Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 maja 2025 18:41
  • Data zakończenia: 24 maja 2025 18:57

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest najbardziej typowe dla topologii gwiazdy?

A. trudności w lokalizacji usterek
B. niskie zużycie kabli
C. zatrzymanie sieci wskutek awarii terminala
D. centralne zarządzanie siecią
Topologia gwiazdy charakteryzuje się tym, że wszystkie węzły sieci są podłączone do centralnego punktu, którym najczęściej jest przełącznik lub koncentrator. Taki układ umożliwia łatwe zarządzanie siecią, ponieważ centralny punkt kontroluje wszystkie połączenia oraz komunikację pomiędzy urządzeniami. W przypadku awarii jednego z terminali, nie wpływa to na działanie pozostałych węzłów, co zwiększa niezawodność całego systemu. Przykładem zastosowania topologii gwiazdy jest sieć lokalna (LAN) w biurze, gdzie wszystkie komputery są podłączone do jednego switcha. Taki sposób organizacji sieci pozwala na łatwą lokalizację problemów, ponieważ można szybko zidentyfikować uszkodzenie konkretnego urządzenia bez wpływu na resztę sieci. Zgodnie z najlepszymi praktykami branżowymi, topologia gwiazdy jest często preferowana w nowoczesnych instalacjach sieciowych, ponieważ łączy w sobie wydajność, łatwość w zarządzaniu oraz bezpieczeństwo.

Pytanie 2

Czynnikiem zagrażającym bezpieczeństwu systemu operacyjnego, który wymusza jego automatyczne aktualizacje, są

A. niepoprawnie zainstalowane sterowniki urządzeń
B. źle skonfigurowane uprawnienia do plików
C. luki w oprogramowaniu systemowym
D. niewłaściwe hasła użytkowników posiadających prawa administratora
Chociaż niewłaściwie ustawione prawa do plików, błędnie zainstalowane sterowniki urządzeń i błędne hasła użytkowników z prawami administratora są istotnymi problemami w kontekście bezpieczeństwa IT, nie są bezpośrednimi zagrożeniami, które wymuszałyby automatyczną aktualizację systemu operacyjnego. Niewłaściwie ustawione prawa do plików mogą prowadzić do sytuacji, w której użytkownicy mają dostęp do danych, do których nie powinni mieć dostępu, co zwiększa ryzyko wycieku informacji, ale nie pociąga za sobą konieczności aktualizacji systemu operacyjnego. Błędnie zainstalowane sterowniki urządzeń mogą powodować problemy z wydajnością, a nawet awarie systemu, ale nie są one bezpośrednim zagrożeniem dla bezpieczeństwa, które mogłoby być usunięte przez aktualizację oprogramowania systemowego. Co więcej, błędne hasła użytkowników z prawami administratora mogą stanowić zagrożenie, jeśli zostaną wykorzystane przez atakujących, ale znowu, nie jest to związane z lukami w oprogramowaniu systemowym, które mogłyby zostać załatane w ramach aktualizacji. W rezultacie, skupiając się na tych problemach, można zignorować kluczowe aspekty zabezpieczeń, które dotyczą aktualizacji systemów operacyjnych w odpowiedzi na nowe luki. To podejście może prowadzić do mylnego wrażenia, że wszystkie aspekty bezpieczeństwa są równoważne, a w rzeczywistości luki w oprogramowaniu wymagają szczególnej uwagi i szybkiej reakcji ze strony administratorów systemów.

Pytanie 3

W sieci z maską 255.255.255.128 można przypisać adresy dla

A. 126 urządzeń
B. 254 urządzenia
C. 127 urządzeń
D. 128 urządzeń
Wybór liczby 128 hostów do zaadresowania w podsieci z maską 255.255.255.128 opiera się na niepoprawnym zrozumieniu, jak oblicza się dostępne adresy hostów. Aby zrozumieć, dlaczego taka odpowiedź jest błędna, warto przyjrzeć się zasadzie, która mówi, że liczba dostępnych adresów hostów oblicza się jako 2^n - 2, gdzie n to liczba bitów przeznaczonych na hosty. W przypadku maski /25, mamy 7 bitów dla hostów, co daje 2^7 = 128 możliwych adresów, ale musimy odjąć 2 z tego wyniku, co prowadzi do 126 dostępnych adresów. Z kolei wybór odpowiedzi 254 hosty wskazuje na nieporozumienie związane z maską podsieci 255.255.255.0, która rzeczywiście pozwala na 254 adresy hostów, ale nie dotyczy podanej maski. Wybierając 127 hostów, mylnie zakłada się, że również jeden adres sieciowy i jeden rozgłoszeniowy są ujęte w tej liczbie, co przeocza rzeczywisty sposób obliczania adresów w sieci. Te błędne koncepcje mogą prowadzić do nieefektywnego zarządzania adresami IP w organizacji, co jest sprzeczne z najlepszymi praktykami w dziedzinie sieci komputerowych.

Pytanie 4

Jakie polecenie w systemie operacyjnym Linux umożliwia sprawdzenie bieżącej konfiguracji interfejsu sieciowego na komputerze?

A. ping
B. ifconfig
C. tracert
D. ipconfig
Polecenie 'ifconfig' jest kluczowym narzędziem w systemie Linux, które pozwala na wyświetlenie aktualnej konfiguracji interfejsów sieciowych. Umożliwia ono administratorom i użytkownikom systemów operacyjnych monitorowanie i zarządzanie ustawieniami sieciowymi, takimi jak adresy IP, maski podsieci, adresy MAC oraz statystyki przesyłu danych. Przykładowo, wpisanie komendy 'ifconfig' w terminalu wyświetli listę wszystkich dostępnych interfejsów sieciowych oraz ich aktualne parametry, co jest nieocenione w diagnostyce problemów z połączeniem. Dodatkowo, 'ifconfig' może być używane do konfigurowania interfejsów, na przykład do przypisywania nowych adresów IP, co jest częstą praktyką w zarządzaniu serwerami i urządzeniami sieciowymi. Warto zaznaczyć, że w nowszych dystrybucjach Linuxa zaleca się korzystanie z narzędzia 'ip', które oferuje szersze możliwości zarządzania siecią, zwiększając elastyczność i efektywność konfiguracji.

Pytanie 5

Jakie pasmo częstotliwości definiuje klasa okablowania D?

A. 10 MHz
B. 250 MHz
C. 100 MHz
D. 500 MHz
Wybór innych pasm częstotliwości, takich jak 500 MHz, 10 MHz czy 250 MHz, jest niepoprawny, ponieważ nie odpowiadają one wymaganiom standardu klasa D. Pasmo 500 MHz jest charakterystyczne dla wyższej klasy okablowania, takiej jak klasa F, używanej w aplikacjach, które wymagają dużej przepustowości, co wykracza poza możliwości okablowania klasy D. Z kolei 250 MHz i 10 MHz również nie są adekwatne, ponieważ 250 MHz odnosi się do klasy E, która obsługuje bardziej zaawansowane technologie, a 10 MHz jest zbyt niską częstotliwością, która nie spełnia standardów dla współczesnych sieci. Często mylenie klas okablowania i ich odpowiadających częstotliwości wynika z braku zrozumienia różnic między poszczególnymi standardami oraz ich zastosowaniem w praktyce. Aby poprawnie dobierać okablowanie do specyfiki projektu, ważne jest, aby mieć na uwadze wymagania dotyczące przepustowości, odległości oraz rodzaju przesyłanych danych. Właściwy dobór klas okablowania pozwala na optymalne wykorzystanie infrastruktury oraz zapewnia stabilność i wydajność sieci.

Pytanie 6

Firma Dyn, której serwery DNS zostały zaatakowane, przyznała, że część tego ataku … miała miejsce z użyciem różnych urządzeń podłączonych do sieci. Ekosystem kamer, czujników i kontrolerów określany ogólnie jako 'Internet rzeczy' został wykorzystany przez cyberprzestępców jako botnet − sieć maszyn-zombie. Jakiego rodzaju atak jest opisany w tym cytacie?

A. DDOS
B. flooding
C. DOS
D. mail bombing
Atak typu DDoS (Distributed Denial of Service) polega na przeciążeniu serwerów docelowych przez jednoczesne wysyłanie dużej liczby żądań z wielu źródeł. W przypadku ataku na Dyn, przestępcy wykorzystali Internet Rzeczy (IoT), tworząc z rozproszonych urządzeń botnet, co znacznie zwiększyło skuteczność ataku. Urządzenia IoT, takie jak kamery, czujniki i inne podłączone do sieci sprzęty, często nie mają odpowiednich zabezpieczeń, co czyni je łatwym celem dla cyberprzestępców. Tego typu ataki mogą prowadzić do znacznych przerw w dostępności usług, co wpłynęło na wiele stron internetowych korzystających z serwerów Dyn. W branży stosuje się różnorodne techniki obronne, takie jak filtrowanie ruchu czy implementacja systemów WAF (Web Application Firewall), aby zminimalizować ryzyko DDoS. Przykładem jest zastosowanie rozproszonych systemów ochrony, które mogą wykrywać anomalie w ruchu oraz automatycznie reagować na złośliwe działania. Warto pamiętać, że zabezpieczenie przed atakami DDoS jest częścią szerszej strategii ochrony infrastruktury IT.

Pytanie 7

Co może być przyczyną problemów z wydrukiem z drukarki laserowej przedstawionych na ilustracji?

Ilustracja do pytania
A. brak tonera w kartridżu
B. wyschnięty tusz
C. sprawny podajnik
D. uszkodzony bęben światłoczuły
Uszkodzony bęben światłoczuły w drukarce laserowej może prowadzić do powtarzających się wzorów lub smug na wydruku takich jak te widoczne na załączonym rysunku. Bęben światłoczuły jest kluczowym elementem drukarki odpowiedzialnym za przenoszenie tonera na papier. Jego powierzchnia musi być idealnie gładka i równomiernie naelektryzowana aby toner mógł być dokładnie przeniesiony. Jeśli bęben jest uszkodzony lub ma defekty te mogą powodować niejednolity transfer tonera co skutkuje powtarzalnymi defektami na wydruku. Takie uszkodzenia mogą być spowodowane przez zużycie mechaniczne cząstki zanieczyszczeń lub nieodpowiednie przechowywanie. W praktyce zaleca się regularne czyszczenie i konserwację drukarki a w przypadku zauważenia problemów szybkie sprawdzenie stanu bębna. Standardy branżowe rekomendują również korzystanie z oryginalnych materiałów eksploatacyjnych co może znacznie wydłużyć żywotność bębna i poprawić jakość wydruków. Wiedza o tym jak działa bęben światłoczuły i jakie są symptomy jego uszkodzeń pozwala na skuteczniejsze diagnozowanie problemów i lepszą konserwację urządzeń biurowych.

Pytanie 8

Karta sieciowa przedstawiona na ilustracji ma zdolność przesyłania danych z maksymalną prędkością

Ilustracja do pytania
A. 11 Mb/s
B. 108 Mb/s
C. 300 Mb/s
D. 54 Mb/s
Wybór nieprawidłowych odpowiedzi często wynika z mylnego zrozumienia standardów bezprzewodowych. Standard 802.11b oferuje prędkość maksymalną 11 Mb/s co odpowiada początkowym wersjom Wi-Fi wprowadzonym na rynek gdy technologia bezprzewodowa dopiero zaczynała zdobywać popularność. Był to przełomowy krok w rozwoju sieci bezprzewodowych ale obecnie jego prędkość jest niewystarczająca do nowoczesnych zastosowań multimedialnych czy biznesowych. Z kolei prędkość 108 Mb/s jest często kojarzona z technologiami typu Super G które wykorzystywały podwójne kanały w standardzie 802.11g co pozwalało na podwojenie przepustowości. Jednakże nie jest to standard IEEE i nie każdy sprzęt obsługuje takie funkcje co ogranicza kompatybilność i praktyczne zastosowanie. Natomiast 300 Mb/s to wartość charakterystyczna dla standardu 802.11n który wprowadził wiele ulepszeń takich jak MIMO co pozwoliło na znaczne zwiększenie przepustowości i zasięgu sieci bezprzewodowych. Wybór tej wartości jako maksymalnej prędkości dla karty sieciowej 802.11g wskazuje na brak zrozumienia różnic między tymi standardami i ich możliwościami. Dlatego kluczowe jest właściwe identyfikowanie technologii i ich ograniczeń co jest niezbędne podczas planowania i wdrażania infrastruktury sieciowej.

Pytanie 9

Jakie polecenie należy wydać, aby skonfigurować statyczny routing do sieci 192.168.10.0?

A. static route 92.168.10.1 MASK 255.255.255.0 192.168.10.0 5
B. route ADD 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5
C. static 192.168.10.0 MASK 255.255.255.0 192.168.10.1 5 route
D. route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD
Wszystkie inne odpowiedzi, które nie są poprawne, mają różne błędy w składni i w podejściu. Na przykład, pierwsza opcja, gdzie pojawia się "static route", jest niepoprawna, bo takie polecenie po prostu nie istnieje w standardzie. W odpowiedzi z "route 192.168.10.1 MASK 255.255.255.0 192.168.10.0 5 ADD" masz złą kolejność argumentów, co powoduje, że polecenie jest źle interpretowane. Pamiętaj, że "ADD" powinno być na początku, to naprawdę ma znaczenie dla prawidłowego działania komendy. Ostatnia opcja także ma błędy składniowe, co prowadzi do nieporozumień przy definiowaniu tras w tablicy routingu. Musisz pamiętać, że zrozumienie poleceń dotyczących trasowania jest kluczowe w zarządzaniu siecią. Błędne zdefiniowanie tras może wywołać problemy z łącznością i nieefektywne wykorzystanie zasobów. Dlatego dobra znajomość składni i logicznego porządku poleceń to podstawa dla każdego, kto zajmuje się administracją sieci.

Pytanie 10

Jaką ochronę zapewnia program antyspyware?

A. programom antywirusowym
B. atakom typu DoS i DDoS (Denial of Service)
C. programom typu robak
D. programom szpiegującym
Program antyspyware jest dedykowany do wykrywania i usuwania programów szpiegujących, które mają na celu monitorowanie działań użytkowników bez ich wiedzy. Programy te mogą zbierać dane osobowe, takie jak hasła, informacje o logowaniu, czy dane finansowe, a ich obecność na systemie stanowi poważne zagrożenie dla prywatności. Przykłady zastosowania programu antyspyware obejmują regularne skanowanie systemu w celu identyfikacji i eliminacji nieautoryzowanych aplikacji, które mogą infiltracyjnie zbierać informacje. W branży IT, stosowanie oprogramowania antyspyware jest częścią szerszej strategii ochrony, która obejmuje także zabezpieczenia antywirusowe i zapory sieciowe. Dobry program antyspyware powinien być regularnie aktualizowany, aby móc skutecznie wykrywać nowe zagrożenia zgodnie z najlepszymi praktykami w zakresie cyberbezpieczeństwa. Rekomendowane jest także przeprowadzanie edukacji użytkowników na temat bezpiecznego korzystania z internetu, aby minimalizować ryzyko zakażenia systemu przez spyware.

Pytanie 11

Aby obserwować przesył danych w sieci komputerowej, należy wykorzystać program typu

A. debugger
B. sniffer
C. kompilator
D. firmware
Debugger, firmware oraz kompilator to narzędzia, które pełnią zupełnie inne funkcje niż sniffer. Debugger to narzędzie służące do analizy i usuwania błędów w kodzie źródłowym. Umożliwia programistom śledzenie wykonania programu, wstrzymywanie go w określonych punktach oraz inspekcję wartości zmiennych. Debugger nie jest przystosowany do monitorowania ruchu sieciowego, a jego zastosowanie ogranicza się do analizy logiki programów. Firmware to oprogramowanie wbudowane w urządzenia, które kontroluje ich działanie. Chociaż może być aktualizowane, nie służy do monitorowania transmisji danych w sieci. Kompilator natomiast jest narzędziem, które tłumaczy kod źródłowy z języka programowania na język maszynowy, co jest kluczowe w procesie tworzenia aplikacji, ale również nie ma zastosowania w kontekście monitorowania ruchu sieciowego. Typowe błędy myślowe prowadzące do wyboru tych opcji polegają na myleniu funkcji narzędzi programistycznych z funkcjami narzędzi do monitorowania i analizy sieci. Użytkownicy często nie zdają sobie sprawy, że do monitorowania transmisji danych w sieci potrzebne są specjalistyczne narzędzia, a nie te związane z programowaniem czy urządzeniami. Dlatego tak ważne jest zaznajomienie się z odpowiednimi narzędziami w celu skutecznej analizy ruchu w sieci.

Pytanie 12

Co oznacza standard ACPI w BIOSie komputera?

A. zarządzanie energią oraz konfiguracją
B. zapamiętanie sekwencji rozruchu
C. modyfikację ustawień BIOSu
D. weryfikowanie prawidłowości działania kluczowych komponentów płyty głównej
Wybór odpowiedzi związanej z „sprawdzaniem poprawności działania podstawowych podzespołów płyty głównej” jest niepoprawny, ponieważ nie odnosi się do funkcji standardu ACPI. ACPI nie jest odpowiedzialne za diagnostykę sprzętu, ale raczej za zarządzanie energią i konfiguracją systemu. Istnieją inne komponenty BIOS, takie jak POST (Power-On Self-Test), które wykonują kontrolę i diagnostykę podstawowych podzespołów, jednak nie są one częścią ACPI. Zatem pomylenie funkcji ACPI z testowaniem sprzętu jest typowym błędem, który wynika z niepełnego zrozumienia roli, jaką ACPI odgrywa w architekturze systemów komputerowych. Wspomnienie o „zapamiętywaniu kolejności bootowania” również nie odnosi się do zasadniczego celu ACPI, który koncentruje się na zarządzaniu energią, a nie na konfiguracji rozruchu. Chociaż BIOS posiada funkcję ustalania kolejności bootowania, to jednak realizują ją inne mechanizmy wewnętrzne, a nie ACPI. Wreszcie, odpowiedź dotycząca „zmiany ustawień BIOSu” nie jest również zgodna z rolą ACPI, który nie zajmuje się modyfikacją ustawień BIOS, lecz raczej zarządzaniem energią i konfiguracją systemów operacyjnych oraz urządzeń. ACPI działa na poziomie zarządzania energią w kontekście operacyjnym, a nie na poziomie podstawowych ustawień BIOS, co potwierdza jego specyfikacja i zastosowanie w nowoczesnych technologiach komputerowych.

Pytanie 13

Jakie oprogramowanie nie jest przeznaczone do diagnozowania komponentów komputera?

A. Everest
B. HD Tune
C. Cryptic Disk
D. CPU-Z
Wybór programów takich jak Everest, CPU-Z czy HD Tune wskazuje na niezrozumienie funkcji, jakie pełnią te aplikacje. Everest, znany również jako AIDA64, to narzędzie do szczegółowej diagnostyki sprzętu, które dostarcza informacji o wszystkich podzespołach komputera, takich jak procesor, karta graficzna, pamięć RAM, a także parametry systemowe, temperatury i napięcia. Jego główną funkcjonalnością jest monitorowanie stanu urządzeń, co pozwala użytkownikom na szybką identyfikację problemów związanych ze sprzętem. CPU-Z jest kolejnym narzędziem, które koncentruje się na analizie procesora i pamięci RAM, dostarczając szczegółowe dane dotyczące ich parametrów technicznych. HD Tune natomiast zajmuje się diagnostyką dysków twardych, oferując informacje o ich stanie technicznym, prędkości transferu, a także możliwościach naprawy. Wybierając te programy jako alternatywy dla Cryptic Disk, można nieświadomie zignorować znaczenie diagnostyki sprzętu w kontekście utrzymania stabilności i wydajności systemu komputerowego. Powszechnym błędem jest mylenie narzędzi do ochrony danych z narzędziami diagnostycznymi, co może prowadzić do niewłaściwych decyzji podczas zarządzania zasobami IT.

Pytanie 14

Jaki standard Ethernet należy wybrać przy bezpośrednim połączeniu urządzeń sieciowych, które dzieli odległość 1 km?

A. 10GBase-T
B. 10GBase-SR
C. 1000Base-SX
D. 1000Base-LX
Odpowiedź 1000Base-LX jest poprawna, ponieważ ten standard Ethernet jest zaprojektowany do pracy na dłuższych dystansach, w tym do 10 km w przypadku użycia włókien jednomodowych. W przeciwieństwie do standardów takich jak 1000Base-SX, który wykorzystuje włókna wielomodowe i jest ograniczony do krótszych odległości (zwykle do 550 m), 1000Base-LX zapewnia odpowiednią przepustowość i niezawodność dla połączeń sięgających 1 km. Użycie 1000Base-LX w praktyce jest powszechne w zastosowaniach, gdzie istotna jest stabilność połączenia na dużych dystansach, jak w przypadku połączeń pomiędzy budynkami w kampusach utrzymujących dużą infrastrukturę IT. Ten standard Ethernet wykorzystuje długość fali 1310 nm, co sprawia, że jest idealny do transmisji w trybie jednomodowym, gdzie straty sygnału są znacznie mniejsze w porównaniu do włókien wielomodowych. W kontekście instalacji sieciowej, wybór odpowiedniego standardu jest kluczowy dla zapewnienia wysokiej jakości i trwałości połączenia, co czyni 1000Base-LX najlepszym wyborem dla tego konkretnego przypadku.

Pytanie 15

Zainstalowanie w komputerze wskazanej karty pozwoli na

Ilustracja do pytania
A. podłączenie dodatkowego urządzenia peryferyjnego, na przykład skanera lub plotera
B. zwiększenie przepustowości magistrali komunikacyjnej w komputerze
C. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
D. bezprzewodowe połączenie z siecią LAN przy użyciu interfejsu BNC
Odpowiedź dotycząca rejestracji przetwarzania oraz odtwarzania obrazu telewizyjnego jest prawidłowa ponieważ karta przedstawiona na zdjęciu to karta telewizyjna często używana do odbioru sygnału telewizyjnego w komputerze. Tego typu karty pozwalają na dekodowanie analogowego sygnału telewizyjnego na cyfrowy format przetwarzany w komputerze co umożliwia oglądanie telewizji na ekranie monitora oraz nagrywanie programów TV. Karty takie obsługują różne standardy sygnału analogowego jak NTSC PAL i SECAM co umożliwia ich szerokie zastosowanie w różnych regionach świata. Montaż takiej karty w komputerze jest szczególnie przydatny w systemach do monitoringu wideo gdzie może służyć jako element do rejestracji obrazu z kamer przemysłowych. Dodatkowo karty te często oferują funkcje takie jak timeshifting pozwalające na zatrzymanie i przewijanie na żywo oglądanego programu. Stosowanie kart telewizyjnych w komputerach stacjonarnych jest praktyką umożliwiającą integrację wielu funkcji multimedialnych w jednym urządzeniu co jest wygodne dla użytkowników domowych oraz profesjonalistów zajmujących się edycją wideo.

Pytanie 16

Jaki protokół jest używany do ściągania wiadomości e-mail z serwera pocztowego na komputer użytkownika?

A. HTTP
B. POP3
C. SMTP
D. FTP
Protokół POP3 (Post Office Protocol 3) jest standardem stosowanym do pobierania wiadomości e-mail z serwera na komputer użytkownika. POP3 umożliwia użytkownikom ściąganie e-maili na lokalne urządzenie, co pozwala na ich przeglądanie offline. Główną funkcjonalnością POP3 jest przenoszenie wiadomości z serwera pocztowego na klienta pocztowego, co oznacza, że po pobraniu wiadomości na komputer, są one zazwyczaj usuwane z serwera. To podejście jest szczególnie użyteczne dla osób, które preferują zarządzać swoją pocztą lokalnie oraz dla tych, którzy mają ograniczone połączenie internetowe. W praktyce, użytkownicy często konfigurują swoje aplikacje pocztowe, takie jak Outlook, Thunderbird czy inne, aby korzystały z protokołu POP3, co pozwala im na łatwe zarządzanie swoimi wiadomościami i utrzymanie porządku w skrzynce odbiorczej. Warto również zwrócić uwagę na bezpieczeństwo, stosując szyfrowanie SSL/TLS podczas połączenia z serwerem, co jest dobrą praktyką w branży.

Pytanie 17

Do czego służy nóż uderzeniowy?

A. Do instalacji skrętki w gniazdach sieciowych
B. Do przecinania przewodów miedzianych
C. Do przecinania przewodów światłowodowych
D. Do montażu złącza F na kablu koncentrycznym
Zastosowanie noża uderzeniowego w cięciu przewodów miedzianych, światłowodowych, czy montażu złącza F na kablu koncentrycznym jest nieodpowiednie i niezgodne z przeznaczeniem tego narzędzia. Nóż uderzeniowy, jak sama nazwa wskazuje, został zaprojektowany w celu precyzyjnego montażu kabli skrętkowych, a nie do obróbki innych typów przewodów. Cięcie przewodów miedzianych wymaga innego typu narzędzi, takich jak nożyce do kabli, które są dostosowane do grubości oraz materiału przewodów, co zapewnia czyste cięcie i minimalizuje ryzyko uszkodzenia żył. Z kolei przewody światłowodowe wymagają stosowania precyzyjnych narzędzi optycznych, które pozwalają na odpowiednie przygotowanie końcówek włókien, co jest kluczowe dla jakości transmisji światła. Montaż złącza F na kablu koncentrycznym również nie jest związany z użyciem noża uderzeniowego; do tego celu stosuje się inne narzędzia, takie jak zaciskarki czy narzędzia do ściągania izolacji. Wybór niewłaściwego narzędzia może prowadzić do problemów z jakością połączeń, co w dłuższym czasie przekłada się na awarie i straty sygnału, podkreślając znaczenie używania odpowiednich narzędzi do konkretnego zadania.

Pytanie 18

Możliwą przyczyną usterki drukarki igłowej może być awaria

A. elektrody ładującej
B. elektromagnesu
C. termorezystora
D. dyszy
Wybór termorezystora jako przyczyny awarii drukarki igłowej opiera się na nieporozumieniu dotyczącym funkcji tego komponentu. Termorezystor, który jest używany do pomiaru temperatury, nie ma bezpośredniego wpływu na mechanikę działania drukarki igłowej. Zwykle jego rola ogranicza się do monitorowania temperatury w systemach, gdzie wypływ atramentu może być zależny od ciepłoty, co jest bardziej typowe dla drukarek atramentowych. Przypisanie usterki termorezystora do problemu z drukowaniem w kontekście drukarek igłowych jest błędne i prowadzi do mylnych diagnoz. Dysza, choć istotna w procesie druku, nie jest kluczowym elementem w przypadku drukarek igłowych, które opierają się na mechanizmie igieł. Przyczyną problemu w tym przypadku nie jest również elektroda ładująca, która jest częściej związana z drukiem elektrostatycznym, a nie z technologią igłową. Zrozumienie różnicy pomiędzy technologiami druku, jak również roli poszczególnych elementów, jest kluczowe dla poprawnej diagnozy usterek. Błędne przypisanie winy różnym komponentom może prowadzić do nieefektywnego rozwiązywania problemów oraz niepotrzebnych kosztów związanych z naprawą urządzenia. Warto zawsze bazować na wiedzy technicznej i standardowych procedurach diagnostycznych, aby skutecznie identyfikować źródła problemów.

Pytanie 19

Wykonano test przy użyciu programu Acrylic Wi-Fi Home, a wyniki przedstawiono na zrzucie ekranu. Na ich podstawie można wnioskować, że dostępna sieć bezprzewodowa

Ilustracja do pytania
A. używa kanałów 10 ÷ 12
B. cechuje się bardzo dobrą jakością sygnału
C. jest niezaszyfrowana
D. osiąga maksymalną prędkość transferu 72 Mbps
Sieć bezprzewodowa jest określona jako nieszyfrowana, co oznacza, że nie stosuje żadnych mechanizmów szyfrowania, takich jak WEP, WPA czy WPA2. W kontekście bezpieczeństwa sieci Wi-Fi brak szyfrowania oznacza, że dane przesyłane w sieci są podatne na podsłuch i ataki typu man-in-the-middle. W praktyce, otwarte sieci Wi-Fi są często spotykane w miejscach publicznych, takich jak kawiarnie czy lotniska, gdzie wygoda połączenia jest priorytetem nad bezpieczeństwem. Jednak zaleca się, aby w domowych i firmowych sieciach stosować co najmniej WPA2, które jest uważane za bezpieczniejsze dzięki używaniu protokołu AES. Szyfrowanie chroni prywatność użytkowników i integralność przesyłanych danych. W przypadku nieszyfrowanej sieci, każdy, kto znajduje się w jej zasięgu, może potencjalnie podsłuchiwać ruch sieciowy, co może prowadzić do utraty danych osobowych lub firmowych. Dlatego też, w celu zwiększenia bezpieczeństwa sieci, zaleca się wdrożenie najnowszych standardów szyfrowania i regularną aktualizację sprzętu sieciowego.

Pytanie 20

Nośniki informacji, takie jak dysk twardy, gromadzą dane w jednostkach określanych jako sektory, których rozmiar wynosi

A. 1024KB
B. 128B
C. 512B
D. 512KB
Wybór takich rozmiarów, jak 128B, 1024KB czy 512KB, pokazuje, że można pomylić podstawowe pojęcia o przechowywaniu danych. Odpowiedź 128B nie trzyma się, bo to nie jest rozmiar sektora w nowoczesnych dyskach twardych. Mniejsze sektory byłyby mało wydajne w kontekście operacji I/O, a ich użycie mogłoby prowadzić do fragmentacji. 1024KB to też nie to, bo 1MB przekracza tradycyjne rozmiary sektorów. Z kolei 512KB to już bardzo duży rozmiar, bo to więcej niż pięć razy standardowy sektor, więc nie pasuje do realiów branży. Wygląda na to, że tu mamy do czynienia z pomyłkami w podstawowych pojęciach dotyczących wielkości danych. Zrozumienie, jaki jest standardowy rozmiar sektora, to kluczowa wiedza dla zarządzania danymi i efektywności operacji na dyskach, co jest podstawą działania każdego systemu informatycznego.

Pytanie 21

Jakie polecenie w systemie Linux pokazuje czas działania systemu oraz jego średnie obciążenie?

A. uname -a
B. uptime
C. dmidecode
D. lastreboot
Polecenie 'uptime' to świetne narzędzie w Linuxie, które pokazuje, jak długo system działa od ostatniego uruchomienia. Dodatkowo, daje nam info o średnim obciążeniu procesora w ostatnich 1, 5 i 15 minutach. To coś, co przydaje się szczególnie administratorom, którzy chcą wiedzieć, jak funkcjonuje ich serwer. Jak mamy krótki uptime, to znaczy, że system może mieć problemy, może się częściej resetuje, co często związane jest z błędami w konfiguracji lub problemami ze sprzętem. Dlatego jeśli administratorzy monitorują te dane, łatwiej podejmują decyzje o naprawach czy optymalizacji. No i regularne sprawdzanie uptime jest super ważne, żeby wszystkie aplikacje działały jak należy i żeby unikać przestojów.

Pytanie 22

Która karta graficzna nie będzie kompatybilna z monitorem, który posiada złącza pokazane na zdjęciu, przy założeniu, że do podłączenia monitora nie użyjemy adaptera?

Ilustracja do pytania
A. HIS R7 240 2GB GDDR3 (128 bit) HDMI, DVI, D-Sub
B. Asus Radeon RX 550 4GB GDDR5 (128 bit), DVI-D, HDMI, DisplayPort
C. Sapphire Fire Pro W9000 6GB GDDR5 (384 bit) 6x mini DisplayPort
D. Fujitsu NVIDIA Quadro M2000 4GB GDDR5 (128 Bit) 4xDisplayPort
Karta HIS R7 240 posiada wyjścia HDMI DVI i D-Sub. Zdjęcie przedstawia złącza HDMI i DisplayPort. W związku z tym karta HIS R7 240 nie będzie kompatybilna z monitorem z powodu braku złącza DisplayPort. Standard HDMI i D-Sub są powszechnie używane w starszych modelach kart graficznych i monitorów natomiast DisplayPort jest nowszym standardem oferującym wyższą przepustowość i często kompatybilność z rozdzielczościami 4K. W praktyce oznacza to że jeśli monitor posiada wyłącznie złącza przedstawione na zdjęciu użytkownik musi posiadać kartę graficzną z kompatybilnymi portami bez konieczności używania adapterów co mogłoby wpłynąć na jakość obrazu. Konieczność dobrania odpowiedniego sprzętu zależy nie tylko od dostępności portów ale też od wymagań dotyczących rozdzielczości i częstotliwości odświeżania co ma znaczenie w profesjonalnych zastosowaniach graficznych oraz podczas grania w gry komputerowe. Warto zwrócić uwagę na specyfikacje kart podczas zakupu by uniknąć takich niekompatybilności.

Pytanie 23

Na zaprezentowanej płycie głównej komputera złącza oznaczono cyframi 25 i 27

Ilustracja do pytania
A. LPT
B. PS 2
C. RS 232
D. USB
Złącza LPT, PS/2 oraz RS-232 były szeroko używane we wcześniejszych generacjach komputerów, ale obecnie zostały w dużej mierze zastąpione przez nowocześniejsze technologie. LPT, znane również jako port równoległy, wykorzystywane było głównie do podłączania drukarek. Ze względu na swoje ograniczenia w szybkości transmisji danych oraz ilości przewodów wymaganych do działania, złącza te zostały prawie całkowicie wyparte przez USB. Złącze PS/2 było standardem dla podłączania klawiatur i myszy w komputerach stacjonarnych. Pomimo swojej niezawodności, obecnie coraz częściej zastępowane jest przez bardziej uniwersalne złącza USB, które oferują większą elastyczność i kompatybilność. RS-232 to interfejs komunikacyjny używany do wymiany danych między komputerem a urządzeniami takimi jak modemy czy różne urządzenia pomiarowe. Pomimo jego niezawodności i prostoty, interfejs ten ma ograniczenia dotyczące prędkości transmisji i długości kabla, co sprawia, że w nowoczesnych urządzeniach zastępowany jest przez szybsze i bardziej zaawansowane technologie. Typowym błędem może być założenie, że starsze złącza są wciąż powszechnie używane w nowych komputerach, podczas gdy postęp technologiczny kieruje się ku bardziej wydajnym i wszechstronnym rozwiązaniom jak USB. Dlatego rozumienie i umiejętność rozpoznawania nowoczesnych interfejsów, takich jak USB, jest kluczowa w pracy zawodowej związanej z technologiami informacyjnymi.

Pytanie 24

Na diagramie działania skanera, element oznaczony numerem 1 odpowiada za

Ilustracja do pytania
A. wzmacnianie sygnału elektrycznego
B. zamiana sygnału analogowego na sygnał cyfrowy
C. zamiana sygnału optycznego na sygnał elektryczny
D. wzmacnianie sygnału optycznego
W skanerze różne elementy pełnią różnorodne funkcje, które razem umożliwiają skuteczne skanowanie dokumentów czy obrazów. Wzmacnianie sygnału optycznego nie jest typowym zadaniem w skanerach ponieważ sygnał optyczny jest zazwyczaj bezpośrednio przetwarzany na sygnał elektryczny za pomocą fotodetektorów takich jak fotodiody czy matryce CCD/CMOS. Sygnał optyczny nie jest wzmacniany w konwencjonalnym znaczeniu tego słowa lecz przekształcany w postać elektryczną która jest następnie przetwarzana. Wzmacnianie sygnału elektrycznego o którym mowa w jednej z odpowiedzi ma miejsce dopiero po zamianie sygnału optycznego na elektryczny. Wzmacniacze sygnału elektrycznego są używane aby upewnić się że sygnał jest wystarczająco silny do dalszego przetwarzania i aby minimalizować szumy. Zamiana sygnału analogowego na cyfrowy to kolejny etap, który następuje po przekształceniu sygnału optycznego na elektryczny. Odpowiedzialny za ten proces jest przetwornik analogowo-cyfrowy, który konwertuje analogowy sygnał elektryczny na cyfrowy zapis, umożliwiając komputerowi jego interpretację i dalsze przetwarzanie. Często błędne jest myślenie, że te procesy mogą być zamienne lub że mogą zachodzić w dowolnej kolejności. Każdy etap jest precyzyjnie zaplanowany i zgodny ze standardami branżowymi, co zapewnia poprawną i efektywną pracę skanera oraz wysoką jakość uzyskiwanych obrazów. Zrozumienie tych procesów pomaga w efektywnym rozwiązywaniu problemów związanych z działaniem skanerów oraz ich prawidłowym używaniem w praktyce zawodowej i codziennej.

Pytanie 25

Jakie składniki systemu komputerowego wymagają utylizacji w wyspecjalizowanych zakładach przetwarzania z powodu obecności niebezpiecznych substancji lub pierwiastków chemicznych?

A. Radiatory
B. Tonery
C. Przewody
D. Obudowy komputerów
Tonery są elementem systemu komputerowego, który często zawiera substancje chemiczne uznawane za niebezpieczne, takie jak proszki tonera, które mogą zawierać pigmenty, tworzywa sztuczne i inne dodatki, które przy nieodpowiedniej utylizacji mogą stanowić zagrożenie dla środowiska. W związku z tym, wiele krajów wprowadza regulacje dotyczące utylizacji tych materiałów, aby zapobiec ich szkodliwemu wpływowi na otoczenie. Zaleca się, aby tonery były oddawane do wyspecjalizowanych punktów zbiórki lub zakładów przetwarzania, które stosują odpowiednie metody segregacji i recyklingu. Przykładem może być recykling tonera, gdzie odzyskuje się surowce do produkcji nowych wkładów, co zmniejsza ilość odpadów i wpływa na zrównoważony rozwój. Firmy zajmujące się odpowiedzialnym zarządzaniem odpadami często stosują systemy certyfikowane, takie jak ISO 14001, które zapewniają, że procesy związane z utylizacją są zgodne z międzynarodowymi standardami ochrony środowiska.

Pytanie 26

Jakie polecenia należy zrealizować, aby zamontować pierwszą partycję logiczną dysku primary slave w systemie Linux?

A. mount /dev/hda2 /mnt/hdd
B. mount /dev/hdb5 /mnt/hdd
C. mount /dev/hdb3 /mnt/hdd
D. mount /dev/hda4 /mnt/hdd
Odpowiedź 'mount /dev/hdb5 /mnt/hdd' jest poprawna, ponieważ odnosi się do pierwszej partycji logicznej na dysku primary slave, który w konwencji Linuxa jest reprezentowany przez '/dev/hdb'. Partycje logiczne są zazwyczaj numerowane w obrębie rozszerzonej partycji, a w tym przypadku 'hdb5' oznacza piątą partycję logiczną znajdującą się na dysku '/dev/hdb'. Montowanie partycji w systemie Linux jest kluczowym procesem, który pozwala na dostęp do danych przechowywanych na dysku. Użycie polecenia 'mount' umożliwia podłączenie systemu plików z urządzenia blokowego (takiego jak dysk twardy) do określonego punktu montowania w hierarchii systemu plików. Przykładem praktycznego zastosowania tej komendy może być sytuacja, w której administrator serwera potrzebuje uzyskać dostęp do danych na dodatkowym dysku twardym, co wymaga właściwego zamontowania odpowiedniej partycji, zapewniając jednocześnie integralność i wydajność operacji na plikach. Warto również zauważyć, że dobrym zwyczajem jest regularne sprawdzanie stanu systemu plików przed montowaniem, co można osiągnąć za pomocą narzędzia 'fsck'.

Pytanie 27

Jaką rolę należy przypisać serwerowi z rodziny Windows Server, aby mógł świadczyć usługi rutingu?

A. Usługi zarządzania dostępem w Active Directory
B. Serwer sieci Web (IIS)
C. Usługi domenowe w Active Directory
D. Usługi zasad i dostępu sieciowego
Usługi zasad i dostępu sieciowego to kluczowa rola w systemach operacyjnych z rodziny Windows Server, która umożliwia zarządzanie ruchem sieciowym oraz zapewnia funkcje rutingu. Dzięki tej roli, administratorzy mogą konfigurować serwer do działania jako router, co pozwala na przesyłanie pakietów pomiędzy różnymi segmentami sieci. Implementacja tej roli jest zgodna z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT, umożliwiając integrację z usługami Active Directory i kontrolę dostępu w oparciu o zasady. Przykładowo, w środowisku przedsiębiorstwa, serwer z tą rolą może płynnie przesyłać ruch między różnymi lokalizacjami, co jest szczególnie ważne w przypadku rozbudowanych sieci z oddziałami rozproszonymi. Dzięki zastosowaniu modeli dostępu, takich jak RADIUS, administratorzy mogą również wdrażać polityki bezpieczeństwa, co podnosi poziom ochrony danych i ogranicza nieautoryzowany dostęp. Wszystko to sprawia, że usługi zasad i dostępu sieciowego są kluczowym elementem współczesnej infrastruktury sieciowej.

Pytanie 28

Zidentyfikuj urządzenie przedstawione na ilustracji

Ilustracja do pytania
A. jest odpowiedzialne za generowanie sygnału analogowego na wyjściu, który jest wzmocnionym sygnałem wejściowym, kosztem energii pobieranej z zasilania
B. jest przeznaczone do przechwytywania oraz rejestrowania pakietów danych w sieciach komputerowych
C. umożliwia konwersję sygnału z okablowania miedzianego na okablowanie optyczne
D. odpowiada za transmisję ramki pomiędzy segmentami sieci z wyborem portu, do którego jest przesyłana
Urządzenie przedstawione na rysunku to konwerter mediów, który umożliwia zamianę sygnału pochodzącego z okablowania miedzianego na okablowanie światłowodowe. Konwertery mediów są kluczowe w nowoczesnych sieciach komputerowych, gdzie konieczne jest łączenie różnych typów mediów transmisyjnych. Przykładowo, jeśli posiadamy infrastrukturę opartą na kablu miedzianym (Ethernet) i chcemy połączyć segmenty sieci na dużą odległość, możemy użyć światłowodu, który zapewnia mniejsze tłumienie i większą odporność na zakłócenia elektromagnetyczne. Urządzenie to pozwala na konwersję sygnałów z miedzianego interfejsu na światłowodowy, często wspierając różne standardy jak 1000Base-T dla miedzi i 1000Base-SX/LX dla światłowodów. Konwertery mogą być wyposażone w gniazda SFP, co umożliwia łatwą wymianę modułów optycznych dostosowanych do wymagań sieci. Dobór odpowiedniego konwertera bazuje na wymaganiach dotyczących prędkości transmisji, odległości przesyłu i rodzaju używanego kabla. Dzięki temu, konwertery mediów pozwalają na elastyczne zarządzanie infrastrukturą sieciową, co jest zgodne z najlepszymi praktykami projektowania sieci, które rekomendują adaptacyjność i skalowalność.

Pytanie 29

Aby połączyć projektor multimedialny z komputerem, nie można zastosować złącza

A. USB
B. D-SUB
C. HDMI
D. SATA
Odpowiedź SATA jest prawidłowa, ponieważ to złącze nie jest przeznaczone do przesyłania sygnałów wideo ani audio. SATA (Serial ATA) służy głównie do łączenia dysków twardych i napędów SSD z płytą główną komputera, a nie do przesyłania danych multimedialnych. W przypadku projektora multimedialnego najbardziej popularne złącza to D-SUB, HDMI oraz USB, które są przeznaczone do transmitowania sygnałów wideo oraz dźwięku. Na przykład HDMI, będące standardem w nowoczesnych urządzeniach, obsługuje sygnały w wysokiej rozdzielczości oraz dźwięk wielokanałowy w jednym kablu, co czyni je bardzo wygodnym rozwiązaniem. D-SUB, z kolei, to starsze złącze analogowe, które było powszechnie stosowane w monitorach i projektorach, lecz nie obsługuje sygnałów cyfrowych. W praktyce, wybierając odpowiednie złącze do projektora, warto kierować się jego specyfikacjami oraz możliwościami urządzeń, aby zapewnić najlepszą jakość obrazu i dźwięku.

Pytanie 30

Komputer zainstalowany w domenie Active Directory nie jest w stanie nawiązać połączenia z kontrolerem domeny, na którym znajduje się profil użytkownika. Jaki rodzaj profilu użytkownika zostanie stworzony na tym urządzeniu?

A. Obowiązkowy
B. Tymczasowy
C. Lokalny
D. Mobilny
Kiedy komputer pracuje w domenie Active Directory, jego możliwość połączenia z kontrolerem domeny jest kluczowa dla uwierzytelnienia użytkownika oraz załadowania odpowiedniego profilu użytkownika. Jeśli komputer nie może nawiązać takiego połączenia, system automatycznie tworzy tymczasowy profil użytkownika. Tymczasowe profile są używane, gdy nie można uzyskać dostępu do profilu przechowywanego na serwerze. Użytkownik może zalogować się i korzystać z komputera, ale wszelkie zmiany dokonane w tym profilu nie będą zapisywane po wylogowaniu. W praktyce oznacza to, że użytkownik nie ma stałych ustawień czy plików na tym komputerze, co może być problematyczne w środowiskach, gdzie zależy nam na zachowaniu osobistych preferencji. Zgodnie z dobrymi praktykami zarządzania systemami, regularne monitorowanie połączeń z kontrolerem domeny i poprawne konfigurowanie ustawień sieciowych jest kluczowe dla uniknięcia sytuacji, w których użytkownicy muszą korzystać z tymczasowych profili.

Pytanie 31

Jakie parametry otrzyma interfejs sieciowy eth0 po wykonaniu poniższych poleceń w systemie Linux?

ifconfig eth0 10.0.0.100
netmask 255.255.255.0
broadcast 10.0.0.255 up
route add default gw 10.0.0.10

A. adres IP 10.0.0.100, maskę /22, bramę 10.0.0.10
B. adres IP 10.0.0.100, maskę /24, bramę 10.0.0.10
C. adres IP 10.0.0.10, maskę /16, bramę 10.0.0.100
D. adres IP 10.0.0.10, maskę /24, bramę 10.0.0.255
No niestety, coś poszło nie tak. Maska podsieci /16, którą wybrałeś, to nie jest najlepszy wybór dla mniejszych sieci lokalnych, bo po prostu daje za dużo adresów IP, co może prowadzić do bałaganu. I pamiętaj, adres bramy 10.0.0.255 to adres rozgłoszeniowy, więc nie może być bramą sieciową – brama powinna mieć adres hosta w tej samej podsieci, co interfejs. A w przypadku adresu IP 10.0.0.10 z maską /22, to też nie gra, bo to nie zgadza się z tym, co było w przedstawionej konfiguracji. Takie błędy najczęściej wynikają z niezrozumienia zasad przydzielania adresów i maski podsieci oraz roli bramy w komunikacji. Musisz ogarnąć te podstawowe zasady, bo to klucz do skutecznego zarządzania sieciami komputerowymi.

Pytanie 32

Komunikat "BIOS checksum error" pojawiający się podczas uruchamiania komputera zazwyczaj wskazuje na

A. Brak nośnika z systemem operacyjnym
B. Uszkodzoną lub rozładowaną baterię na płycie głównej
C. Uszkodzony wentylator CPU
D. Błąd w pamięci RAM
Komunikat "BIOS checksum error" wskazuje, że wystąpił problem z pamięcią BIOS, co jest często wynikiem uszkodzenia lub rozładowania baterii na płycie głównej. Bateria ta, zazwyczaj typu CR2032, zasilająca pamięć CMOS, jest odpowiedzialna za przechowywanie ustawień BIOS oraz daty i godziny systemu. Gdy bateria traci swoją moc, ustawienia BIOS mogą zostać utracone, co prowadzi do błędu sumy kontrolnej (checksum). W praktyce, jeśli po wymianie baterii na nową błąd wciąż występuje, może to sugerować, że pamięć BIOS jest uszkodzona i wymaga aktualizacji lub wymiany. W przypadku serwisowania lub konserwacji sprzętu komputerowego, regularna kontrola stanu baterii płyty głównej oraz ich wymiana co kilka lat jest zalecana, aby uniknąć problemów z uruchamianiem systemu. Takie działania są zgodne z najlepszymi praktykami branżowymi, które zalecają proaktywne podejście do konserwacji sprzętu.

Pytanie 33

Aby poprawić organizację plików na dysku i przyspieszyć działanie systemu, co należy zrobić?

A. przeskanować dysk za pomocą programu antywirusowego.
B. poddać defragmentacji.
C. wyeliminować nieużywane oprogramowanie.
D. usunąć pliki tymczasowe.
Defragmentacja dysku to ważna rzecz, bo sprawia, że nasz system działa lepiej. Kiedy używamy komputera, pliki często się rozrzucają, co znaczy, że ich kawałki są w różnych miejscach na dysku. Defragmentacja przestawia te kawałki, żeby stworzyć jedną całość, co przyspiesza dostęp do plików. Dzięki temu uruchamianie programów jest szybsze, a praca z komputerem bardziej płynna. Fajnie byłoby robić to regularnie, zwłaszcza na Windowsie, bo to zalecane. Teraz mamy też Windows 10 i 11, które często robią to same, ale jak masz starszy system albo mocno zfragmentowany dysk, to ręczna defragmentacja może się przydać. Pamiętaj tylko, że na dyskach SSD nie trzeba tego robić, bo mają swoją technologię TRIM, która to załatwia.

Pytanie 34

Adresy IPv6 są reprezentowane jako liczby

A. 64 bitowe, wyrażane w postaci ciągów binarnych
B. 256 bitowe, wyrażane w postaci ciągów szesnastkowych
C. 32 bitowe, wyrażane w postaci ciągów binarnych
D. 128 bitowe, wyrażane w postaci ciągów szesnastkowych
Zrozumienie struktury adresów IPv6 jest kluczowe dla prawidłowego ich wykorzystania w nowoczesnych sieciach. Adresy IPv6 nie są 32-bitowe, jak sugeruje jedna z opcji odpowiedzi. Takie podejście jest typowe dla adresowania IPv4, które ogranicza się do około 4 miliardów unikalnych adresów. Z kolei 256-bitowe adresy byłyby niezwykle rozbudowane i praktycznie niepotrzebne, biorąc pod uwagę, że liczba adresów IPv6 wynosi 2^128, co przekłada się na ilość rzędu 340 undecylionów. Taki nadmiar adresów nie jest potrzebny w obecnych zastosowaniach. Inna błędna koncepcja dotyczy podawania adresów w postaci napisów binarnych. Chociaż technicznie możliwe jest przedstawienie adresów IPv6 w formie binarnej, byłoby to niewygodne i niepraktyczne dla ludzi, dlatego przyjęto konwencję szesnastkową. Format szesnastkowy jest znacznie bardziej kompaktowy i łatwiejszy do zrozumienia i zapamiętania. Z tego powodu, aby uniknąć zamieszania, ważne jest, aby przyzwyczaić się do odpowiednich formatów i standardów, takich jak RFC 5952, który promuje sposób zapisywania adresów IPv6. Zrozumienie tych różnic jest kluczowe dla prawidłowego zarządzania sieciami oraz ich bezpieczeństwem, co jest podstawowym wymaganiem w projektach IT.

Pytanie 35

Poniżej zaprezentowano fragment pliku konfiguracyjnego serwera w systemie Linux. Jaką usługi dotyczy ten fragment?

Ilustracja do pytania
A. DDNS
B. TFTP
C. SSH2
D. DHCP
Plik konfiguracyjny przedstawiony na obrazku nie jest związany z usługą TFTP, SSH2 ani DDNS, co można zrozumieć poprzez analizę zawartych w nim elementów. TFTP (Trivial File Transfer Protocol) to prosty protokół do przesyłania plików, który operuje na UDP i nie wymaga zaawansowanej konfiguracji związanej z adresowaniem IP. W kontekście pliku konfiguracyjnego, nie znajdziemy tam specyfikacji podsieci ani zakresów adresów IP, ponieważ TFTP nie zajmuje się tym aspektem zarządzania siecią. SSH2 natomiast odnosi się do Secure Shell w wersji 2, protokołu zapewniającego bezpieczny dostęp do zdalnych systemów. Konfiguracja SSH2 koncentruje się na elementach związanych z autoryzacją, kluczami kryptograficznymi oraz portami komunikacyjnymi, zamiast na aspektach dynamicznego przydzielania adresów. DDNS (Dynamic Domain Name System) umożliwia dynamiczną aktualizację rekordów DNS, co oznacza, że jego konfiguracja dotyczy zasadniczo domen i nie obejmuje bezpośrednio zarządzania podsiecią czy adresami IP. Typowy błąd myślowy polega na kojarzeniu DDNS z dynamicznym charakterem DHCP, jednak ich funkcje w sieci są różne. DDNS zarządza nazwami domen, podczas gdy DHCP odpowiada za adresy IP. Zrozumienie tych fundamentalnych różnic jest kluczowe dla prawidłowego przypisania konfiguracji do odpowiedniej usługi w ramach egzaminu zawodowego. Każda z tych technologii pełni odmienną rolę w ekosystemie sieciowym, co podkreśla znaczenie ich prawidłowego zrozumienia i zastosowania w praktyce administracji sieciowej. Analiza takich plików konfiguracyjnych wymaga od specjalisty znajomości specyfikacji i zastosowania każdego z tych protokołów, co pozwala na efektywne zarządzanie infrastrukturą IT.

Pytanie 36

Który z protokołów służy do weryfikacji poprawności połączenia pomiędzy dwoma hostami?

A. ICMP (Internet Control Message Protocol)
B. UDP (User DatagramProtocol)
C. RARP (ReverseA ddress Resolution Protocol)
D. RIP (Routing Information Protocol)
UDP (User Datagram Protocol) jest protokołem transportowym, który umożliwia przesyłanie danych w sposób niepołączeniowy. Chociaż pozwala na szybkie przesyłanie informacji, nie oferuje mechanizmów sprawdzania poprawności połączenia ani potwierdzania odbioru danych. Użytkownicy mogą zakładać, że UDP jest odpowiedni do diagnostyki sieci, jednak w rzeczywistości nie dostarcza on informacji o stanie połączenia ani o błędach w transmisji. Z drugiej strony, RIP (Routing Information Protocol) jest protokołem używanym do wymiany informacji o trasach w sieciach komputerowych, a jego głównym celem jest ustalenie najlepszej drogi do przesyłania danych. Nie jest on zaprojektowany do sprawdzania osiągalności hostów ani ich komunikacji. RARP (Reverse Address Resolution Protocol) z kolei służy do tłumaczenia adresów IP na adresy MAC, co jest całkowicie inną funkcją i nie ma związku z diagnozowaniem połączeń. Typowe błędy myślowe prowadzące do błędnych odpowiedzi często związane są z nieodróżnieniem funkcji protokołów transportowych i kontrolnych. Użytkownicy mogą mylić UDP z ICMP, nie dostrzegając, że ICMP jest odpowiedzialny za operacje kontrolne, a UDP za przesył danych. Właściwe zrozumienie ról poszczególnych protokołów jest kluczowe dla efektywnego zarządzania i diagnozowania problemów w sieciach komputerowych.

Pytanie 37

Na ilustracji pokazano końcówkę kabla

Ilustracja do pytania
A. światłowodowego
B. koncentrycznego
C. typy skrętki
D. telefonicznego
Złącza światłowodowe, takie jak te przedstawione na rysunku, są kluczowymi elementami wykorzystywanymi w telekomunikacji optycznej. Kabel światłowodowy służy do przesyłania danych w postaci światła, co pozwala na przesyłanie informacji z bardzo dużą szybkością i na duże odległości bez znaczących strat. Jest to szczególnie ważne w infrastrukturze internetowej, gdzie wymagana jest wysoka przepustowość. Standardowym złączem dla kabli światłowodowych jest złącze SC (Subscriber Connector), które charakteryzuje się prostokątnym kształtem i łatwością montażu dzięki mechanizmowi push-pull. Światłowody są obecnie używane w wielu branżach, w tym w telekomunikacji, medycynie, a także w systemach CCTV. Wybór odpowiedniego złącza i kabla światłowodowego jest istotny z punktu widzenia utrzymania jakości sygnału oraz zgodności z obowiązującymi standardami, takimi jak ITU-T G.657. Właściwe połączenie światłowodowe zapewnia minimalne tłumienie sygnału i wysoką niezawodność, co jest kluczowe w nowoczesnej transmisji danych. Wiedza na temat różnych typów złącz i ich zastosowań jest niezbędna dla osób pracujących w tej dziedzinie technologicznej.

Pytanie 38

Jakie urządzenie sieciowe widnieje na ilustracji?

Ilustracja do pytania
A. Moduł Bluetooth
B. Adapter IrDA
C. Karta sieciowa bezprzewodowa
D. Modem USB
Adapter Bluetooth oraz adapter IrDA to urządzenia służące do bezprzewodowej komunikacji pomiędzy różnymi urządzeniami lecz działają na zupełnie innych zasadach niż modem USB. Adapter Bluetooth umożliwia łączenie się z urządzeniami w bliskiej odległości jak słuchawki czy klawiatury w oparciu o technologię radiową działającą w paśmie ISM 2,4 GHz. Jest znany z niskiego zużycia energii i krótkiego zasięgu co sprawia że nie nadaje się do przesyłania dużych ilości danych jak internet mobilny. Adapter IrDA natomiast wykorzystuje technologię podczerwieni do komunikacji na bardzo krótkie odległości co jest praktycznie przestarzałe w nowoczesnych zastosowaniach sieciowych. Karta sieciowa WiFi służy do łączenia się z lokalnymi sieciami bezprzewodowymi dzięki czemu umożliwia dostęp do internetu przez router WiFi. Chociaż zapewnia mobilność w obrębie sieci lokalnej nie korzysta z technologii mobilnych i nie posiada funkcji modemu co ogranicza jej zastosowanie w porównaniu do modemu USB. Wybór niewłaściwego urządzenia często wynika z mylenia różnych technologii bezprzewodowych i ich zastosowań co może prowadzić do nieoptymalnego wykorzystania sprzętu w określonych sytuacjach. Ważne jest aby zrozumieć specyfikę i przeznaczenie każdego typu urządzenia co pozwala lepiej dopasować je do indywidualnych potrzeb sieciowych szczególnie tam gdzie liczy się mobilność i dostępność do szerokopasmowego internetu mobilnego. Stąd kluczowe jest rozpoznawanie różnic pomiędzy technologiami i ich praktycznymi zastosowaniami w rzeczywistych scenariuszach użytkowania.

Pytanie 39

Podczas analizy ruchu sieciowego przy użyciu sniffera zauważono, że urządzenia przesyłają dane na portach 20 oraz 21. Przyjmując standardową konfigurację, oznacza to, że analizowanym protokołem jest protokół

A. FTP
B. SSH
C. DHCP
D. SMTP
Odpowiedź FTP (File Transfer Protocol) jest prawidłowa, ponieważ porty 20 i 21 są standardowymi portami wykorzystywanymi przez ten protokół. Port 21 jest używany do zarządzania połączeniem, nawiązywania sesji oraz przesyłania poleceń, natomiast port 20 służy do rzeczywistego przesyłania danych w trybie aktywnym. FTP jest powszechnie stosowany w celu przesyłania plików pomiędzy komputerami w sieci, co czyni go kluczowym narzędziem w zarządzaniu danymi w środowiskach serwerowych i klienckich. Przykłady zastosowania FTP obejmują transfer plików na serwery WWW, synchronizację zawartości z lokalnych maszyn oraz przesyłanie dużych zbiorów danych. W kontekście standardów branżowych, FTP jest jedną z najstarszych i najbardziej fundamentujących technologii wymiany plików, a jego implementacje często są zgodne z RFC 959, co zapewnia interoperacyjność pomiędzy różnymi systemami operacyjnymi i urządzeniami. Wiedza o FTP oraz jego działaniu jest istotna dla specjalistów zajmujących się zarządzaniem sieciami oraz bezpieczeństwem IT, ponieważ nieodpowiednia konfiguracja FTP może prowadzić do poważnych luk w zabezpieczeniach.

Pytanie 40

Tworzenie zaszyfrowanych połączeń pomiędzy hostami przez publiczną sieć Internet, wykorzystywane w rozwiązaniach VPN (Virtual Private Network), to

A. tunelowanie
B. mapowanie
C. trasowanie
D. mostkowanie
Trasowanie, mapowanie i mostkowanie to techniki związane z zarządzaniem ruchem w sieciach komputerowych, ale nie są one odpowiednie dla opisanego kontekstu. Trasowanie odnosi się do procesu określania najlepszego ścieżki, jaką pakiety danych powinny podążać przez sieć. Jako strategia zarządzania ruchem, trasowanie nie zapewnia jednak bezpieczeństwa ani prywatności, co czyni je niewłaściwym rozwiązaniem do tworzenia zaszyfrowanych połączeń VPN. Mapowanie natomiast odnosi się do procesu przypisywania jednego zestawu wartości do innego, co jest użyteczne w kontekście baz danych lub geolokalizacji, ale nie ma zastosowania w kontekście zabezpieczania komunikacji sieciowej. Mostkowanie z kolei umożliwia połączenie dwóch segmentów sieci w celu zwiększenia rozmiarów sieci lokalnej, ale nie implementuje mechanizmów szyfrowania ani ochrony danych. W rzeczywistości te techniki mogą wprowadzać w błąd, sugerując, że zapewniają one bezpieczeństwo w komunikacji. Powszechnym błędem myślowym jest uznawanie trasowania za wystarczające dla ochrony danych, podczas gdy w rzeczywistości nie zapewnia ono żadnych zabezpieczeń przed podsłuchiwaniem lub atakami. Zrozumienie różnic między tymi technikami a tunelowaniem jest kluczowe dla skutecznej ochrony informacji przesyłanych w sieciach publicznych.