Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 31 maja 2025 14:17
  • Data zakończenia: 31 maja 2025 14:43

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Niemetal o kolorze fioletowoczarnym, który łatwo przechodzi w stan gazowy, to

A. brom
B. chlor
C. jod
D. fosfor
Jod, jako niemetal o barwie fioletowoczarnej, jest substancją, która łatwo ulega sublimacji, co oznacza, że w warunkach standardowych (temperatura i ciśnienie) przechodzi bezpośrednio z fazy stałej w fazę gazową. Jod jest szeroko stosowany w medycynie, szczególnie jako środek dezynfekujący oraz w diagnostyce obrazowej, gdzie wykorzystuje się jego izotopy do radioizotopowej diagnostyki tarczycy. W laboratoriach chemicznych jod jest często używany w reakcjach redoks oraz jako katalizator w różnorodnych syntezach organicznych. Przykładem zastosowania jodu w przemyśle jest produkcja barwników i środków ochrony roślin. Ponadto, jod jest kluczowym składnikiem w diecie ludzkiej, niezbędnym dla prawidłowego funkcjonowania tarczycy. Stosowanie jodu w odpowiednich ilościach jest zgodne z wytycznymi Światowej Organizacji Zdrowia, która podkreśla znaczenie jego roli w zapobieganiu niedoborom, które mogą prowadzić do chorób takich jak wole lub niedoczynność tarczycy.

Pytanie 2

Symbol "In" znajduje się na

A. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
B. biuretach i oznacza sprzęt kalibrowany "na wlew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 3

Aby przygotować 500 cm3 roztworu KMnO4 (M = 158 g/mol) o stężeniu 0,02 mol/dm3, ile należy zważyć?

A. 1,58 g KMnO4
B. 3,16 g KMnO4
C. 15,8 g KMnO4
D. 7,95 g KMnO4
Aby obliczyć masę KMnO4 potrzebną do sporządzenia roztworu o określonym stężeniu, należy zastosować wzór: m = C * V * M, gdzie m to masa substancji, C to stężenie molowe (w mol/dm³), V to objętość roztworu (w dm³), a M to masa molowa substancji (w g/mol). W przypadku KMnO4, jego masa molowa wynosi 158 g/mol, a stężenie, które chcemy uzyskać, to 0,02 mol/dm³. Objętość roztworu to 500 cm³, co odpowiada 0,5 dm³. Podstawiając wartości do wzoru, otrzymujemy: m = 0,02 mol/dm³ * 0,5 dm³ * 158 g/mol = 1,58 g. Otrzymana wartość 1,58 g oznacza, że do przygotowania 500 cm³ roztworu KMnO4 o stężeniu 0,02 mol/dm³ należy odważyć tę dokładną ilość substancji. Takie obliczenia są kluczowe w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów o określonym stężeniu jest niezbędne do przeprowadzenia analiz oraz eksperymentów. Przykładowo, w chemii analitycznej, dokładne stężenie roztworów ma bezpośredni wpływ na wyniki titracji oraz innych metod analitycznych.

Pytanie 4

Aby odcedzić galaretowaty osad, konieczne jest użycie sączka

A. sztywny
B. średni
C. miękki
D. utwardzony
Odpowiedź 'miękki' jest prawidłowa, ponieważ do przesączania galaretowatego osadu najlepiej zastosować sączek o właściwościach umożliwiających skuteczne oddzielanie cieczy od stałych cząstek. Miękkie sączki charakteryzują się zdolnością do wchłaniania większych cząstek, co czyni je odpowiednim wyborem w przypadku substancji o konsystencji galaretowatej. Przykładem sączków miękkich są te wykonane z papieru filtracyjnego, które mają wysoką porowatość i są w stanie zatrzymać cząstki, jednocześnie pozwalając na przepływ cieczy. W zastosowaniach laboratoryjnych, takie jak analiza chemiczna lub mikrobiologiczna, użycie odpowiednich sączków jest kluczowe dla uzyskania czystych i precyzyjnych wyników. Ponadto, użycie miękkiego sączka minimalizuje ryzyko uszkodzenia delikatnych cząstek, co jest istotne w przypadku analizy próbek, w których struktura materiału jest istotna dla dalszych badań. Zgodnie z normami ISO i dobrą praktyką laboratoryjną, dobór odpowiedniego sączka jest kluczowym etapem procesu filtracji.

Pytanie 5

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. bezwzględny
B. systematyczny
C. względny
D. przypadkowy
W kontekście pomiarów różnice pomiędzy średnimi wynikami a wartościami rzeczywistymi mogą być opisywane różnymi terminami, jednak użycie pojęcia błędu względnego, systematycznego czy przypadkowego może prowadzić do nieporozumień. Błąd względny to stosunek błędu bezwzględnego do wartości rzeczywistej, co oznacza, że opisuje on błąd w kontekście wielkości zmierzonej. Na przykład, jeśli błąd bezwzględny wynosi 0,5 cm, a wartość rzeczywista to 10 cm, błąd względny wyniósłby 5%. Warto jednak zauważyć, że błąd względny nie informuje nas o rzeczywistej wielkości błędu, a jedynie o jego proporcji do wartości rzeczywistej. Błąd systematyczny odnosi się do błędów, które są stałe lub powtarzalne w danym pomiarze, na przykład spowodowane nieprawidłową kalibracją przyrządów. Takie błędy mogą być trudne do wykrycia, ponieważ wpływają na wszystkie pomiary w podobny sposób, co może prowadzić do błędnych wniosków dotyczących analizowanych danych. Wreszcie, błąd przypadkowy odnosi się do losowych fluktuacji, które mogą wystąpić podczas pomiarów, a ich przyczyny mogą być trudne do zidentyfikowania. Te błędy są niemal nieuniknione w każdym pomiarze, ale nie powinny być mylone z błędami bezwzględnymi, które są ważnym wskaźnikiem dokładności pomiaru. Właściwe zrozumienie tych terminów i ich różnic jest kluczowe dla właściwej analizy wyników oraz podejmowania decyzji opartych na pomiarach.

Pytanie 6

Ekstrakcję w trybie ciągłym przeprowadza się

A. w kolbie płaskodennej
B. w zestawie do ogrzewania
C. w aparacie Soxhleta
D. w rozdzielaczu z korkiem
Proces ekstrakcji w sposób ciągły odbywa się w aparacie Soxhleta, który jest standardowym urządzeniem stosowanym w chemii analitycznej oraz w laboratoriach badawczych. Działa na zasadzie cyklicznego przepływu rozpuszczalnika, który wielokrotnie przepływa przez materiał, z którego ma zostać wydobyty składnik aktywny. W aparacie Soxhleta, rozpuszczalnik jest podgrzewany do wrzenia, a jego opary skraplają się w kondensatorze, skąd spływają z powrotem do komory ekstrakcyjnej zawierającej próbkę. Ta efektywna cyrkulacja umożliwia skuteczniejsze rozpuszczanie substancji, co jest kluczowe w wielu zastosowaniach, takich jak wydobywanie olejków eterycznych, substancji czynnych z roślin czy w analizach chemicznych. Dobre praktyki w zakresie ekstrakcji obejmują także dobór odpowiedniego rozpuszczalnika oraz kontrolę temperatury, aby zminimalizować straty substancji i uzyskać wysoką czystość produktu końcowego. Ponadto, dzięki ciągłemu procesowi, możliwe jest uzyskanie większych ilości ekstraktu w krótszym czasie, co zwiększa efektywność laboratorium.

Pytanie 7

Do pojemników na odpady stałe, które są przeznaczone do utylizacji, nie można wprowadzać bezpośrednio cyjanków oraz związków kompleksowych zawierających jony cyjankowe z powodu

A. produkcji toksycznych par lub gazów
B. powolnego rozkładu związków
C. zajścia nagłej, egzotermicznej reakcji
D. uwalniania związków o drażniącym zapachu
Cyjanki i związki kompleksowe zawierające jony cyjankowe są substancjami niezwykle niebezpiecznymi, ponieważ ich rozkład może prowadzić do wytwarzania toksycznych par i gazów, które mają szkodliwy wpływ na zdrowie ludzi oraz środowisko. W procesie utylizacji, gdy te substancje są narażone na działanie wysokich temperatur, mogą wydzielać cyjanowodór, który jest silnie trującym gazem. Zgodnie z wytycznymi dotyczącymi gospodarki odpadami niebezpiecznymi, należy unikać mieszania cyjanków z innymi odpadami, aby zminimalizować ryzyko ich reakcji chemicznych. Przykładem zastosowania tych zasad mogą być zakłady utylizacyjne, które stosują systemy segregacji odpadów niebezpiecznych oraz specjalistyczne procedury ich przetwarzania, aby zapewnić bezpieczeństwo pracy i ochronę środowiska. Dobre praktyki obejmują także regularne szkolenia personelu oraz stosowanie odpowiednich środków ochrony osobistej, aby uniknąć narażenia na toksyczne substancje. W związku z tym, wprowadzenie cyjanków do pojemników na odpady stałe jest surowo zabronione.

Pytanie 8

Sączenie na gorąco powinno być użyte, aby

A. nie doszło do rozpuszczenia substancji obecnych w roztworze
B. nie miało miejsca wydzielanie kryształów z roztworu
C. doszło do rozpuszczenia substancji obecnych w roztworze
D. miało miejsce wydzielanie kryształów z roztworu
Sączenie na gorąco jest techniką stosowaną w chemii, która ma na celu usunięcie zanieczyszczeń z roztworu, a także zapobiegnięcie wydzielaniu kryształów. W procesie tym, roztwór podgrzewany jest do określonej temperatury, co zwiększa rozpuszczalność wielu substancji, a tym samym zapewnia, że będą one pozostawały w stanie rozpuszczonym. Dzięki temu można uzyskać czysty filtrat, wolny od osadów, co jest szczególnie przydatne w analizach chemicznych i preparatyce. Przykładem zastosowania są procesy w laboratoriach chemicznych, gdzie mamy do czynienia z roztworami soli i związków organicznych, które w warunkach pokojowych mogą krystalizować. Zastosowanie sączenia na gorąco pozwala na efektywne oddzielanie cennych substancji od niepożądanych, co jest zgodne z najlepszymi praktykami w chemii analitycznej oraz przemysłowej. Takie podejście zwiększa także jakość i wydajność procesów oczyszczania substancji chemicznych.

Pytanie 9

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. miarowe
B. wtórne
C. podstawowe
D. robocze
Wiele osób myli substancje robocze, wtórne i miarowe z substancjami podstawowymi, co może prowadzić do różnych nieporozumień przy ustalaniu miana roztworu. Substancje robocze to zazwyczaj roztwory, które przygotowujemy w laboratorium i ich jakość oraz stężenie mogą być różne. Użycie takich substancji może prowadzić do błędów w pomiarze, bo nie zawsze mamy pewność, że są one dokładne i stabilne. Substancje wtórne powstają zazwyczaj w procesie syntezy chemicznej lub są pochodnymi substancji podstawowych, więc ich stężenie nie jest tak precyzyjnie określone. Z kolei substancje miarowe, mimo że też używamy ich do pomiarów, nie mają takich samych właściwości jak substancje podstawowe, co może też prowadzić do błędnych wyników. To, co często mylimy, to założenie, że każda substancja w laboratorium jest substancją podstawową, co jest błędnym podejściem do kalibracji i oceny wyników. Żeby mieć wiarygodne i powtarzalne wyniki w analizach chemicznych, musimy naprawdę zrozumieć różnice między tymi substancjami oraz ich zastosowanie w praktyce laboratoryjnej.

Pytanie 10

Z próbki zawierającej siarczany(VI) należy najpierw wydzielić metodą filtracji zanieczyszczenia, które są nierozpuszczalne w wodzie. Dokładność wypłukania tych zanieczyszczeń weryfikuje się za pomocą roztworu

A. BaCl2
B. AgNO3
C. fenoloftaleiny
D. oranżu metylowego
Fenoloftaleina to wskaźnik pH, ale niestety nie nadaje się do wykrywania siarczanów. Dlaczego? Bo zmienia kolor w zależności od kwasowości roztworu, ale nie reaguje z jonami siarczanowymi. Można się łatwo pomylić, jeśli się jej używa, bo ona tylko sygnalizuje zmianę pH, a to nie jest to, co potrzebujemy przy analizie siarczanów. Z drugiej strony, AgNO3, czyli azotan srebra, też nie jest właściwy do wykrywania siarczanów, bo tworzy osad z jonami chlorkowymi, a nie siarczanowymi. Używanie takich reagentów, jak AgNO3, może prowadzić do błędnych wniosków o obecności siarczanów, więc raczej tego unikaj. Oranż metylowy to kolejny wskaźnik pH, ale zmienia kolor w zakresie 3.1-4.4, co też się nie przyda do wykrywania siarczanów. Jak się robi analizę chemiczną, trzeba dokładnie rozumieć właściwości reagentów, bo różne błędy mogą się przytrafić w interpretacji wyników. W skrócie, lepiej używać odpowiednich reagentów, jak BaCl2, żeby mieć pewność, że wyniki będą wiarygodne.

Pytanie 11

Próbka laboratoryjna posiadająca cechy higroskopijne powinna być pakowana

A. w szczelne opakowania
B. w skrzynie drewniane
C. w torby jutowe
D. w torby papierowe
Odpowiedź "w hermetyczne opakowania" jest prawidłowa, ponieważ próbki laboratoryjne o właściwościach higroskopijnych wykazują silną tendencję do absorbcji wilgoci z otoczenia, co może prowadzić do ich degradacji lub zmian w składzie chemicznym. Hermetyczne opakowania zapewniają skuteczną barierę przed wilgocią, co jest kluczowe dla zachowania integralności takich próbek. Przykładem zastosowania hermetycznych opakowań są próbki soli, które muszą być przechowywane w suchym środowisku, aby uniknąć ich aglomeracji lub rozpuszczenia. Zgodnie z wytycznymi ISO 17025 dotyczącymi akredytacji laboratoriów, zaleca się stosowanie hermetycznych pojemników jako standardowej praktyki w celu zapewnienia, że wyniki analizy są wiarygodne i powtarzalne. Ponadto, hermetyczne opakowania mogą być również stosowane w transporcie próbek, co zmniejsza ryzyko ich kontaminacji i utraty właściwości.

Pytanie 12

Procedura przygotowania roztworu Zimmermana-Reinharda
70 g MnSO4·10H2O rozpuścić w 500 cm3 wody destylowanej, dodając ostrożnie 125 cm3 stężonego H2SO4 i 125 cm3 85% H3PO4, ciągle mieszając. Uzupełnić wodą destylowaną do objętości 1dm3.
Który zestaw ilości odczynników jest niezbędny do otrzymania 0,5 dm3 roztworu Zimmermana-Reinharda, zgodnie z podaną procedurą?

MnSO4·10H2O
[g]
Stężony H2SO4
[cm3]
85% H3PO4
[cm3]
Woda destylowana
[cm3]
A.35 g62,5 cm362,5 cm3ok. 370 cm3
B.35 g62,5 cm362,5 cm3ok. 420 cm3
C.70 g125 cm3125 cm3ok. 500 cm3
D.70 g125 cm3125 cm3ok. 800 cm3

A. B.
B. D.
C. C.
D. A.
Wybierając inne opcje niż A, można napotkać na typowe błędy związane z proporcjami substancji chemicznych. Wiele osób może błędnie założyć, że wystarczy po prostu dodać mniejszą ilość reagentów, nie uwzględniając przy tym proporcji. Na przykład, zmniejszenie ogólnej objętości roztworu z 1 dm³ do 0,5 dm³ wymaga odpowiedniego zmniejszenia ilości każdego z reagentów o połowę, co jest kluczowe, aby zachować ich stosunek. Kiedy ktoś wybiera inną opcję, często ignoruje fakt, że każdy z reagentów ma swoje specyficzne właściwości chemiczne i ich zmiana może prowadzić do nieprzewidywalnych wyników. Ponadto, niepoprawne ilości reagentów mogą prowadzić do niebezpiecznych sytuacji w laboratorium, takich jak nieodpowiednie stężenie kwasów, co może wpłynąć na właściwości roztworu oraz procesy chemiczne. Inny błąd to zbytnia pewność siebie w obliczeniach, co może skutkować pominięciem ważnych szczegółów, takich jak waga molowa reagentów. Mylnie interpretując instrukcje, można również nie zauważyć, że każdy krok w procedurze ma na celu nie tylko przygotowanie roztworu, ale również bezpieczeństwo pracy w laboratorium. Pamiętajmy, że przestrzeganie dokładnych proporcji jest kluczem do sukcesu w chemii, ponieważ nawet niewielkie różnice mogą prowadzić do znaczących zmian w wynikach eksperymentu.

Pytanie 13

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w zlewce
B. w kolbie stożkowej
C. w cylindrze miarowym
D. w kolbie miarowej
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 14

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła borowo-krzemowego
B. z tworzywa sztucznego
C. z kwarcu
D. ze szkła sodowego
Najlepszym wyborem do przechowywania próbek wody do badania krzemu są naczynia z tworzyw sztucznych. Oprócz tego, że są neutralne chemicznie, to nie wprowadzają zanieczyszczeń, które mogłyby zepsuć nasze analizy. Materiały jak PET czy polipropylen są nisko reaktywne, więc świetnie nadają się do tego rodzaju badań. W praktyce, używając takich pojemników, możemy trzymać próbki dłużej, bo nie ma ryzyka, że coś się w nich zmieni przez reakcje chemiczne. W dodatku, wiele norm, w tym te od ISO, sugeruje, aby korzystać z tworzyw sztucznych, zwłaszcza jeśli próbki mają być transportowane lub przechowywane przez dłuższy czas. Takie podejście wpisuje się w najlepsze praktyki laboratoryjne, co znaczy, że nasze wyniki będą bardziej wiarygodne.

Pytanie 15

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
B. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
C. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
D. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
Wiele osób może błędnie podejść do zadania, interpretując proporcje składników mieszanki. Odpowiedzi, które sugerują użycie 75 cm³ alkoholu etylowego i 75 cm³ eteru dietylowego, 100 cm³ alkoholu etylowego i 50 cm³ eteru dietylowego, czy 100 cm³ alkoholu etylowego i 200 cm³ eteru dietylowego, opierają się na nieprawidłowej interpretacji stosunku 1:2. W rzeczywistości, prawidłowe proporcje oznaczają, że na każdą jednostkę objętości alkoholu przypadają dwie jednostki objętości eteru. Próba zastosowania równych wartości, jak w pierwszym przykładzie, prowadzi do błędnych wniosków, ponieważ nie uwzględnia rzeczywistego stosunku między składnikami. W przypadku drugiej i trzeciej odpowiedzi, również zignorowano, że całkowita objętość powinna sumować się do 150 cm³, co nie jest spełnione w tych propozycjach. Kluczową zasadą jest zawsze weryfikacja, czy suma składników odpowiada całkowitej objętości wymaganej mieszanki. Te błędy mogą wynikać z niedostatecznego zrozumienia zasad obliczania proporcji oraz podstawowych zasad przygotowywania roztworów. W laboratoriach chemicznych precyzja w obliczeniach jest krytyczna, a każdy niepoprawny pomiar może prowadzić do błędnych wyników eksperymentalnych.

Pytanie 16

Po przeprowadzeniu krystalizacji z 120 g kwasu szczawiowego uzyskano 105 g produktu o wysokiej czystości. Jaki był poziom zanieczyszczeń w kwasie szczawiowym?

A. 20%
B. 87,5%
C. 12,5%
D. 15%
Aby zrozumieć, dlaczego pozostałe odpowiedzi są błędne, należy przyjrzeć się podstawowym zasadom obliczeń związanych z zawartością zanieczyszczeń. Odpowiedzi takie jak 20%, 15% i 87,5% opierają się na nieprawidłowych wyliczeniach lub błędnych założeniach. Przykładowo, jeśli ktoś wyliczałby 20%, mógłby mylnie pomyśleć, że zanieczyszczenia stanowią znacznie większy udział masy początkowej. Może to wynikać z pomyłki w obliczeniach lub braku zrozumienia, że zanieczyszczenia są obliczane na podstawie masy uzyskanego czystego produktu, a nie samej masy początkowej. Odpowiedź 15% również jest wynikiem nieprawidłowego obliczenia. Osoba udzielająca takiej odpowiedzi mogła pomylić się, przyjmując, że zanieczyszczenia to po prostu 15 g z 120 g, co nie uwzględnia odpowiedniego podziału przez masę początkową i pomnożenia przez 100%. Z kolei odpowiedź 87,5% jest szczególnie myląca, ponieważ sugeruje, że niemal cała masa kwasu szczawiowego była zanieczyszczona, co jest niezgodne z danymi przedstawionymi w pytaniu. Takie podejście może prowadzić do dramatycznych nieporozumień w analizie danych chemicznych i w przemyśle, gdzie dokładność pomiarów jest kluczowa. Dlatego ważne jest, aby stosować jednoznaczne metody obliczeń oraz zrozumieć, jakie wartości są istotne w kontekście danej analizy chemicznej.

Pytanie 17

Zastosowanie łaźni wodnej nie jest zalecane w trakcie prac, w których stosuje się

A. cynk
B. etanol
C. glicerynę
D. sód
Odpowiedzi związane z gliceryną, cynkiem i etanolem są błędne, ponieważ nie stwarzają one takich zagrożeń jak sód w kontekście używania łaźni wodnej. Gliceryna jest substancją niepalną i nie reaguje z wodą w sposób zagrażający bezpieczeństwu, a wręcz przeciwnie, często jest stosowana w różnych zastosowaniach laboratoryjnych, w tym w przygotowywaniu roztworów. Cynk, choć może reagować z kwasami, nie wykazuje takiej reaktywności z wodą jak sód, a w laboratoriach jest często używany w wielu reakcjach chemicznych, które nie wymagają omijania łaźni wodnej. Etanol natomiast, mimo że jest łatwopalny, w normalnych warunkach nie reaguje z wodą w sposób, który byłby niebezpieczny. Błąd w myśleniu polega na generalizacji zagrożeń związanych z różnymi substancjami chemicznymi. Ważne jest, aby zrozumieć, że każdy z tych materiałów ma unikalne właściwości chemiczne, a ich potencjalne zagrożenia muszą być oceniane indywidualnie według przyjętych standardów bezpieczeństwa. Zrozumienie tych różnic pozwala na właściwe podejście do pracy z różnymi substancjami chemicznymi i zapewnia bezpieczne warunki pracy.

Pytanie 18

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę jednomiarową o pojemności 10 cm3
B. cylinder miarowy o pojemności 25 cm3
C. pipetę jednomiarową o pojemności 20 cm3
D. pipetę wielomiarową o pojemności 25 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 19

W przypadku rozlania żrącego odczynnika chemicznego na skórę pierwszym poprawnym działaniem jest:

A. Zaklejenie miejsca plastrem
B. Pocieranie miejsca kontaktu papierowym ręcznikiem
C. Natychmiastowe spłukanie miejsca kontaktu dużą ilością wody
D. Posypanie miejsca solą kuchenną
Postępowanie w przypadku kontaktu skóry z substancją żrącą jest jednym z podstawowych elementów bezpieczeństwa w laboratorium chemicznym. Najważniejsze jest, żeby działać szybko i skutecznie. Od razu po rozlaniu żrącego odczynnika trzeba spłukać miejsce kontaktu dużą ilością wody – najlepiej bieżącej. To nie tylko rozcieńcza szkodliwy związek, ale przede wszystkim usuwa go z powierzchni skóry, zmniejszając ryzyko głębszych uszkodzeń tkanek. Praktyka ta wynika z ogólnych zasad BHP obowiązujących w laboratoriach oraz wytycznych instytutów takich jak CIOP czy OSHA. Efektywność tej metody potwierdzają liczne badania. Szybka reakcja pozwala ograniczyć wchłanianie substancji i minimalizuje skutki poparzeń chemicznych. Nawet jeśli żrący środek wydaje się mało agresywny, nie wolno tego bagatelizować. Dobrze mieć też pod ręką prysznic bezpieczeństwa lub zestaw do płukania oczu, zwłaszcza w laboratoriach chemicznych. Warto pamiętać, że niektóre substancje wymagają dłuższego płukania – nawet do 15 minut. Dodatkowo po takim incydencie zawsze należy zgłosić zdarzenie przełożonemu i skonsultować się z lekarzem. Z mojego doświadczenia, szybkie działanie i wiedza o pierwszej pomocy to rzeczy, które naprawdę robią różnicę w laboratoriach. Ostatecznie – lepiej spłukać odczynnik za długo, niż za krótko. To jedna z tych zasad, które zawsze warto mieć z tyłu głowy podczas pracy z chemikaliami.

Pytanie 20

Jakie narzędzie w laboratorium jest wykorzystywane do rozdrabniania małych ilości substancji stałych?

A. parownica z łyżeczką porcelanową
B. zlewka z bagietką
C. moździerz z tłuczkiem
D. krystalizator ze szpatułką metalową
Moździerz z tłuczkiem jest podstawowym narzędziem wykorzystywanym w laboratoriach do rozdrabniania substancji stałych, zwłaszcza tych, które są w postaci proszku lub granulek. Umożliwia on precyzyjne mielenie materiałów, co jest kluczowe w wielu procesach chemicznych. Dzięki swojej budowie, moździerz zapewnia stabilność oraz kontrolę nad stopniem rozdrobnienia. Przykładem zastosowania moździerza z tłuczkiem może być przygotowanie prób do analizy chemicznej, gdzie konieczne jest uzyskanie jednolitej konsystencji substancji. Ponadto, standardy laboratoryjne, takie jak ISO 9001, podkreślają znaczenie wysokiej jakości przygotowania próbek, co czyni moździerz z tłuczkiem narzędziem niezbędnym dla zachowania spójności i dokładności w badaniach. W praktyce, moździerze mogą być wykonane z różnych materiałów, takich jak porcelana, granit czy stal nierdzewna, co pozwala na dostosowanie ich do specyficznych wymagań chemicznych i fizycznych substancji, z którymi pracujemy. Odpowiedni dobór narzędzi do rozdrabniania substancji stałych jest kluczowy, aby uniknąć kontaminacji i zachować integralność chemiczną przygotowywanych prób.

Pytanie 21

Dekantacja to metoda

A. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
B. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
C. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
D. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 22

W tabeli zestawiono objętości molowe czterech gazów odmierzone w warunkach normalnych.
Dla którego spośród wymienionych w tabeli gazów objętość molowa najbardziej odchyla się od wartości obliczonej dla gazu doskonałego?

GazSO2CHCl3(para)O3NH3
Objętość molowa (dm3/mol)21,8922,6021,622,08

A. Ozonu.
B. Amoniaku.
C. Chloroformu.
D. Tlenku siarki(IV).
Ozon (O3) ma objętość molową, która w warunkach normalnych odchyla się od wartości teoretycznej, typowej dla gazu doskonałego, bardziej niż pozostałe gazy wymienione w pytaniu. Dla gazów doskonałych zakłada się, że ich cząsteczki nie oddziałują ze sobą oraz że zajmują objętość zero, co nie ma miejsca w rzeczywistości. Ozon, ze względu na swoją strukturę i bardziej złożoną budowę cząsteczkową, wykazuje znaczące interakcje między cząsteczkami, co prowadzi do odchyleń od wzorów gazu doskonałego. W praktyce, szczególnie w chemii atmosferycznej, zrozumienie tych odchyleń ma kluczowe znaczenie dla modelowania reakcji chemicznych i procesów, takich jak fotochemiczne zachowanie ozonu w atmosferze. Wiedza ta jest niezbędna dla naukowców i inżynierów zajmujących się ochroną środowiska, ponieważ ozon jest zarówno gazem o działaniu prozdrowotnym w górnych warstwach atmosfery, jak i zanieczyszczeniem w niższych warstwach, co sprawia, że jego analiza jest kluczowa dla oceny jakości powietrza i skutków zdrowotnych. Dodatkowo, znajomość objętości molowej ozonu ma zastosowanie w wielu dziedzinach, w tym w meteorologii i farmakologii, gdzie precyzyjne pomiary gazów są kluczowe dla skutecznych interwencji oraz badań.

Pytanie 23

Ustalanie miana roztworu polega na

A. zważeniu substancji i rozpuszczeniu jej w wodzie
B. określaniu przybliżonego stężenia roztworu
C. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
D. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 24

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. R
B. Ex
C. W
D. In
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 25

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. EX
B. IN
C. B
D. A
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 26

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Obniżenia temperatury wrzenia cieczy
B. Zwiększenia temperatury wrzenia cieczy
C. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
D. Uniknięcia miejscowego przegrzewania się cieczy
Kamyczki wrzenne, znane też jako rdzenie wrzenia, są naprawdę ważne, gdy chodzi o zapobieganie przegrzewaniu się cieczy. Działają na zasadzie zwiększania powierzchni, na której zachodzi wrzenie, co w efekcie pozwala na równomierne rozprowadzenie temperatury. Gdyby nie one, mogłyby powstawać pęcherzyki pary, które czasem wybuchają i mogą prowadzić do niebezpiecznych sytuacji, takich jak gwałtowny wzrost ciśnienia. Dlatego użycie kamyczków wrzennych jest w laboratoriach czy w chemii naprawdę istotne, ponieważ pozwala na lepszą kontrolę temperatury i uzyskanie wiarygodnych wyników. Na przykład w destylacji, stabilne wrzenie jest kluczem do efektywnego oddzielania różnych składników. Można powiedzieć, że to standardy jak ISO 17025 to potwierdzają – mówią, jak ważne jest to dla jakości i bezpieczeństwa badań.

Pytanie 27

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. ciał stałych.
B. gazów.
C. cieczy.
D. płynów.
Poprawna odpowiedź to "ciał stałych". Piktogram przedstawiający substancję szkodliwą dla zdrowia odnosi się do materiałów klasyfikowanych jako 6.1 według Międzynarodowego Systemu Transportu Materiałów Niebezpiecznych. Substancje te mogą być trujące i stwarzać zagrożenie dla zdrowia ludzkiego, co wymaga szczególnej ostrożności podczas transportu i przechowywania. W praktyce, substancje stałe, takie jak pewne chemikalia, są klasyfikowane w tej kategorii, ponieważ ich forma fizyczna może powodować poważne konsekwencje zdrowotne w przypadku kontaktu. Do dobrych praktyk w transporcie materiałów niebezpiecznych należy stosowanie odpowiednich środków ochrony osobistej, jak rękawice czy maski, a także zapewnienie odpowiednich warunków przechowywania, aby zminimalizować ryzyko wycieków czy narażenia ludzi na szkodliwe substancje. Wiedza dotycząca klasyfikacji materiałów niebezpiecznych jest niezbędna dla każdego, kto pracuje w branżach związanych z transportem chemikaliów, aby zapewnić bezpieczeństwo zarówno pracowników, jak i środowiska.

Pytanie 28

Do przechowywania zamrożonych próbek wody stosuje się naczynia wykonane

A. ze szkła sodowego
B. ze szkła krzemowego
C. z polietylenu
D. ze szkła borokrzemowego
Wybór polietylenu do przechowywania próbek wody w postaci zamrożonej wynika z jego korzystnych właściwości fizykochemicznych oraz technicznych. Polietylen jest materiałem, który charakteryzuje się wysoką odpornością na niskie temperatury, co czyni go idealnym do zastosowań wymagających długotrwałego przechowywania w warunkach chłodniczych. W przeciwieństwie do szkła, polietylen jest elastyczny, co zmniejsza ryzyko pęknięć, które mogą wystąpić podczas zamrażania, gdy woda zmienia objętość. Dodatkowo, polietylen nie wchodzi w reakcje z wodą i nie wydziela substancji toksycznych, co jest kluczowe w kontekście analizy jakości wody. W laboratoriach i badaniach środowiskowych, stosowanie pojemników z polietylenu do przechowywania próbek wody jest zgodne z wytycznymi organizacji takich jak EPA i ISO, które zalecają materiały nieinterferujące z właściwościami próbek. Przykładem zastosowania polietylenu są pojemniki HDPE (polietylen o wysokiej gęstości), które są powszechnie stosowane w badaniach wód gruntowych oraz innych próbek środowiskowych.

Pytanie 29

Jakim kolorem oznacza się instalację gazową w laboratorium analitycznym?

A. żółtym
B. czerwonym
C. niebieskim
D. zielonym
Znakowanie instalacji gazowych w laboratoriach analitycznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności pracy. Kolor żółty, który stosuje się do oznaczania instalacji gazowych, jest zgodny z międzynarodowymi standardami, w tym z normami ISO oraz przepisami BHP. Oznaczenia te mają na celu szybkie i jednoznaczne wskazanie, że dana instalacja transportuje gazy, co zwiększa świadomość zagrożeń w miejscu pracy. Przykładowo, w laboratoriach chemicznych, gdzie zachodzi możliwość pracy z substancjami łatwopalnymi, oznaczenie gazu za pomocą koloru żółtego umożliwia pracownikom szybkie zidentyfikowanie instalacji, które mogą stanowić zagrożenie. Ponadto, stosowanie jednolitych oznaczeń pomaga w szkoleniu nowego personelu oraz w przestrzeganiu regulacji prawnych dotyczących bezpieczeństwa pracy. Znajomość i stosowanie tych standardów jest fundamentalne dla minimalizacji ryzyka wypadków oraz zapewnienia efektywności procesów analitycznych.

Pytanie 30

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1

A. 375,0 g lodu i 125,0 g chlorku sodu.
B. 250,0 g wody i 250,0 g rodanku amonu.
C. 384,6 g lodu i 115,4 g chlorku amonu.
D. 384,6 g wody i 115,4 g chlorku amonu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 31

Odważka analityczna przygotowana w fabryce zawiera 0,1 mola EDTA. Posiadając taką jedną odważkę analityczną, jakie roztwory można przygotować?

A. 100 cm3 roztworu o stężeniu 0,0100 mol/dm3
B. 2000 cm3 roztworu o stężeniu 0,2000 mol/dm3
C. 500 cm3 roztworu o stężeniu 0,2000 mol/dm3
D. 1000 cm3 roztworu o stężeniu 0,0100 mol/dm3
Odpowiedź, że można przygotować 500 cm3 roztworu o stężeniu 0,2000 mol/dm3, jest prawidłowa, ponieważ można to uzasadnić z definicji stężenia molowego oraz objętości roztworu. Fabrycznie przygotowana odważka analityczna zawiera 0,1 mola EDTA. Aby obliczyć, ile roztworu można przygotować o określonym stężeniu, należy zastosować wzór: C = n/V, gdzie C to stężenie, n to liczba moli, a V to objętość w dm3. W przypadku stężenia 0,2000 mol/dm3, mamy: 0,1 mola = 0,2000 mol/dm3 * V. Po przekształceniu równania do postaci V = n/C otrzymujemy V = 0,1 mol / 0,2000 mol/dm3 = 0,5 dm3, co odpowiada 500 cm3. Przygotowując roztwór o tym stężeniu, możemy wykorzystać EDTA w titracji kompleksometrycznej, co jest standardową metodą analizy chemicznej, szczególnie w badaniach jakości wody i analizie metali. Takie podejście zapewnia dokładność i zgodność z normami analitycznymi, co jest kluczowe w laboratoriach chemicznych.

Pytanie 32

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. chlorowodorowym
B. siarkowym(VI)
C. azotowym(V)
D. bromowodorowym
Roztwarzanie mosiądzu w stężonym kwasie azotowym(V) jest prawidłowym podejściem, ponieważ kwas ten jest silnym utleniaczem, zdolnym do rozkładu mosiądzu, który jest stopem miedzi i cynku. Kwas azotowy(V) powoduje utlenienie miedzi do tlenków miedzi oraz rozpuszczenie cynku, a reakcja ta prowadzi do powstania azotanu miedzi i azotanu cynku. Stosowanie kwasu azotowego w analizie jakościowej ma zastosowanie w laboratoriach chemicznych oraz w przemyśle metalurgicznym, gdzie dokładna analiza składników stopów jest kluczowa dla kontrolowania jakości produktów. Na przykład, w procesach produkcji i recyklingu metali nieżelaznych, analiza jakościowa przy użyciu kwasu azotowego pozwala na dokładne określenie proporcji składników w stopach, co ma istotne znaczenie dla ich dalszego przetwarzania oraz zastosowania. W pracy laboratoryjnej należy pamiętać o zachowaniu odpowiednich środków ostrożności, ponieważ kwas azotowy jest substancją silnie żrącą i toksyczną, co wymaga stosowania odpowiednich zabezpieczeń osobistych oraz procedur BHP.

Pytanie 33

W trakcie korzystania z odczynnika opisanego na etykiecie, należy szczególnie zwrócić uwagę na zagrożenia związane

A. z pożarem
B. z poparzeniem
C. z lotnością
D. z wybuchem
Odpowiedź "z pożarem" jest prawidłowa, ponieważ wiele reagentów chemicznych, zwłaszcza te o niskim punkcie zapłonu, stanowi poważne zagrożenie pożarowe. Takie substancje mogą łatwo zapalać się w obecności źródła ciepła lub otwartego ognia, co stwarza ryzyko nie tylko dla zdrowia osób pracujących w laboratoriach, ale także dla samej infrastruktury. Przykładem substancji stwarzających to ryzyko są rozpuszczalniki organiczne, takie jak aceton czy etanol, które są powszechnie wykorzystywane w różnych procesach chemicznych. Pracując z tymi substancjami, należy przestrzegać zasad BHP, takich jak przechowywanie reagentów w odpowiednich warunkach oraz korzystanie z odpowiednich środków ochrony osobistej. Warto również mieć na uwadze przepisy dotyczące magazynowania substancji łatwopalnych, które określają minimalne odległości od źródeł zapłonu oraz wymagania dotyczące wentylacji. Znajomość tych zasad i praktyk jest niezbędna do bezpiecznego wykonywania prac laboratoryjnych oraz do minimalizacji ryzyka wystąpienia zagrożeń pożarowych.

Pytanie 34

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. techniczny
B. czysty
C. czysty do analizy
D. spektralnie czysty
Odpowiedzi "czysty do analizy", "czysty" oraz "spektralnie czysty" odnoszą się do odczynników o znacznie wyższej czystości niż odczynniki techniczne. Odczynniki czyste do analizy mają czystość na poziomie 99% i są stosowane w zastosowaniach, gdzie precyzyjne pomiary i reakcje chemiczne są kluczowe, na przykład w analizach jakościowych i ilościowych. Odczynniki te są zgodne z surowymi standardami, takimi jak normy ASTM lub ISO, co czyni je odpowiednimi do zastosowań laboratoryjnych, gdzie jakiekolwiek zanieczyszczenia mogłyby wpłynąć na wyniki badań. Z kolei odczynniki czyste oraz spektralnie czyste są wykorzystywane w bardziej zaawansowanych technikach analitycznych, takich jak spektroskopia, gdzie nawet śladowe zanieczyszczenia mogą skutkować błędnymi wynikami. Wybór niewłaściwego typu odczynnika do konkretnego zastosowania często prowadzi do istotnych błędów w badaniach, co podkreśla znaczenie odpowiedniego doboru środków chemicznych. W praktyce laboratoryjnej, nieprawidłowy wybór odczynnika może wynikać z braku znajomości ich właściwości oraz zastosowań, co jest krytyczne w kontekście uzyskiwania wiarygodnych rezultatów. Dlatego kluczowe jest, aby każdy chemik czy technik laboratoryjny był dobrze zaznajomiony z różnymi klasami odczynników oraz ich specyfikacjami.

Pytanie 35

Jaką objętość zasady sodowej o stężeniu 1,0 mol/dm3 należy dodać do 56,8 g kwasu stearynowego, aby otrzymać mydło sodowe (stearynian sodu)?

C17H35COOH + NaOH → C17H35COONa + H2O
(MC17H35COOH = 284 g/mol, MC17H35COONa = 306 g/mol, MNaOH = 40 g/mol, MH2O= 18 g/mol)

A. 250 cm3
B. 200 cm3
C. 150 cm3
D. 100 cm3
Odpowiedź 200 cm3 jest poprawna, ponieważ do syntezy mydła sodowego z kwasu stearynowego potrzebujemy odpowiedniej ilości zasady sodowej, która zneutralizuje kwas. W przypadku kwasu stearynowego, którego masa wynosi 56,8 g, obliczamy liczbę moli, korzystając z jego masy molowej wynoszącej około 284 g/mol. Obliczamy liczbę moli kwasu stearynowego: 56,8 g / 284 g/mol = 0,2 mol. Zasada sodowa w stężeniu 1,0 mol/dm3 oznacza, że w 1 dm3 roztworu znajduje się 1 mol NaOH. Aby zneutralizować 0,2 mola kwasu, potrzebujemy 0,2 dm3 roztworu NaOH, co odpowiada 200 cm3. Zastosowanie odpowiednich proporcji w syntezie mydeł jest kluczowe dla uzyskania właściwej struktury chemicznej produktu końcowego, co wpływa na jego właściwości użytkowe. Prawidłowe przygotowanie mydeł sodowych znajduje zastosowanie w przemyśle kosmetycznym oraz chemicznym, gdzie jakość surowców oraz ilości reagentów są ściśle normowane przez odpowiednie standardy.

Pytanie 36

Z kolby miarowej o pojemności 1 dm3, zawierającej roztwór HCl o stężeniu 0,1 mol/dm3, pobrano pipetą 2,5 cm3, a następnie przeniesiono do kolby miarowej o pojemności 20 cm3 i rozcieńczono wodą "do kreski" miarowej. Jakie stężenie ma otrzymany roztwór?

A. 0,1250 mol/dm3
B. 0,0500 mol/dm3
C. 0,0125 mol/dm3
D. 0,0005 mol/dm3
Aby obliczyć stężenie roztworu po rozcieńczeniu, należy zastosować zasadę zachowania moli. Początkowo mamy 2,5 cm³ roztworu HCl o stężeniu 0,1 mol/dm³. Możemy to przeliczyć na litry: 2,5 cm³ = 0,0025 dm³. Liczba moli HCl w tej objętości wynosi: n = C * V = 0,1 mol/dm³ * 0,0025 dm³ = 0,00025 mol. Po przelaniu roztworu do kolby o pojemności 20 cm³ (0,02 dm³) i rozcieńczeniu wodą do kreski, całkowita objętość wynosi 0,02 dm³. Stężenie końcowe oblicza się jako C = n / V = 0,00025 mol / 0,02 dm³ = 0,0125 mol/dm³. Przykładem praktycznym zastosowania tych obliczeń jest przygotowanie roztworów roboczych w laboratoriach chemicznych, gdzie precyzyjne określenie stężenia jest kluczowe dla uzyskania powtarzalnych wyników w eksperymentach. Ponadto, zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy dokumentować przygotowywane roztwory oraz ich stężenia, co może być istotne w analizach chemicznych.

Pytanie 37

Jaką masę chlorku sodu można znaleźć w 150 g roztworu soli o stężeniu 5% (m/m)?

A. 0,05 g
B. 7,50 g
C. 5,00 g
D. 0,75 g
Poprawna odpowiedź wynosi 7,50 g chlorku sodu w 150 g roztworu o stężeniu 5% (m/m). Aby obliczyć masę substancji rozpuszczonej w roztworze, należy zastosować wzór: masa substancji = stężenie (m/m) × masa roztworu. W naszym przypadku stężenie wynosi 5%, co oznacza, że w 100 g roztworu znajduje się 5 g soli. Skoro mamy 150 g roztworu, wykorzystywana proporcja to 5 g/100 g, co można zapisać jako 5 g × 150 g / 100 g = 7,50 g. Tego rodzaju obliczenia są kluczowe w chemii, farmacji oraz branżach zajmujących się produkcją roztworów. Zrozumienie stężenia masowego jest również pomocne w praktycznych zastosowaniach, takich jak przygotowywanie roztworów w laboratoriach, co wymaga precyzyjnych pomiarów. W kontekście standardów branżowych, dobrym przykładem jest stosowanie stężenia m/m w analizie jakościowej substancji chemicznych, co ułatwia porównanie różnych roztworów oraz ich właściwości. Zrozumienie tych obliczeń jest fundamentalne dla każdego chemika, technologa czy farmaceuty.

Pytanie 38

Który z poniższych czynników nie mógł przyczynić się do błędnego określenia całkowitej liczby drobnoustrojów w surowym mleku?

A. Pobranie nadmiernej liczby próbek pierwotnych
B. Transport próbki mleka w temperaturze 30°C
C. Nieprawidłowe czyszczenie i dezynfekcja pipet do pobierania próbek pierwotnych
D. Nieodpowiednie mycie i dezynfekcja zbiorników do przechowywania mleka
Pobranie zbyt dużej liczby próbek pierwotnych nie wpływa na błędne oznaczenie ogólnej liczby drobnoustrojów w surowym mleku, ponieważ standardowe procedury analityczne zakładają, że próba powinna być reprezentatywna dla całej partii, a niekoniecznie musi być ograniczona do określonej liczby próbek. W praktyce laboratoria często pobierają wiele próbek w celu zwiększenia dokładności wyników, jednak kluczowe jest, aby każda próbka była odpowiednio przechowywana i transportowana zgodnie z ustalonymi normami. Dobrą praktyką jest stosowanie systemu losowego przy pobieraniu próbek, co pozwala na lepsze odwzorowanie rzeczywistego stanu mikrobiologicznego całej partii mleka. W przypadku dużej liczby próbek zaleca się ich równoległe analizowanie, co może zwiększyć precyzję wyników końcowych. Ponadto, zgodnie z zaleceniami organizacji takich jak Codex Alimentarius, należy przestrzegać surowych norm dotyczących transportu i przechowywania próbek, aby uniknąć zafałszowania wyników z powodu czynników zewnętrznych.

Pytanie 39

Użycie płuczek jest konieczne w trakcie procesu

A. krystalizacji
B. oczyszczania gazów
C. flotacji
D. destylacji
Wybór odpowiedzi dotyczącej destylacji, krystalizacji czy flotacji jako procesów, w których stosuje się płuczki, wynika z nieporozumienia dotyczącego zastosowania tych technik w przemyśle. Destylacja to metoda separacji składników mieszaniny na podstawie różnicy ich temperatur wrzenia, która nie wymaga użycia płuczek, a zamiast tego wykorzystuje kolumny destylacyjne. Krystalizacja polega na wydzielaniu substancji stałej z roztworu w wyniku zmiany warunków, takich jak temperatura lub stężenie, i również nie wykorzystuje płuczek. Flotacja to proces separacji cząstek stałych od cieczy, najczęściej w kontekście wydobycia minerałów, gdzie używa się różnych rodzajów zbieraczy, a nie płuczek. Typowe błędy myślowe, które prowadzą do wyboru tych odpowiedzi, obejmują mylenie procesów oczyszczania substancji z procesami separacyjnymi. Warto zrozumieć, że każdy z tych procesów ma swoje indywidualne zastosowania i technologie, a płuczki są specyficznie zaprojektowane do usuwania zanieczyszczeń gazowych, co jest kluczowe w kontekście ochrony środowiska i zdrowia publicznego.

Pytanie 40

W trzech probówkach umieszczono roztwory: wodorotlenku sodu, chlorku sodu i kwasu octowego. W celu identyfikacji zbadano ich odczyn za pomocą uniwersalnego papierka wskaźnikowego, a następnie fenoloftaleiny. Barwy wskaźników w badanych roztworach przedstawiono w tabeli:

WskaźnikBarwa wskaźnika
próbówka nr 1próbówka nr 2próbówka nr 3
uniwersalny papierek wskaźnikowyżółtyczerwonyniebieski
fenoloftaleinabezbarwnybezbarwnymalinowa

A. W probówce nr 2 znajdował się roztwór o pH powyżej 9.
B. Po zastosowaniu tylko fenoloftaleiny można stwierdzić, że w probówce nr 1 był roztwór chlorku sodu.
C. Po zastosowaniu tylko uniwersalnego papierka wskaźnikowego można stwierdzić, że w probówce nr 3 był roztwór wodorotlenku sodu.
D. W probówce nr 1 znajdował się roztwór o odczynie zasadowym.
Próba zidentyfikowania substancji na podstawie tylko ogólnych kolorów wskaźników może prowadzić do poważnych nieporozumień. W przypadku roztworu wodorotlenku sodu, jak wskazuje poprawna odpowiedź, uniwersalny papier wskaźnikowy dostarcza wyraźnych informacji o pH, jednak w przypadku innych substancji, takich jak chlorek sodu czy kwas octowy, sytuacja jest znacznie bardziej skomplikowana. Chlorek sodu w roztworze nie wpływa na pH w sposób, który byłby widoczny za pomocą wskaźników pH, ponieważ jest to sól neutralna. Kwas octowy, będący słabym kwasem, również nie spowoduje odczuwalnego zmiany koloru wskaźnika w zasadowym środowisku, co jest często mylnie interpretowane. Błąd w rozumieniu zjawiska może prowadzić do fałszywych wniosków dotyczących obecności substancji w roztworach. W kontekście edukacyjnym, zrozumienie zasad działania wskaźników pH oraz ich ograniczeń jest kluczowe dla chemików i studentów chemii, aby uniknąć pułapek związanych z niewłaściwą interpretacją wyników. Dlatego istotne jest, aby zawsze stosować się do standardów analizy chemicznej i być świadomym ograniczeń używanych metod pomiarowych.