Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 4 kwietnia 2025 08:18
  • Data zakończenia: 4 kwietnia 2025 08:48

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Znaczenie wilgoci dla parametrów eksploatacyjnych jest szczególnie istotne w odniesieniu do

A. jednostki napędowej
B. oleju silnikowego
C. płynu hamulcowego
D. układu klimatyzacji
Odpowiedzi dotyczące oleju silnikowego, układu klimatyzacji oraz jednostki napędowej mogą budzić pewne wątpliwości w kontekście wpływu wilgoci na ich parametry eksploatacyjne. Olej silnikowy, choć również może ulegać degradacji pod wpływem wilgoci, jest zaprojektowany z myślą o zabezpieczeniu silnika przed korozją i osadami, a jego wpływ na parametry pracy nie jest tak bezpośredni jak w przypadku płynu hamulcowego. W silniku, wilgoć jest częścią naturalnego cyklu pracy i jest usuwana w procesie spalania. W przypadku układu klimatyzacji, obecność wilgoci może prowadzić do powstawania lodu, jednak nowoczesne systemy są zazwyczaj wyposażone w osuszacze, które eliminują ten problem. Z kolei jednostka napędowa, mimo że ma swoje specyficzne wymagania dotyczące jakości paliwa i smarów, nie jest bezpośrednio narażona na negatywne skutki wilgoci w takim stopniu jak układ hamulcowy. W rezultacie, odpowiedzi te mogą prowadzić do mylnego przekonania, że wilgoć ma równą wagę we wszystkich tych systemach, podczas gdy w rzeczywistości, w kontekście bezpieczeństwa hamulców, jest to kwestią kluczową.

Pytanie 3

Termostat uruchamia przepływ cieczy chłodzącej do dużego układu

A. po uruchomieniu ogrzewania wnętrza.
B. gdy temperatura cieczy chłodzącej jest niska.
C. tuż po zapłonie silnika.
D. gdy temperatura cieczy chłodzącej jest wysoka.
Odpowiedź, że termostat otwiera przelot cieczy chłodzącej do dużego obiegu, gdy temperatura cieczy chłodzącej jest wysoka, jest jak najbardziej prawidłowa. Termostaty w układach chłodzenia silnika pełnią kluczową rolę w zarządzaniu temperaturą pracy silnika. Kiedy silnik jest zimny, termostat pozostaje zamknięty, co pozwala na szybsze nagrzewanie się silnika. Gdy temperatura cieczy chłodzącej osiąga określony poziom, termostat otwiera przelot do dużego obiegu, co pozwala na cyrkulację cieczy chłodzącej przez chłodnicę. To z kolei zapobiega przegrzewaniu się silnika, co jest kluczowe dla jego optymalnej pracy i żywotności. Przykładem zastosowania tej zasady są nowoczesne pojazdy, które wyposażone są w inteligentne systemy zarządzania temperaturą, które optymalizują wydajność silnika oraz emisję spalin. Dobrze działający termostat zapewnia, że silnik osiąga i utrzymuje optymalną temperaturę roboczą, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Pojawiające się w zbiorniczku wyrównawczym systemu chłodzenia pęcherzyki powietrza mogą być efektem uszkodzenia

A. nagrzewnicy
B. głowicy silnika
C. pompy wody
D. termostatu
Odpowiedzi dotyczące nagrzewnicy, termostatu oraz pompy wody jako potencjalnych źródeł pęcherzyków powietrza w układzie chłodzenia są nieprawidłowe z kilku powodów. Nagrzewnica, pomimo że jest istotnym elementem układu chłodzenia, działa jako wymiennik ciepła, który nie jest bezpośrednio odpowiedzialny za wprowadzanie powietrza do obiegu. Jej uszkodzenie może prowadzić do wycieków płynu chłodzącego, ale nie generuje pęcherzyków powietrza z powodu nieszczelności. Z kolei termostat, który reguluje przepływ płynu chłodzącego w układzie, również nie jest bezpośrednio związany z pojawianiem się pęcherzyków powietrza. Jego uszkodzenie może prowadzić do nieprawidłowego działania układu chłodzenia, jednak nie wprowadza powietrza do obiegu. Pompa wody, na której zadaniem jest cyrkulacja płynu chłodzącego, może powodować problemy w przypadku awarii, ale pęcherzyki powietrza nie są jej typowym symptomem. Typowym błędem myślowym jest utożsamianie problemów z układem chłodzenia z niesprawnością wszystkich jego elementów, podczas gdy kluczowe jest zrozumienie, że każdy z tych komponentów ma specyficzne funkcje i usterki, które nie zawsze są ze sobą powiązane. Aby skutecznie diagnozować problemy związane z układem chłodzenia, ważne jest przeprowadzenie szczegółowej analizy stanu technicznego poszczególnych elementów, zaczynając od najczęstszych przyczyn, jak właśnie uszkodzenia głowicy silnika.

Pytanie 6

Częścią systemu chłodzenia nie jest

A. pompa wody
B. termostat
C. przekładnia ślimakowa
D. czujnik temperatury
Przekładnia ślimakowa nie jest elementem układu chłodzenia silnika, ponieważ pełni zupełnie inną funkcję, związana głównie z przenoszeniem napędu i momentu obrotowego w mechanizmach. Układ chłodzenia silnika składa się z takich elementów jak pompa wody, czujnik temperatury oraz termostat, które współpracują w celu utrzymania optymalnej temperatury pracy silnika. Pompa wody jest odpowiedzialna za cyrkulację płynu chłodzącego w obiegu, co jest kluczowe dla efektywnego odprowadzania ciepła. Czujnik temperatury monitoruje temperaturę płynu chłodzącego, co pozwala na bieżąco kontrolować działanie układu. Termostat natomiast reguluje przepływ płynu chłodzącego, otwierając lub zamykając obieg, co zapobiega przegrzaniu silnika. W związku z tym, zrozumienie roli każdego z tych elementów oraz ich współpracy jest kluczowe dla prawidłowego funkcjonowania silnika i jego układu chłodzenia.

Pytanie 7

Po wykonaniu naprawy tłumika końcowego, trzeba przeprowadzić kontrolę pojazdu przy użyciu

A. sonometru
B. miernika uniwersalnego
C. testera diagnostycznego
D. refraktometru
Użycie testera diagnostycznego, miernika uniwersalnego czy refraktometru w kontekście kontroli tłumika końcowego jest niewłaściwe, ponieważ każdy z tych przyrządów ma zupełnie inne zastosowanie. Tester diagnostyczny jest przeznaczony do oceny systemów elektronicznych pojazdu, takich jak systemy zarządzania silnikiem czy diagnostyka usterek elektronicznych. Jego funkcjonalność nie obejmuje pomiaru hałasu, co czyni go nieprzydatnym w analizie efektywności tłumika, który jest elementem mechanicznym, a nie elektronicznym. Miernik uniwersalny, z kolei, jest wykorzystywany do pomiaru różnych parametrów, takich jak napięcie, prąd czy oporność, jednak nie potrafi ocenić poziomu dźwięku. Natomiast refraktometr jest narzędziem stosowanym w ocenie jakości płynów, na przykład w zakresie stężenia roztworów, co nie ma żadnego związku z kontrolą hałasu emitowanego przez pojazdy. Użycie tych przyrządów w kontekście kontroli tłumika może prowadzić do błędnych wniosków, a także marnotrawstwa czasu i zasobów. Kluczowe jest, aby zrozumieć, że do pomiaru poziomu hałasu emitowanego przez tłumik najlepszym narzędziem jest sonometr, który dostarcza właściwych danych na temat zgodności z normami akustycznymi, co jest kluczowe zarówno dla jakości naprawy, jak i dla przestrzegania przepisów prawa.

Pytanie 8

Ostatnia obróbka cylindra w silniku spalinowym to

A. toczenie
B. planowanie
C. szlifowanie
D. honowanie
Honowanie to naprawdę ważny proces, kiedy mówimy o końcowej obróbce cylindrów w silnikach spalinowych. Chodzi o to, żeby osiągnąć właściwą chropowatość i dokładne wymiary. Dzięki honowaniu, wewnętrzne ścianki cylindrów są gładkie i pozbawione malutkich niedoskonałości, co jest kluczowe, żeby pierścienie tłokowe dobrze przylegały. To z kolei wpływa na efektywność spalania i zmniejsza zużycie paliwa. Widziałem, że w nowoczesnych silnikach wyścigowych honowanie to standard, który pomaga uzyskać maksymalne osiągi. W motoryzacji mamy różne techniki honowania, jak honowanie na sucho czy na mokro, co zależy od materiałów i wymagań budowy. Dobre honowanie daje chropowatość Ra w granicach 0,2 - 0,5 μm, co jest naprawdę na poziomie najlepszych praktyk w branży.

Pytanie 9

Luz zaworów w silniku powinno się kontrolować

A. w temperaturze silnika według wskazówek producenta
B. w temperaturze silnika 70°C
C. po demontażu głowicy silnika
D. w temperaturze silnika wynoszącej 95°C
Kontrola luzu zaworów w silniku ma kluczowe znaczenie dla prawidłowego funkcjonowania jednostki napędowej. Przeprowadzanie tej operacji przy temperaturze silnika zgodnej z zaleceniami producenta jest kluczowe, ponieważ różne materiały silnikowe mają różne współczynniki rozszerzalności cieplnej. W wyniku podgrzewania silnika, metalowe części rozszerzają się, co ma wpływ na luz zaworowy. Właściwe ustawienie luzu zaworowego zapewnia odpowiednią wydajność silnika, wpływa na jego moc oraz oszczędność paliwa. Na przykład, w przypadku silników spalinowych, niewłaściwy luz może prowadzić do zjawiska znanego jako „palenie zaworów”, które może skutkować kosztownymi naprawami. W związku z tym, bardzo ważne jest, aby zawsze odnosić się do specyfikacji producenta, które dostarczają szczegółowych informacji na temat optymalnych warunków przeprowadzania tej procedury. W praktyce, mechanicznym standardem jest przeprowadzanie kontroli luzu zaworowego po schłodzeniu silnika, a jeśli zachodzi potrzeba, to po jego nagrzaniu do określonej temperatury, co powinno być zgodne z instrukcją dostarczoną przez producenta pojazdu.

Pytanie 10

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. długości
B. gęstości
C. powierzchni
D. wagi
Pojęcie ciśnienia jest często mylone z innymi właściwościami fizycznymi, co może prowadzić do błędnych wniosków. Odpowiedzi związane z długością, gęstością i wagą nie odnoszą się do definicji ciśnienia, które akcentuje zależność między siłą a powierzchnią. Długość nie ma wpływu na wartość ciśnienia, ponieważ to powierzchnia, na którą działa siła, jest kluczowa dla obliczeń. Gęstość, definiowana jako masa na jednostkę objętości, również nie ma związku z ciśnieniem, chociaż może oddziaływać na ciśnienie w kontekście płynów. Wiele osób myli pojęcia, nie dostrzegając, że ciśnienie to nie tylko wynik siły, ale również kontekstu, w którym ta siła działa, co prowadzi do nieporozumień. Podobnie, waga – będąca miarą siły grawitacji działającej na obiekt – nie jest tym samym, co ciśnienie. W rzeczywistości, choć waga może być użyta do obliczenia ciśnienia, jest tylko jednym z jego składników, a nie definicją. Tego rodzaju nieporozumienia mogą prowadzić do błędów w obliczeniach inżynieryjnych, co podkreśla znaczenie dokładnego rozumienia podstawowych pojęć w naukach przyrodniczych oraz ich właściwego stosowania w praktyce.

Pytanie 11

Przegub homokinetyczny zapewnia

A. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
C. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
D. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
Nie do końca jest tak, że przegub równobieżny działa tylko wtedy, gdy osie obrotu są w jednej linii. Wiele osób myśli, że tak jest, ale to nieprawda. On jest stworzony do działania w różnych ustawieniach, nawet gdy osie są pod kątem. Ważne jest, że przegub homokinetyczny utrzymuje stałą prędkość obrotową wałów, co zapobiega wahaniom, które mogą się zdarzyć w innych rodzajach przegubów. Twierdzenie, że przenosi napęd tylko w określonych warunkach, jest błędne. Ludzie powinni wiedzieć, że te przeguby mają ogromne znaczenie dla efektywności w napędach, zwłaszcza w trudnych warunkach drogowych. Dobrze jest też pamiętać, że przy projektowaniu napędów trzeba brać pod uwagę materiały przegubów i to, jak są smarowane, bo to wpływa na ich trwałość.

Pytanie 12

Aby przeprowadzić naprawę otworu na sworzeń tłokowy w tłoku metodą na wymiar naprawczy, należy wykorzystać

A. rozwiertarkę
B. frez czołowy
C. wiertło spiralne
D. gwintownik
Wykorzystanie wiertła krętego do naprawy otworu na sworzeń tłokowy jest niewłaściwe z kilku powodów. Wiertła kręte, choć powszechnie stosowane do wstępnego wiercenia otworów, nie są przeznaczone do precyzyjnego rozwiercania otworów, co jest kluczowe w kontekście naprawy tłoków. Wiertła tego typu mogą prowadzić do nadmiernego luzu w otworze, co w efekcie może skutkować niewłaściwym osadzeniem sworznia i jego przyspieszonym zużyciem. Rozwiertanie wymaga narzędzi, które zapewniają nie tylko odpowiednią średnicę, ale również wysoką jakość wykończenia, co jest istotne dla dalszego funkcjonowania silnika. Zastosowanie gwintownika w tej sytuacji jest także nietrafione, ponieważ gwintownik służy do tworzenia gwintów wewnętrznych, a nie do obróbki otworów do montażu sworzni. Freza czołowa, z kolei, jest narzędziem przeznaczonym do obróbki płaskich powierzchni i nie nadaje się do rozwiercania otworów. W procesach naprawczych istotne jest stosowanie narzędzi zgodnych z wymaganiami technicznymi, co pozwala uniknąć niepotrzebnych uszkodzeń i zapewnia długotrwałą jakość naprawy. Pamiętaj, że dobór narzędzi powinien być przemyślany i zgodny ze standardami inżynieryjnymi, aby zapewnić skuteczność oraz bezpieczeństwo operacji naprawczych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Aby wykryć luzy w układzie zawieszenia pojazdu, konieczne jest wykonanie kontroli na stanowisku

A. do geometrii kół
B. rolkowym
C. szarpakowym
D. do badań metodą EUSAMA
Odpowiedź "szarpakowym" jest poprawna, ponieważ badanie luzów w zawieszeniu pojazdu za pomocą szarpaka jest standardową metodą diagnostyczną stosowaną w warsztatach samochodowych. Szarpak pozwala na symulację warunków drogowych, co umożliwia ocenić zachowanie zawieszenia i zidentyfikować ewentualne luzy. Podczas testu, pojazd jest poddawany dynamicznym obciążeniom, co umożliwia wykrycie nawet niewielkich luzów, które mogą prowadzić do nieprawidłowej pracy zawieszenia oraz zwiększonego zużycia opon i innych komponentów. Przykłady zastosowania tej metody można zobaczyć w badaniach diagnostycznych w serwisach zajmujących się naprawą układów jezdnych, gdzie precyzyjna ocena stanu technicznego pojazdu jest niezbędna do zapewnienia bezpieczeństwa i komfortu jazdy. Warto również zaznaczyć, że zgodnie z obowiązującymi normami, regularne sprawdzanie luzów w zawieszeniu jest kluczowym elementem utrzymania pojazdu w dobrym stanie technicznym.

Pytanie 15

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,05 mm
B. 0,02 mm
C. 0,10 mm
D. 0,01 mm
Noniusz mikrometra, znany z wysokiej precyzji pomiarów, wskazuje dokładność 0,01 mm. Taki poziom dokładności jest kluczowy w zastosowaniach inżynieryjnych oraz laboratoryjnych, gdzie wymagana jest precyzyjna obróbka materiałów czy też montaż elementów. Dzięki takiej rozdzielczości, użytkownicy mogą z łatwością określić niewielkie wymiary, co jest istotne w kontekście tolerancji produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, gdzie każdy milimetr ma znaczenie, pomiary realizowane z dokładnością do 0,01 mm umożliwiają osiągnięcie wysokiej jakości wykonania detali. Standardy branżowe, takie jak ISO 2768, nakładają obowiązek stosowania precyzyjnych narzędzi pomiarowych w procesie wytwarzania, co potwierdza znaczenie mikrometrów z noniuszem. Oprócz zastosowań przemysłowych, mikrometry są również stosowane w badaniach naukowych, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych wyników. To sprawia, że wiedza o dokładności mikrometrów jest istotnym elementem kształcenia inżynieryjnego.

Pytanie 16

Podczas montażu wału napędowego, widełki obu przegubów krzyżakowych trzeba ustawić

A. w tej samej płaszczyźnie
B. w każdym położeniu
C. w płaszczyznach ustawionych względem siebie o 45 stopni
D. w płaszczyznach ustawionych względem siebie o 90 stopni
Ustawienie widełek przegubów krzyżakowych w dowolnym położeniu lub w płaszczyznach przesuniętych względem siebie o 90 lub 45 stopni prowadzi do poważnych problemów z funkcjonowaniem wału napędowego. Gdy widełki są ustawione w różnych płaszczyznach, moment obrotowy nie jest przenoszony równomiernie, co wprowadza wibracje i zwiększa obciążenia na elementy układu. Takie ustawienie powoduje, że jeden z przegubów będzie pracował w sposób nieoptymalny, co może prowadzić do jego szybszego zużycia. Często spotykaną pomyłką jest przekonanie, że niewielkie przesunięcia nie mają wpływu na działanie, jednak zjawisko to jest opisane w teorii dynamicznej, gdzie nawet małe zmiany mogą prowadzić do istotnych skutków. Użytkownicy mogą również sądzić, że przechylanie przegubów w różne strony zwiększy elastyczność układu, co jest mylne, ponieważ zamiast tego wprowadza dodatkowe obciążenia i pogarsza kąt pracy przegubów. W praktyce przemysłowej, nieprzestrzeganie zasad montażu zgodnych z normami, takimi jak SAE J751, może prowadzić do nieefektywności operacyjnej i zwiększonych kosztów serwisowania. Aby uniknąć tych problemów, ważne jest, aby przed montażem przegubów dokładnie zaplanować ich ustawienie w jednej płaszczyźnie, co zapewni optymalną wydajność i długotrwałą niezawodność wału napędowego.

Pytanie 17

W celu sporządzenia kosztorysu naprawy powypadkowej, zakłady serwisowe korzystają z dedykowanego programu, który nosi nazwę

A. AutoData
B. Audatex
C. Auto VIN
D. Moto-Profil
Audatex to renomowany program wykorzystywany w branży motoryzacyjnej do kosztorysowania napraw powypadkowych. Jego popularność wynika z szerokiego zakresu funkcji, które wspierają zarówno warsztaty naprawcze, jak i ubezpieczycieli. Audatex umożliwia szybkie generowanie kosztorysów na podstawie szczegółowych danych dotyczących uszkodzeń pojazdu, co pozwala na precyzyjne oszacowanie kosztów naprawy. Program wykorzystuje aktualną bazę cen części zamiennych oraz robocizny, co zapewnia zgodność z rynkowymi standardami. Przykładem zastosowania Audatex może być sytuacja, gdy warsztat naprawczy otrzymuje zlecenie na naprawę powypadkową. Przy użyciu tego programu specjalista może wprowadzić dane pojazdu oraz informacje o uszkodzeniach, a następnie wygenerować dokumentację kosztorysową, która może być przekazana ubezpieczycielowi. Dzięki temu proces naprawy staje się transparentny, a wszelkie koszty są jasno określone, co zwiększa efektywność współpracy między warsztatem a klientem.

Pytanie 18

Refraktometr nie jest przeznaczony do diagnozowania

A. płynu chłodzącego
B. elektrolitu używanego w akumulatorach samochodowych
C. płynu do spryskiwaczy
D. czynnika chłodzącego do napełnienia klimatyzacji
Czynnik chłodzący do napełnienia klimatyzacji rzeczywiście nie jest diagnozowany za pomocą refraktometru. Refraktometr jest narzędziem stosowanym do pomiaru współczynnika załamania światła substancji, co pozwala ocenić stężenie rozpuszczeń. W przypadku płynów chłodzących, elektrolitów do baterii czy płynów do spryskiwaczy, refraktometr może być użyty do określenia ich właściwości fizykochemicznych, takich jak stężenie czy jakość. Na przykład, w samochodach używa się refraktometrów do pomiaru stężenia glikolu w płynie chłodzącym, co jest istotne dla zapewnienia odpowiednich właściwości ochronnych w zmiennych warunkach temperatury. Z kolei w przypadku elektrolitów do baterii, pomiar gęstości roztworu pozwala ocenić stan naładowania akumulatora. Jednakże, refraktometry nie są przeznaczone do analizy czynników chłodzących stosowanych w systemach klimatyzacyjnych, które wymagają innych metod diagnostycznych, takich jak pomiar ciśnienia czy analizy chemiczne, aby określić ich jakość i ilość.

Pytanie 19

Stopień sprężania w silnikach spalinowych definiujemy jako stosunek objętości

A. całkowitej cylindra do objętości komory spalania
B. całkowitej cylindra do objętości skokowej
C. skokowej do objętości całkowitej cylindra
D. komory spalania do objętości całkowitej cylindra
Stopień sprężania w silnikach spalinowych definiuje się jako stosunek objętości całkowitej cylindra do objętości komory spalania. Prawidłowe zrozumienie tego pojęcia jest kluczowe dla oceny wydajności silnika oraz jego pracy. W praktyce, wyższy stopień sprężania pozwala na lepsze wykorzystanie mieszanki paliwowo-powietrznej, co skutkuje zwiększoną mocą oraz efektywnością energetyczną. Przykładowo, w silnikach wysokoprężnych, które zazwyczaj charakteryzują się dużo wyższymi wartościami stopnia sprężania niż silniki benzynowe, proces sprężania powietrza w cylindrze prowadzi do jego nagrzania, co umożliwia zapłon paliwa bez użycia świecy zapłonowej. W branży motoryzacyjnej standardy dotyczące stopnia sprężania są ściśle regulowane, a inżynierowie projektujący silniki często dążą do optymalizacji tego parametru, aby osiągnąć jak najlepsze parametry pracy silnika oraz spełnić normy emisji spalin.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Który z podanych komponentów zawieszenia ma funkcję sprężynującą?

A. Resor piórowy
B. Tłumik
C. Łącznik stabilizatora
D. Zakończenie drążka kierowniczego
Wybierając inne odpowiedzi, można wpaść w pułapkę błędnego rozumienia funkcji poszczególnych elementów zawieszenia. Końcówka drążka kierowniczego nie pełni roli sprężynującej; jest to komponent odpowiedzialny za przenoszenie ruchów kierownicy na koła, a jej zadaniem jest zapewnienie precyzyjnego prowadzenia pojazdu. Jej uszkodzenie wpłynie na sterowność, ale nie na absorpcję wstrząsów. Amortyzator również nie jest elementem sprężynującym, a jego główną funkcją jest tłumienie drgań, co pozwala na stabilizację ruchu. Amortyzatory współpracują z resorami, ale nie mają zdolności do sprężenia obciążenia, co oznacza, że ich rola jest zdecydowanie inna. Łącznik stabilizatora, z kolei, jest odpowiedzialny za utrzymanie stabilności nadwozia podczas pokonywania zakrętów i nie ma właściwości sprężynujących. Wybór nieprawidłowych odpowiedzi pokazuje typowy błąd wynikający z mylenia funkcji elementów zawieszenia. Kluczowe jest zrozumienie, że każdy element ma swoje specyficzne zadania, a ich prawidłowe działanie jest kluczowe dla bezpieczeństwa i komfortu jazdy. Warto przy tym pamiętać, że zrozumienie tych podstawowych różnic przyczynia się do lepszego podejmowania decyzji podczas diagnostyki i serwisowania pojazdów.

Pytanie 23

Siłą hamowania hamulca zasadniczego określamy

A. suma sił hamowania w jednej sekcji
B. różnicę siły hamowania pomiędzy kołami przedniej osi
C. różnicę siły hamowania pomiędzy kołami tylnej osi
D. suma sił hamowania wszystkich kół pojazdu względem jego masy dopuszczalnej
Współczynnik siły hamowania hamulca zasadniczego to kluczowy parametr w ocenie skuteczności systemu hamulcowego pojazdu. Oznacza on stosunek sumy sił hamowania wszystkich kół do masy dopuszczalnej pojazdu. Taki współczynnik jest istotny dla zapewnienia bezpieczeństwa na drodze, ponieważ pozwala na określenie, czy pojazd jest w stanie zatrzymać się w odpowiednim czasie. W praktyce, im wyższy współczynnik, tym lepsza skuteczność hamulców. Na przykład, w pojazdach osobowych standardowy współczynnik siły hamowania wynosi zazwyczaj od 0,5 do 0,7, co oznacza, że pojazd może zatrzymać się w znacznie krótszym czasie niż wynosi jego długość. Przykładowo, jeżeli masa pojazdu wynosi 1500 kg, a suma sił hamowania wynosi 9000 N, to współczynnik siły hamowania wynosi 6, co sugeruje bardzo dobrą efektywność. Dobrze zrozumiany i obliczony współczynnik siły hamowania jest niezbędny w procesie projektowania hamulców oraz oceny ich wydajności zgodnie z normami branżowymi, takimi jak ECE R13 czy FMVSS 105, które regulują wymagania dotyczące systemów hamulcowych.

Pytanie 24

Do działań związanych z konserwacją nadwozia samochodu należy

A. wymiana oleju silnikowego
B. czyszczenie silnika pojazdu
C. czyszczenie aluminiowych felg kół
D. pastowanie i polerowanie lakieru
Wymiana oleju silnikowego jest kluczowym procesem, lecz odnosi się do systemu silnika, a nie do konserwacji nadwozia. Olej silnikowy smaruje ruchome części silnika, co jest istotne dla jego prawidłowego funkcjonowania i długowieczności, ale nie ma bezpośredniego wpływu na wygląd ani ochronę nadwozia. Z kolei mycie felg aluminiowych kół, choć ważne dla estetyki pojazdu, dotyczy przede wszystkim układu jezdnego oraz oceny stanu opon, a nie nadwozia. Mycie silnika pojazdu to proces, który ma na celu usunięcie brudu i osadów z jednostki napędowej, ale również nie jest związany z ochroną czy konserwacją lakieru. Często popełnianym błędem jest mylenie czynności związanych z konserwacją mechaniczną z tymi, które dotyczą estetyki i zewnętrznej ochrony pojazdu. Praktyka pokazuje, że wielu użytkowników pojazdów nie zdaje sobie sprawy z tego, że pielęgnacja lakieru i elementów zewnętrznych wymaga odmiennych technik i produktów. Zrozumienie, że konserwacja nadwozia to proces, w którym kluczowe są działania takie jak pastowanie i polerowanie, a nie tylko funkcje użytkowe pojazdu, jest istotne dla jego długotrwałej estetyki oraz ochrony przed szkodliwymi czynnikami środowiskowymi.

Pytanie 25

Jakim narzędziem dokonuje się pomiaru zużycia otworu tulei cylindrowej?

A. średnicówką mikrometryczną
B. szczelinomierzem
C. liniałem krawędziowym
D. suwmiarką
Średnicówka mikrometryczna jest narzędziem pomiarowym o wysokiej precyzji, które służy do pomiaru średnic otworów, tulei cylindrowych oraz innych elementów mechanicznych. Jej konstrukcja pozwala na dokonanie pomiarów z dokładnością do setnych lub nawet tysięcznych części milimetra. W przypadku tulei cylindrowej, gdzie precyzyjne dopasowanie elementów jest kluczowe dla prawidłowego funkcjonowania maszyny, zastosowanie średnicówki mikrometrycznej jest najlepszym wyborem. Przykładowo, w produkcji silników samochodowych, gdzie tuleje cylindrowe muszą spełniać rygorystyczne normy, pomiar przy użyciu średnicówki mikrometrycznej zapewnia odpowiednią jakość i trwałość podzespołów. Dodatkowo, zgodnie z normami ISO, precyzyjne pomiary i sprawdzanie tolerancji wymiarowych są integralną częścią procesu kontrolnego w inżynierii mechanicznej, co podkreśla znaczenie stosowania odpowiednich narzędzi do pomiaru.

Pytanie 26

Czynność, którą można pominąć przed rozpoczęciem badań diagnostycznych, to

A. oględziny systemów pojazdu
B. rozmowa z właścicielem pojazdu
C. demontaż kół pojazdu
D. jazda próbna
Oględziny układów pojazdu, rozmowa z właścicielem oraz jazda próbna są istotnymi czynnościami, które powinny być przeprowadzane przed badaniami diagnostycznymi. Oględziny układów pojazdu to kluczowy krok, który pozwala na wstępną ocenę stanu technicznego pojazdu oraz identyfikację ewentualnych uszkodzeń. Wiele problemów technicznych można zauważyć gołym okiem, co pozwala na szybkie podjęcie decyzji o dalszych krokach diagnostycznych. Rozmowa z właścicielem pojazdu dostarcza cennych informacji o historii eksploatacji samochodu, co może ujawnić ukryte problemy, które nie są widoczne podczas standardowych oględzin. Z kolei jazda próbna pozwala na praktyczną ocenę zachowania pojazdu w ruchu, co jest nieocenione w przypadku problemów z układem kierowniczym, hamulcowym czy zawieszeniem. Często zdarza się, że diagnostyka opiera się na subiektywnych odczuciach kierowcy, dlatego przeprowadzenie jazdy próbnej może być kluczowe dla prawidłowej diagnozy. Ignorowanie tych czynności może prowadzić do błędnych wniosków diagnostycznych. Dlatego też każdy diagnostyk powinien traktować je jako integralną część procesu diagnostycznego, aby zapewnić kompleksową i dokładną ocenę stanu technicznego pojazdu.

Pytanie 27

Podczas testu po naprawie pojazdu zauważono samoczynny wzrost poziomu oleju w układzie smarowania silnika. Co może być przyczyną tej sytuacji?

A. uszkodzenie uszczelki pod głowicą
B. zużycie czopów wału korbowego
C. nadmierne zabrudzenie filtra oleju
D. uszkodzenie pompy olejowej
No więc, przyczyny wzrostu poziomu oleju w silniku mogą być niejasne i łatwo się w tym pogubić. Ale wiesz, uszkodzenie czopów wału korbowego, mimo że może prowadzić do problemów z silnikiem, nie ma bezpośredniego związku z podnoszeniem się poziomu oleju. Zużycie czopów czasem sprawia, że silnik działa mniej efektywnie albo olej zaczyna wyciekać, ale to nie powoduje jego wzrostu. A jeśli pompa olejowa jest uszkodzona, to zwykle ciśnienie oleju spada, więc też nie ma to związku z samoczynnym wzrostem. Dodatkowo, brudny filtr oleju może zakłócać obieg oleju, ale nie sprawi, że olej nagle będzie więcej. Często źle się interpretuje problemy związane z układem smarowania, bo brakuje wiedzy o tym, jak to działa. Ważne jest, żeby zrozumieć, że wzrost poziomu oleju zazwyczaj jest spowodowany przedostawaniem się innych płynów, na przykład płynu chłodzącego, co często oznacza, że uszczelka pod głowicą jest w złym stanie. Dobra diagnostyka oraz znajomość budowy silników mogą pomóc w rozwiązywaniu problemów i oszczędzeniu pieniędzy na naprawach w przyszłości.

Pytanie 28

Podczas demontażu łożysk z uszczelniającym pierścieniem, siłę należy kierować bezpośrednio na

A. niedemontowalny pierścień łożyska
B. zdejmowany pierścień łożyska
C. elementy toczne łożyska
D. wszystkie części łożyska
Wybór innych odpowiedzi może prowadzić do poważnych błędów w procesie demontażu łożysk. Próba oddziaływania siłą na niezdejmowany pierścień łożyska jest niebezpieczna, ponieważ może prowadzić do uszkodzenia całej struktury łożyska oraz osadzenia elementów mocujących. W przypadku działania na wszystkie elementy łożyska, siły mogą być nierównomierne, co zwiększa ryzyko deformacji lub zniszczenia zarówno łożyska, jak i wału, na którym jest zamocowane. Oddziaływanie na elementy toczne łożyska również jest niewłaściwe, gdyż są one zaprojektowane do pracy w specyficznych warunkach obciążeniowych, a ich usunięcie bez odpowiedniego wsparcia może prowadzić do ich trwałego uszkodzenia. Te nieprawidłowe podejścia są często wynikiem braku znajomości podstawowych zasad budowy i działania łożysk oraz nieprzestrzegania standardów demontażu, które zalecają kierowanie siły na konkretne, zdejmowane elementy. Dlatego kluczowe jest stosowanie się do zaleceń producentów oraz ogólnych norm branżowych, aby uniknąć kosztownych napraw i utraty funkcjonalności maszyn.

Pytanie 29

Reparacja uszkodzonego gumowego elementu zawieszenia systemu wydechowego przeprowadzana jest poprzez jego

A. wymianę
B. skręcanie
C. spajanie
D. klejenie
Wymiana uszkodzonego gumowego elementu zawieszenia układu wydechowego jest kluczowym działaniem w celu zapewnienia prawidłowej funkcjonalności całego systemu. Elementy zawieszenia, takie jak poduszki gumowe, mają za zadanie tłumić drgania oraz zapewniać odpowiednią elastyczność, co jest istotne dla komfortu jazdy oraz redukcji hałasu. Gdy gumowy element ulegnie uszkodzeniu, jego właściwości tłumiące mogą zostać znacznie osłabione, co prowadzi do większego zużycia innych części układu wydechowego oraz obniżenia komfortu podróży. Wymiana jest zalecana w takich przypadkach, ponieważ naprawa, jak spajanie czy klejenie, nie zapewni odpowiedniej wytrzymałości i elastyczności, które są niezbędne w tych elementach. Standardy branżowe, takie jak normy ISO dotyczące jakości i bezpieczeństwa motoryzacyjnego, podkreślają znaczenie stosowania oryginalnych lub wysokiej jakości zamienników przy wymianie części. Przykładem może być wymiana poduszki tłumiącej, która po nowym montażu przywraca prawidłowe funkcjonowanie układu, obniżając drgania i hałas, co jest niezbędne dla bezpieczeństwa i komfortu kierowcy oraz pasażerów.

Pytanie 30

Czym są elementy wałka rozrządu?

A. gniazda
B. pierścienie
C. łożyska
D. krzywki
Krzywki to istotne elementy wałka rozrządu, które mają kluczowe znaczenie dla synchronizacji ruchu zaworów w silniku spalinowym. Ich głównym zadaniem jest przekształcanie obrotowego ruchu wałka w liniowy ruch zaworów, co pozwala na odpowiednie otwieranie i zamykanie zaworów w ustalonych momentach cyklu pracy silnika. Krzywki są zaprojektowane w taki sposób, aby zapewnić precyzyjne działanie oraz minimalizować tarcie, a ich kształt i rozmiar są dostosowane do specyfikacji danego silnika. W praktyce, projektanci silników bazują na standardach takich jak ISO 9001, co zapewnia wysoką jakość produkcji i niezawodność działania wałków rozrządu. W zastosowaniu motoryzacyjnym, odpowiedni dobór krzywek może znacząco wpłynąć na osiągi silnika, jego efektywność paliwową oraz emisję spalin, dlatego inżynierowie często korzystają z symulacji komputerowych oraz testów w warunkach rzeczywistych, aby zoptymalizować te elementy. Ostatecznie, krzywki są nie tylko kluczowym komponentem, ale również istotnym czynnikiem wpływającym na ogólną wydajność i kulturę pracy silnika.

Pytanie 31

Po pomiarze napięcia w rozładowanym akumulatorze samochodowym (12Y, 40Ah) uzyskano wynik 10,8Y, a gęstość elektrolitu wynosiła 1,18 g/cm3. Jakim prądem powinien być naładowany ten akumulator?

A. 1,5 A
B. 4 A
C. 2,5 A
D. 3 A
Odpowiedź 4 A jest poprawna, ponieważ dla akumulatorów kwasowo-ołowiowych naładowanie ich prądem o wartości 0,1C do 0,3C pojemności nominalnej jest uważane za normę. Pojemność akumulatora wynosi 40Ah, co oznacza, że prąd ładowania powinien wynosić od 4A do 12A. W przypadku akumulatora, który wykazuje napięcie 10,8V, co wskazuje na jego rozładowanie, należy zastosować niższy prąd ładowania, aby uniknąć uszkodzenia. Prąd 4A mieści się w bezpiecznym zakresie, zapewniając odpowiednie tempo naładowania akumulatora bez ryzyka przegrzania czy gazowania elektrolitu. W praktyce, dla akumulatorów rozładowanych do takiego poziomu, zaleca się ładowanie prądem o wartości 0,1C, co w tym przypadku również odpowiada 4A. Prawidłowe ładowanie akumulatorów jest kluczowe dla ich długotrwałej wydajności i żywotności, dlatego warto stosować się do tych zasad.

Pytanie 32

Zasilanie silnika z nadmiernie bogatą mieszanką paliwowo-powietrzną skutkuje pokryciem izolatora świecy zapłonowej osadem o kolorze

A. białoszarym
B. błękitnym
C. brunatnym
D. czarnym
Kolory osadu na izolatorze świecy zapłonowej mogą wprowadzać w błąd, jeżeli nie są właściwie interpretowane. Błękitny osad zwykle kojarzy się z nadmiernym smarowaniem silnika, co może prowadzić do nieprawidłowego spalania oleju silnikowego, ale nie ma to związku z bogatą mieszanką paliwowo-powietrzną. Z kolei białoszary kolor wskazuje na problem z zasilaniem silnika zbyt ubogą mieszanką, co prowadzi do nadmiernego nagrzewania się komory spalania i może skutkować uszkodzeniem zaworów oraz gniazd. Brunatny osad natomiast może pojawić się w wyniku zanieczyszczenia paliwa lub problemów z układem wtrysku, ale nie wskazuje bezpośrednio na bogatą mieszankę. Odpowiednie rozpoznanie koloru osadu na świecach zapłonowych jest kluczowe dla diagnostyki stanu silnika, a niezrozumienie tych zależności może prowadzić do niepoprawnych analiz i diagnoz. Właściwe zrozumienie tego zjawiska wymaga znajomości zasad działania silnika oraz jego komponentów, a także umiejętności przeprowadzania diagnoz zgodnie z najlepszymi praktykami mechanicznymi. Warto pamiętać, że regularne przeglądy i konserwacja silnika są kluczowe dla jego długotrwałej i bezproblemowej pracy.

Pytanie 33

Który z wymienionych składników nie wchodzi w skład układu przeniesienia napędu?

A. Koło talerzowe
B. Przekładnia główna
C. Sprzęgło
D. Wałek rozrządu
Wałek rozrządu jest komponentem silnika, który odpowiada za synchronizację otwierania i zamykania zaworów, co jest kluczowe dla prawidłowego funkcjonowania silnika spalinowego. W przeciwieństwie do elementów układu przeniesienia napędu, takich jak sprzęgło, koło talerzowe czy przekładnia główna, wałek rozrządu nie uczestniczy w przenoszeniu mocy z silnika na układ napędowy. Sprzęgło ma za zadanie rozłączenie i połączenie napędu, co pozwala na płynne przełączanie biegów, podczas gdy przekładnia główna i koło talerzowe są odpowiedzialne za przekazywanie momentu obrotowego na koła. Znajomość roli wałka rozrządu jest istotna w kontekście diagnostyki i konserwacji silników, ponieważ jego awaria może prowadzić do poważnych uszkodzeń. Zrozumienie, które elementy wchodzą w skład układu przeniesienia napędu, jest kluczowe dla techników i mechaników, aby skutecznie diagnozować problemy oraz przeprowadzać naprawy według najlepszych praktyk branżowych.

Pytanie 34

Jakiej właściwości nie ma ciecz chłodząca używana w silnikach spalinowych?

A. Przeciwdziałanie zjawisku kawitacji i wrzenia
B. Ograniczenie nadmiernego przewodnictwa cieplnego
C. Zabezpieczenie przed korozją układu chłodzenia
D. Niska skłonność do zamarzania
Ciecz chłodząca w silnikach spalinowych ma dość ważne zadanie. Główna sprawa polega na tym, że odpowiada za transport ciepła z silnika do chłodnicy, a nie na ograniczaniu przewodnictwa cieplnego. To, że ciecz chłodząca ma dobre właściwości termiczne, to super sprawa. Dzięki temu silnik może działać w optymalnych temperaturach, co w moim odczuciu jest kluczowe dla jego trwałości i ogólnej wydajności. Pamiętaj, żeby regularnie sprawdzać i wymieniać ciecz chłodzącą, bo to zapobiegnie korozji i innym problemom, jak kawitacja, która może być naprawdę niebezpieczna dla silnika. Stosowanie odpowiednich cieczy, takich jak glikol etylenowy, pozwala dobrze funkcjonować w różnych warunkach, zwłaszcza zimą.

Pytanie 35

Użycie zbyt bogatej mieszanki paliwowo-powietrznej w silniku skutkuje pokryciem izolatora świecy zapłonowej osadem w odcieniu

A. białoszarym
B. błękitnym
C. czarnym
D. brunatnym
Stosowanie zbyt bogatej mieszanki paliwowo-powietrznej do zasilania silnika objawia się pokryciem izolatora świecy zapłonowej nalotem w kolorze czarnym. Taki nalot jest wynikiem nadmiaru paliwa, które nie spala się w komorze spalania, co prowadzi do osadzania się niespalonego węgla na świecy. W praktyce, czarny nalot może wskazywać również na złą regulację gaźnika lub złą jakość paliwa. W przypadku silników z zapłonem iskrowym, dobrym praktyką jest regularne kontrolowanie stanu świec zapłonowych, co może pomóc w diagnozowaniu problemów z mieszanką paliwowo-powietrzną. Standardy branżowe, takie jak SAE (Society of Automotive Engineers), zalecają regularne serwisowanie układu zasilania, co obejmuje kontrolę mieszanki paliwowej. Warto również wspomnieć, że czarny nalot może wpływać na efektywność pracy silnika, prowadząc do zwiększonego zużycia paliwa i emisji zanieczyszczeń.

Pytanie 36

Jaką funkcję pełni termostat w silniku spalinowym?

A. chłodzenia powietrza
B. regulowania obiegu cieczy chłodzącej
C. dopalania paliwa
D. wtrysku paliwa
Wybór odpowiedzi dotyczących dopalania paliwa, wtrysku paliwa oraz chłodzenia powietrza jest mylny i oparty na nieporozumieniach związanych z funkcją termostatu. Dopalać paliwo to proces, który odbywa się w komorze spalania, gdzie mieszanka powietrza i paliwa jest podgrzewana i zapalana, a termostat nie ma żadnego wpływu na ten proces. Z kolei wtrysk paliwa jest odpowiedzialny za precyzyjne dostarczanie paliwa do silnika, co jest zadaniem systemu wtryskowego, a nie termostatu. Chłodzenie powietrza również nie jest związane z działaniem termostatu, ponieważ jego funkcja koncentruje się na cieczy chłodzącej, a nie na powietrzu, które zasila silnik. Błędy w myśleniu, prowadzące do niepoprawnych wyborów, mogą wynikać z braku zrozumienia podstawowych zasad działania silników spalinowych oraz ich układów chłodzenia. Należy pamiętać, że skuteczne zarządzanie temperaturą silnika jest kluczowe dla jego wydajności, a termostat pełni w tym procesie rolę regulatora, a nie elementu odpowiedzialnego za procesy spalania czy wtrysku. Właściwe zrozumienie tych zasad jest niezbędne dla każdego, kto chce w pełni zrozumieć działanie silników spalinowych oraz ich komponentów.

Pytanie 37

Sprężarka Rootsa może być wykorzystana w systemie

A. wspomagania
B. chłodzenia silnika
C. paliwowym
D. doładowania silnika
Zastosowanie sprężarek Rootsa w układach paliwowych, chłodzenia silnika czy wspomagania opiera się na nieporozumieniach dotyczących ich funkcji i zasad działania. Sprężarki te nie są projektowane do pracy w układach paliwowych, ponieważ nie mają możliwości sprężania cieczy, a ich konstrukcja zostałaby poddana zbyt dużym obciążeniom, co prowadziłoby do uszkodzeń. W układach chłodzenia silnika kluczowe są inne komponenty, takie jak chłodnice czy wentylatory, które są dostosowane do zarządzania temperaturą płynu chłodzącego. Użycie sprężarek Rootsa w taki sposób byłoby nieefektywne i mogłoby prowadzić do poważnych awarii. W kontekście wspomagania, sprężarki te nie pełnią roli, jaką mają pompy wspomagające układ kierowniczy, które są zaprojektowane do zmniejszania siły potrzebnej do skręcania pojazdem. Typowe błędy myślowe prowadzące do takich wniosków często wynikają z braku zrozumienia specyfiki działania sprężarek oraz ich przeznaczenia. Kluczowe jest rozróżnienie między różnymi rodzajami sprężarek i ich zastosowaniami, aby uniknąć mylnych koncepcji w inżynierii mechanicznej i motoryzacji.

Pytanie 38

Mechanizm różnicowy w tylnym moście napędowym pojazdu umożliwia podział napędu na

A. przód i tył, w przypadku pojazdu z napędem na cztery koła
B. tył i przód z pominięciem przekładni głównej mostu napędowego
C. koła napędowe, przy jednoczesnym braku możliwości obracania się kół z różnymi prędkościami obrotowymi
D. koła napędowe, przy jednoczesnej możliwości obracania się kół z różnymi prędkościami obrotowymi
Mechanizm różnicowy w tylnym moście napędowym jest kluczowym elementem, który odpowiada za rozdział napędu na koła napędowe, pozwalając im na toczenie się z różnymi prędkościami obrotowymi. W praktyce oznacza to, że podczas skręcania samochodu wewnętrzne koło pokonuje krótszą odległość niż zewnętrzne, co powoduje różnice w prędkościach obrotowych. Mechanizm różnicowy umożliwia kompensację tych różnic, co jest niezwykle istotne dla stabilności i przyczepności pojazdu. Przykładem zastosowania tego rozwiązania są samochody osobowe, które podczas jazdy w zakręcie zyskują na manewrowości oraz minimalizują zużycie opon, a także poprawiają komfort jazdy. Zgodnie z praktykami inżynieryjnymi, mechanizmy różnicowe są projektowane w oparciu o normy dotyczące bezpieczeństwa i wydajności, co zapewnia ich niezawodność w różnych warunkach drogowych. Warto dodać, że nowoczesne technologie, takie jak elektroniczne mechanizmy różnicowe, jeszcze bardziej zwiększają możliwości dostosowania napędu do warunków panujących na drodze, poprawiając dynamikę jazdy i efektywność.

Pytanie 39

Aby ocenić poziom zużycia tulei cylindrowej silnika spalinowego, należy przeprowadzić pomiar jej średnicy?

A. czujnikiem zegarowym
B. mikrometrem do otworów
C. średnicówką czujnikową
D. suwmiarką uniwersalną
Suwmiarka uniwersalna, mikrometr do otworów oraz czujnik zegarowy, mimo że są powszechnie stosowane w pomiarach, nie są optymalnymi narzędziami do oceny stopnia zużycia tulei cylindrowej silnika spalinowego. Suwmiarka, z racji swojej konstrukcji, oferuje ograniczoną dokładność pomiaru, często nie wystarczającą do analizy precyzyjnych wymiarów, jakimi są średnice cylindrów. Jej błąd pomiarowy może wynosić kilka setnych milimetra, co w kontekście silników spalinowych może prowadzić do błędnych wniosków na temat stanu technicznego. Mikrometr do otworów również ma swoje ograniczenia, ponieważ nie zawsze umożliwia pełne i dokładne pomiary wewnętrznych średnic tulei, zwłaszcza w miejscach, gdzie geometria może być złożona lub gdzie występują zniekształcenia. Z kolei czujnik zegarowy, chociaż przydatny do pomiaru odchyleń od normy lub do pomiaru ruchu liniowego, nie jest narzędziem przeznaczonym do dokładnego pomiaru średnicy, co zwęża jego zastosowanie w kontekście diagnostyki silników. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędnych ocen i niewłaściwych decyzji dotyczących napraw czy wymiany elementów silnika.

Pytanie 40

W samochodzie zauważono nierówną pracę silnika przy wyższych obrotach. Na początku należy zweryfikować

A. szczelność układu chłodzenia
B. opory w układzie napędowym
C. ciśnienie w układzie smarowania
D. drożność filtra paliwa
Zarządzanie problemami związanymi z pracą silnika wymaga systematycznego podejścia do diagnostyki. Odpowiedzi, które koncentrują się na oporach w układzie napędowym, ciśnieniu w układzie smarowania oraz szczelności układu chłodzenia, mogą nie być właściwym kierunkiem rozwiązywania problemu z nierówną pracą silnika przy wyższych prędkościach obrotowych. Oprócz tego, układ napędowy, choć ma znaczenie dla całej dynamiki pojazdu, nie jest bezpośrednio odpowiedzialny za dostarczanie paliwa i jego efektywne spalanie, co jest kluczowe dla stabilności pracy silnika. Oporami w układzie napędowym mogą być wpływy związane z zużyciem mechanizmów przeniesienia napędu, które nie manifestują się w formie nierówności pracy silnika, lecz raczej w odczuciu szarpania czy problemach z przyspieszeniem. Ponadto, ciśnienie w układzie smarowania wpływa głównie na odpowiednie smarowanie elementów silnika, co jest istotne, ale niewystarczające dla analizy problemów z dostarczaniem paliwa. Z kolei szczelność układu chłodzenia jest kluczowa dla uniknięcia przegrzewania silnika, lecz sama w sobie nie ma wpływu na jego pracę, gdyż nie dotyczy bezpośrednio układu paliwowego. Oparte na niepoprawnych przesłankach diagnozowanie problemów silnikowych może prowadzić do błędnych decyzji serwisowych i niepotrzebnych kosztów. Aby skutecznie zarządzać problemami silnika, istotne jest zrozumienie, że priorytetowe jest zbadanie układu paliwowego, co w praktyce może znacznie ułatwić proces naprawy.