szkicach polowych, kolorem czarnym i czerwonym
Wyniki wywiadu terenowego uwidaczniają się na kopii mapy ewidencyjnej lub zasadniczej, kolorem czerwonym, co jest zgodne z przyjętymi standardami w geodezji i kartografii. Tego rodzaju oznaczenia mają na celu jasne wskazanie obszarów, które zostały zbadane oraz wyników przeprowadzonych analiz. Użycie koloru czerwonego jest powszechnie stosowane w dokumentacji geodezyjnej, co pozwala na łatwe zidentyfikowanie obszarów o podwyższonej istotności lub wymagających szczegółowej analizy. Na przykład, w przypadku inwentaryzacji terenów pod zabudowę, takie oznaczenie może wskazywać na tereny wymagające dodatkowych badań środowiskowych. Praktyka ta nie tylko ułatwia pracę geodetom, ale także zwiększa przejrzystość dokumentacji dla innych zainteresowanych stron, takich jak inwestorzy czy organy administracji publicznej. Dodatkowo, takie podejście jest zgodne z normami ISO i zaleceniami krajowych instytucji zajmujących się geodezją.

Pytanie 11

Jeśli długość odcinka na mapie w skali 1:500 wynosi 20 cm, to jaka jest rzeczywista długość tego odcinka w terenie?

A. 1000m
B. 50 m
C. 500 m
D. 100 m
Odpowiedź 100 m jest poprawna, ponieważ w skali 1:500 każdy 1 cm na mapie reprezentuje 500 cm w rzeczywistości, co odpowiada 5 m. Aby obliczyć rzeczywistą długość odcinka, należy pomnożyć długość odcinka na mapie przez wartość skali. W tym przypadku: 20 cm (długość na mapie) x 500 cm (w rzeczywistości na 1 cm) = 10000 cm, co przelicza się na 100 m. Przykład zastosowania tej wiedzy można znaleźć w geodezji i kartografii, gdzie precyzyjne pomiary są niezbędne do tworzenia map i planów. Stosowanie skal w praktyce umożliwia inżynierom, architektom oraz planistom przestrzennym dokładne odwzorowywanie rzeczywistych odległości i powierzchni, co jest kluczowe dla efektywnego projektowania i realizacji inwestycji budowlanych oraz zarządzania przestrzenią. Wiedza ta jest również przydatna w czasie wędrówek czy nawigacji, gdzie umiejętność odczytywania map i przeliczania skal jest niezbędna dla bezpieczeństwa i orientacji w terenie.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. +4,055 m
B. -4,055 m
C. -3,043 m
D. +3,043 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Ortogonalna
B. Wcięć kątowych
C. Biegunowa
D. Domiarów prostokątnych
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 0÷100g
B. 200÷300g
C. 100÷200g
D. 300÷400g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 20

Jaką maksymalną długość mogą mieć linie pomiarowe na obszarach rolnych i leśnych?

A. 600 m
B. 500 m
C. 300 m
D. 400 m
Maksymalna długość linii pomiarowych na terenach rolnych i leśnych wynosi 400 m. Ta wartość jest zgodna z wytycznymi określonymi w przepisach dotyczących pomiarów geodezyjnych i topograficznych. Długość linii pomiarowej ma kluczowe znaczenie w kontekście dokładności pomiarów. W praktyce, dla zapewnienia odpowiedniej precyzji, linie pomiarowe nie powinny przekraczać tej długości, ponieważ dłuższe linie są bardziej podatne na błędy związane z warunkami atmosferycznymi, ukształtowaniem terenu oraz innymi czynnikami zewnętrznymi. W przypadku pomiarów na terenach rolnych stosowanie linii o maksymalnej długości 400 m pozwala na efektywne zarządzanie powierzchnią, jak również na precyzyjne określenie granic działek. Przykładowo, podczas pomiarów do celów projektowania dróg czy systemów nawadniających, zachowanie tej normy przyczynia się do uzyskania wiarygodnych danych, które są niezbędne dla efektywnego planowania. Dodatkowo, przestrzeganie tych standardów jest często wymagane przez organy regulacyjne oraz instytucje zajmujące się ochroną środowiska.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Kontrolę tyczenia, polegającą na weryfikacji długości boków oraz przekątnych pojedynczych prostokątów, kwadratów lub ich zestawień, wykonuje się w trakcie prac niwelacyjnych

A. siatkową
B. punktów rozproszonych
C. profili
D. tras
Odpowiedzi wskazujące na kontrolę tyczenia profili, trasy oraz punktów rozproszonych opierają się na niepełnym zrozumieniu koncepcji niwelacji i jej zastosowań w praktyce inżynieryjnej. Kontrola profili dotyczy najczęściej określenia kształtu i wymiarów elementów konstrukcyjnych, co nie obejmuje szczegółowej weryfikacji geometrii siatki. W przypadku tras, chodzi głównie o wyznaczanie ścieżek dla dróg lub linii kolejowych, a więc kontrola tyczenia nie odnosi się bezpośrednio do geometrycznej dokładności prostokątów czy kwadratów. Z kolei punkty rozproszone są używane do pomiarów lokalizacji różnych obiektów, co również nie przekłada się na kontrolę kształtów i wymiarów prostokątów. Zrozumienie, że kontrola tyczenia w kontekście niwelacji powinno dotyczyć siatki geodezyjnej, a nie pojedynczych elementów, jest kluczowe. Często błędne odpowiedzi wynikają z mylnego interpretowania terminologii oraz niewłaściwego odniesienia do praktycznych zastosowań w geodezji. Właściwe podejście do kontroli tyczenia zapewnia jakość i bezpieczeństwo konstrukcji, dlatego ważne jest, aby stosować odpowiednie metody oraz standardy w tej dziedzinie.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Na rysunku osnowy pomiarowej nie należy zamieszczać

A. rzędnych oraz odciętych dotyczących szczegółów sytuacyjnych
B. wyrównanych kątów poziomych
C. numerów punktów osnowy
D. uśrednionych długości linii pomiarowych
Nieprawidłowe odpowiedzi wskazują na nieporozumienia dotyczące roli i zawartości szkicu pomiarowej osnowy sytuacyjnej. Uśrednione wartości długości linii pomiarowych oraz wyrównane wartości kątów poziomych to kluczowe elementy, które powinny być uwzględnione na szkicu, ponieważ bezpośrednio wpływają na jakość danych geodezyjnych. Uśrednianie wartości długości linii pozwala na eliminację błędów systematycznych, co jest zgodne z normami pomiarowymi, a wyrównanie kątów poziomych jest niezbędne do uzyskania dokładnego obrazu układu sytuacyjnego. Ponadto numery punktów osnowy są istotne dla identyfikacji i lokalizacji punktów, a ich uwzględnienie na szkicu jest standardową praktyką. W kontekście geodezji, pomiarowa osnowa sytuacyjna ma na celu nie tylko zbieranie danych, ale również ich wizualizację w sposób, który umożliwia analizę przestrzenną. Warto również zauważyć, że pomijanie tych informacji może prowadzić do błędów interpretacyjnych oraz utrudnienia w późniejszej weryfikacji czy aktualizacji danych. W praktyce geodezyjnej, wiedza na temat obowiązujących standardów i dobrych praktyk w zakresie dokumentacji pomiarowej jest kluczowa dla zapewnienia wysokiej jakości usług geodezyjnych oraz minimalizacji ryzyka błędów w interpretacji wyników pomiarów.

Pytanie 26

Jakie jest pole powierzchni działki o wymiarach 20,00 m x 40,00 m na mapie zasadniczej wykonanej w skali 1:500?

A. 0,32 cm2
B. 320,00 cm2
C. 3,20 cm2
D. 32,00 cm2
Pole powierzchni działki oblicza się, mnożąc długość przez szerokość. W tym przypadku, działka ma wymiary 20,00 m długości i 40,00 m szerokości, co daje pole 20,00 m x 40,00 m = 800,00 m². Jednakże w skali 1:500, musimy przeliczyć te wymiary na jednostki mapy. W tej skali 1 cm na mapie odpowiada 500 cm w rzeczywistości. Zatem długość 20,00 m to 20,00 m / 500 = 0,04 m (4,00 cm), a szerokość 40,00 m to 40,00 m / 500 = 0,08 m (8,00 cm). Obliczając pole na mapie, mamy 4,00 cm x 8,00 cm = 32,00 cm². Takie przeliczenia są standardową praktyką w geodezji i kartografii, ułatwiając przedstawienie rzeczywistych wymiarów na płaszczyźnie w wygodnej formie. Ważne jest, aby zawsze pamiętać o przeliczeniach przy pracy z mapami, co jest kluczowe dla precyzyjnego planowania przestrzennego oraz w pracach budowlanych, gdzie dokładność pomiarów ma kluczowe znaczenie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 50 cm
B. 20 cm
C. 20 mm
D. 50 mm
Odpowiedź '20 cm' jest jak najbardziej ok, bo w skali 1:500 to znaczy, że każdy 1 cm na mapie to 500 cm w rzeczywistości, czyli 5 metrów. Jak przeliczymy 100 metrów, to dzielimy przez 5, co daje 20 cm. Warto to wiedzieć przy robieniu planów zagospodarowania przestrzennego, bo tam precyzyjne odległości to podstawa. Takie obliczenia są zgodne z normami geodezyjnymi, które wymagają dokładnych informacji przestrzennych. Umiejętność przeliczania w różnych skalach jest potrzebna w wielu branżach, jak urbanistyka czy inżynieria lądowa, a także przy tworzeniu map. Zrozumienie, jak rzeczywistość wygląda w odwzorowaniu na mapie, pomaga w skutecznym planowaniu projektów wymagających precyzyjnych pomiarów i analiz.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 7,60 m
B. 6,49 m
C. 76,04 m
D. 64,94 m
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 33

Jakie jest przyrost współrzędnej ∆x1-2, przy pomiarze długości d1-2 = 100,00 m oraz sinAz1-2 = 0,7604 i cosAz1-2 = 0,6494?

A. 76,04 m
B. 6,49 m
C. 7,60 m
D. 64,94 m
Aby obliczyć przyrost współrzędnej ∆x1-2, możemy wykorzystać równania z zakresu trygonometrii. Długość d1-2 = 100,00 m jest długością odcinka pomierzonego, a współrzędne ∆x1-2 są związane z kierunkiem, w którym ten odcinek jest zorientowany. W tym przypadku sinAz1-2 i cosAz1-2 reprezentują odpowiednio sinus i cosinus azymutu odcinka. Przyrost współrzędnej ∆x1-2 oblicza się przy pomocy wzoru: ∆x1-2 = d1-2 * cosAz1-2. Podstawiając wartości: ∆x1-2 = 100,00 m * 0,6494 = 64,94 m. W praktyce, takie obliczenia są niezwykle istotne w geodezji, inżynierii lądowej czy w kartografii, gdzie precyzyjne pomiary i obliczenia współrzędnych mają kluczowe znaczenie dla realizacji projektów. Stosowanie standardów, takich jak normy ISO w dziedzinie pomiarów, zapewnia dokładność i rzetelność uzyskiwanych wyników.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 150 m
B. 600 m
C. 250 m
D. 400 m
Maksymalna długość ciągu niwelacyjnego wynosząca 400 m jest zgodna z powszechnie przyjętymi normami w geodezji, które określają dopuszczalne długości dla różnych technik niwelacji. Przy niwelacji precyzyjnej, długość jednego stanowiska nie powinna przekraczać 200 m, co oznacza, że w przypadku czterech stanowisk maksymalna długość ciągu wynosi 4 x 100 m = 400 m. Taki układ zapewnia wystarczającą dokładność pomiarów, umożliwiając redukcję błędów systematycznych i losowych. W praktyce, długość ta jest również dostosowywana do warunków terenowych, rodzaju używanego sprzętu niwelacyjnego oraz wymagań projektu. Standardy, takie jak PN-EN 28720, podkreślają znaczenie dokładności w niwelacji, co ma kluczowe znaczenie w budownictwie, tworzeniu map czy projektowaniu infrastruktury. Dodatkowo, planując pomiary, warto uwzględnić warunki atmosferyczne oraz potencjalne przeszkody, co może mieć wpływ na jakość pomiarów. 400 m to optymalna długość, która przy odpowiednich technikach pomiarowych zapewnia precyzyjne wyniki.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,001 m
B. 0,004 m
C. 0,02 m
D. 0,01 m
Wybór innych wartości, takich jak 0,02 m, 0,001 m czy 0,004 m, wskazuje na brak zrozumienia wymagań dotyczących precyzyjnego pozycjonowania w kontekście technologii GNSS. W przypadku 0,02 m, chociaż może to wydawać się akceptowalnym poziomem dokładności, w rzeczywistości jest to zbyt duży błąd, który może prowadzić do poważnych nieścisłości w pomiarach, zwłaszcza w geodezji, gdzie standardy w zakresie dokładności są szczególnie surowe. Przykłady zastosowań, gdzie dokładność jest kluczowa, obejmują monitoring deformacji gruntu czy precyzyjne pomiary w inżynierii lądowej. Zastosowanie 0,001 m jako wymaganej dokładności również jest niepraktyczne, ponieważ w rzeczywistości osiągnięcie tak wysokiej precyzji w warunkach terenowych jest niezwykle trudne i kosztowne. Wreszcie, wybór 0,004 m również nie odpowiada rzeczywistym potrzebom, ponieważ nie zapewnia odpowiedniego marginesu bezpieczeństwa w kontekście pomiarów, które mogą być narażone na różne źródła błędów, takie jak interferencje atmosferyczne czy multipath. W związku z tym, dla zastosowań wymagających precyzji, ustalanie wysokości anteny odbiornika z dokładnością 0,01 m jest najbardziej odpowiednim rozwiązaniem, które nie tylko spełnia standardy branżowe, ale również odpowiada rzeczywistym wymaganiom projektowym.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.