Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 10 czerwca 2025 11:53
  • Data zakończenia: 10 czerwca 2025 12:13

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby oczyścić zwęglone osady w probówce, należy zastosować

A. słabą zasadę
B. słaby kwas
C. mieszaninę chromową
D. rozpuszczalnik organiczny
Rozpuszczalniki organiczne, takie jak etanol czy aceton, są często stosowane do rozpuszczania substancji organicznych, jednak ich skuteczność w usuwaniu zwęglonych osadów jest ograniczona. Zwęglone resztki to w dużej mierze węgiel, który nie reaguje z większością związków organicznych, co czyni je trudnymi do usunięcia za pomocą takich rozpuszczalników. Użycie słabego kwasu, jak kwas octowy, może również okazać się niewystarczające, ponieważ nie posiada on wystarczającej siły do utlenienia zwęglonych osadów, które są bardziej odporne na działanie słabych kwasów. Słabe zasady, takie jak wodorotlenek sodu, mogą pomóc w usuwaniu niektórych zanieczyszczeń, ale podobnie jak kwasy, ich działanie na zwęglone osady jest ograniczone. W praktyce laboratoryjnej, stosowanie tych substancji może prowadzić do mylnych wniosków o ich skuteczności, co może skutkować nieodpowiednim przygotowaniem sprzętu lub próbek do dalszych analiz. Dlatego ważne jest, aby korzystać z odpowiednich, sprawdzonych metod oczyszczania, takich jak stosowanie mieszaniny chromowej, która zapewnia lepsze rezultaty w usuwaniu trudnych do zlikwidowania osadów.

Pytanie 2

Wybierz poprawny zapis jonowy spośród podanych reakcji, w których otrzymywany jest siarczan(VI) baru.

A. BaCl2 + H2SO4 → BaSO4 + 2HCl
B. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + Cl-
C. BaCl2 + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
D. Ba2+ + 2Cl- + 2H+ + SO42- → BaSO4 + 2H+ + 2Cl-
Wybór niepoprawnych odpowiedzi wynika często z niepełnego zrozumienia procesu reakcji chemicznych oraz zasad tworzenia zapisów jonowych. Wiele z tych odpowiedzi zawiera nieprawidłowe reprezentacje reagentów i produktów reakcji, co prowadzi do zamieszania w ich interpretacji. Przykładowo, wybór BaCl2 + H2SO4 → BaSO4 + 2HCl błędnie przedstawia fizyczną rzeczywistość zachodzącej reakcji. Nie uwzględnia on stanu jonowego reagentów, co jest kluczowe w analizie reakcji kwas-zasada. W tym przypadku, BaCl2, będący solą, nie jest odpowiednio przetworzony do formy jonowej. Takie błędy prowadzą do nieporozumień, zwłaszcza w kontekście rozróżniania reagentów od produktów, co jest istotnym aspektem w chemii teoretycznej i praktycznej. Dodatkowo, odpowiedzi sugerujące, że jony H+ i Cl- są traktowane jako produkty, wskazują na niewłaściwe zrozumienie równowagi reakcji oraz zachowania jonów w roztworze. Często studenci mylą jony, które reagują, z tymi, które pozostają w roztworze, co może prowadzić do błędnych wniosków w bardziej złożonych reakcjach chemicznych. Konieczne jest, aby zrozumieć różnicę pomiędzy zapisami reakcji cząsteczkowej a zapisem jonowym, który jednoznacznie pokazuje, jakie jony biorą udział w reakcji, eliminując te, które nie zmieniają się i nie wpływają na produkty końcowe.

Pytanie 3

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 200 g
B. 2500 g
C. 1000 g
D. 100 g
Analizując inne odpowiedzi, można zauważyć, że wybór 2500 g, 100 g czy 1000 g wynika z błędnego zrozumienia zastosowania tabeli dotyczącej minimalnej masy próbki w odniesieniu do średnicy ziaren. Odpowiedzi te sugerują, że autorzy pytania nie uwzględnili podstawowych zasad dotyczących proporcji masy próbki do średnicy ziaren. W przypadku 2500 g, wartość ta jest znacznie wyższa niż wskazana w tabeli, co może świadczyć o błędnej interpretacji lub przeoczeniu standardów branżowych, które jasno określają wymagania masy dla różnych rozmiarów cząstek. Wybór 100 g i 1000 g również wskazuje na nieporozumienia dotyczące zapewnienia reprezentatywności próbki. Masa próbki zbyt mała (100 g) może prowadzić do niedokładnych wyników analizy, podczas gdy 1000 g jest zbyt wysoka w tym kontekście. Użytkownicy mogą być zdezorientowani, myśląc, że większa masa zawsze zapewnia lepszą dokładność. W praktyce jednak, dla danej średnicy ziaren kluczowe jest, aby masa próbki była odpowiednio dobrana, co jest fundamentalnym założeniem w badaniach laboratoryjnych oraz w zarządzaniu jakością zgodnie z normami ISO 9001.

Pytanie 4

300 cm3 zanieczyszczonego benzenu poddano procesowi destylacji. Uzyskano 270 cm3 czystej substancji. Jaką wydajność miało oczyszczanie?

A. 80%
B. 90%
C. 111%
D. 10%
Wydajność procesu oczyszczania oblicza się przy użyciu wzoru: (objętość uzyskanego produktu / objętość surowca) * 100%. W naszym przypadku mamy 270 cm³ czystego benzenu uzyskanego z 300 cm³ zanieczyszczonego. Podstawiając wartości do wzoru, otrzymujemy: (270 / 300) * 100% = 90%. Taki wynik oznacza, że proces destylacji był efektywny i pozwolił na odzyskanie 90% czystej substancji. W praktyce, w przemyśle chemicznym, ocena wydajności procesów oczyszczania jest kluczowa, aby zapewnić opłacalność i efektywność produkcji. Wysoka wydajność wskazuje na skuteczną separację substancji, co jest istotne zarówno z punktu widzenia ekonomicznego, jak i jakościowego. Procesy oczyszczania są stosowane w różnych branżach, w tym w produkcji farmaceutycznej czy petrochemicznej, gdzie czystość substancji ma bezpośrednie znaczenie dla bezpieczeństwa i właściwości końcowego produktu. Prawidłowe obliczenie wydajności pozwala również na identyfikację potencjalnych problemów w procesie, co sprzyja ciągłemu doskonaleniu technologii produkcji.

Pytanie 5

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
B. w najgłębszym punkcie, z którego czerpana jest woda
C. na powierzchni wody, w centralnej części zbiornika
D. na powierzchni wody, w pobliżu brzegu zbiornika
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 6

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. substratem
B. analitem
C. produktem
D. titrantem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 7

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
C. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
D. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 8

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. średnia laboratoryjna
B. jednostkowa
C. pierwotna laboratoryjna
D. wtórna
Odpowiedź 'średnia laboratoryjna' jest poprawna, ponieważ odnosi się do próbki, która jest reprezentatywna dla większej partii produktu. W kontekście badań laboratoryjnych, średnia laboratoryjna to zestaw próbek, które zostały pobrane z partii, a następnie połączone w celu uzyskania jednego, reprezentatywnego wyniku. Tego typu próbki są kluczowe w zapewnieniu, że wyniki analizy będą miały zastosowanie do całej partii, a nie tylko do pojedynczego elementu. Przykładowo, w przemyśle spożywczym, podczas badania jakości produktu, laboratoryjna średnia może dostarczyć informacji na temat ogólnych właściwości partii, takich jak zawartość substancji odżywczych czy obecność zanieczyszczeń. Używanie średnich laboratoryjnych jest zgodne z normami takimi jak ISO 17025, które określają wymagania dotyczące kompetencji laboratoriów badawczych oraz poprawności i wiarygodności wyników. W praktyce, stosowanie średnich laboratoryjnych pozwala na lepsze zrozumienie i kontrolę procesów produkcyjnych oraz zwiększa pewność co do jakości finalnych produktów.

Pytanie 9

Odczynnik, który nie został wykorzystany, należy zutylizować zgodnie z informacjami zawartymi na etykiecie

A. w kwietniu 2017 roku
B. 13 maja 2017 roku
C. w czerwcu 2017 roku
D. 5 maja 2017 roku
Wybór daty z maja czy kwietnia 2017 roku jest błędny, ponieważ sugeruje zakończony okres użyteczności odczynnika, co może prowadzić do niebezpiecznych sytuacji w laboratoriach. Używanie odczynników po wskazanych datach ma negatywne skutki, w tym zmniejszoną efektywność i dokładność wyników badań. Dobrą praktyką w laboratoriach jest regularne przeglądanie zapasów odczynników i usuwanie tych, które osiągnęły swoje daty ważności. Na przykład, odczynniki chemiczne mogą podlegać degradacji na skutek czynników zewnętrznych, takich jak światło, temperatura czy wilgoć, co z kolei wpływa na ich właściwości chemiczne. Utylizacja niezużytych odczynników powinna być zgodna z wytycznymi organizacji ochrony środowiska oraz lokalnymi regulacjami prawnymi. Ignorowanie tych zasad prowadzi do ryzykownych praktyk, które mogą zagrażać zdrowiu i życiu pracowników, a także prowadzić do kontaminacji środowiska. Ponadto, nieprzestrzeganie procedur dotyczących utylizacji może skutkować sankcjami prawno-administracyjnymi. Należy również podkreślić, że każda decyzja o utylizacji powinna być oparta na obiektywnej analizie stanu odczynnika oraz jego potencjalnych konsekwencji dla badań oraz bezpieczeństwa operacyjnego laboratorium.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. odprowadzać bezpośrednio do kanalizacji.
B. zniszczyć poprzez zastosowanie odpowiednich procesów.
C. połączyć z ziemią okrzemkową i przekazać do utylizacji.
D. poddać recyklingowi w celu odzyskania rozpuszczalnika.
Unieszkodliwienie odpadów z rozpuszczalników organicznych poprzez jakieś reakcje chemiczne może brzmieć fajnie, ale w przypadku tych z dużą zawartością rozpuszczalnika, jak benzen czy aceton, to jest mało efektywne i wręcz niebezpieczne. Recykling jest lepszą opcją. Chemiczne reakcje często są skomplikowane i kosztowne, a do tego mogą generować dodatkowe odpady i szkodliwe emisje. Mieszanie tych odpadów z ziemią okrzemkową też nie jest dobrym rozwiązaniem, bo to może prowadzić do zanieczyszczenia gleby i wód gruntowych, co z kolei narusza przepisy ochrony środowiska. Odprowadzanie ich do kanalizacji to totalna głupota, bo niesie ze sobą poważne problemy ekologiczne i prawne. Te odpady są niebezpieczne, więc trzeba z nimi ostrożnie postępować, żeby nie zaszkodzić zdrowiu ludzi i środowisku. Dlatego ważne jest, żeby trzymać się wytycznych dotyczących recyklingu i przepisów prawnych.

Pytanie 13

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. wlew.
B. gorąco.
C. zimno.
D. wylew.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 14

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu propylowego
B. glikolu etylowego
C. glicerolu
D. glicyny
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 15

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel, trójkąt ceramiczny, krystalizator.
B. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
C. tygiel, siatkę grzewczą, eksykator.
D. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 16

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. podgrzewanie roztworu do wrzenia
B. dekantację bez sączenia
C. suszenie roztworu w suszarce laboratoryjnej
D. sączenie przez sączek o drobnych porach lub filtr membranowy
Wiele osób błędnie zakłada, że samo podgrzewanie roztworu do wrzenia rozwiąże problem zawiesin. W praktyce jednak podgrzanie może powodować rozpuszczenie niektórych substancji, lecz zupełnie nie usuwa cząstek stałych – a wręcz czasem prowadzi do ich agregacji lub wytrącania nowych osadów, zwłaszcza w złożonych mieszaninach. To klasyczny błąd myślowy: myślimy, że ciepło „załatwi sprawę”, tymczasem w spektrofotometrii nawet drobne cząstki potrafią zaburzyć pomiar, a wrzenie nic tu nie zmieni. Z kolei dekantacja bez sączenia może być dobra do oddzielenia grubego osadu od cieczy, ale nie ma szans, żeby usunąć bardzo drobne zawiesiny czy koloidy – one po prostu zostają w roztworze i skutecznie zniekształcają wynik spektrofotometryczny. W praktyce laboratoryjnej dekantację stosuje się raczej jako etap wstępny, a nie ostateczny. Suszenie roztworu w suszarce laboratoryjnej to już zupełne nieporozumienie w tym kontekście – ta technika służy do odparowania rozpuszczalnika i uzyskania suchej pozostałości, a nie do oczyszczania roztworu z zawiesin. W dodatku po wysuszeniu nie mamy już roztworu, tylko suchą masę, więc nie przeprowadzimy spektrofotometrii. Często spotykam się z myśleniem, że każda operacja laboratoryjna „coś daje”, ale tutaj tylko filtracja przez sączek lub filtr membranowy zapewnia skuteczne oczyszczenie roztworu do pomiaru spektrofotometrycznego. Pozostałe metody są nieefektywne lub wręcz prowadzą do utraty próbki albo zafałszowania wyniku.

Pytanie 17

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,025 g
B. 0,215 g
C. 0,251 g
D. 2,510 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 18

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. światła
B. tlenu
C. ciepła
D. powietrza
Przechowywanie różnych substancji chemicznych, jak tlenek fosforu(V), to nie jest prosta sprawa i trzeba na to zwracać uwagę. Odpowiedzi, które mówią, że powinien być trzymany bez dostępu do ciepła, tlenu czy światła, mogą się wydawać słuszne, ale nie biorą pod uwagę najważniejszych cech tlenku fosforu(V). Ten związek nie reaguje jakoś mocno z tlenem, a jego stabilność nie jest zagrożona przez światło czy tlen. Oczywiście, w skrajnych warunkach nadmiar ciepła może prowadzić do rozkładu, ale kluczowe jest to, że wilgoć jest największym zagrożeniem. Kiedy P2O5 jest na działanie powietrza, zaczyna wciągać wodę, co prowadzi do powstawania kwasu fosforowego, a to z kolei może zmienić jego właściwości chemiczne i fizyczne. Warto to wszystko zrozumieć, gdy mówimy o składowaniu substancji chemicznych i jak ich używać efektywnie w różnorodnych procesach. Dążenie do dobrych warunków przechowywania to klucz do sukcesu, bo w praktyce chemicznej unikanie wilgoci przy substancjach higroskopijnych jest mega ważne.

Pytanie 19

Rozpuszczalność siarczanu(VI) potasu przy temperaturze 30oC wynosi 13 g na 100 g wody. Jaką masę tego związku należy dodać do wody, aby uzyskać 500 g roztworu nasyconego?

A. 65,0 g
B. 52,0 g
C. 57,5 g
D. 74,4 g
Wybór innej odpowiedzi może wynikać z nieporozumienia w zakresie obliczeń dotyczących rozpuszczalności oraz stężenia roztworu. Zrozumienie tego zagadnienia wymaga uwzględnienia kluczowych zasad chemii, a zwłaszcza proporcji, które rządzą rozpuszczalnością substancji. Na przykład, jeżeli ktoś wybrał masę 65,0 g, mógł błędnie założyć, że całkowita masa roztworu równa się sumie masy rozpuszczonego solutu i masy wody, ale nie uwzględnił faktu, że masa wody musi być większa, aby osiągnąć nasycenie. Osoby, które wybierają 52,0 g, mogą myśleć, że wystarczająca ilość soli została dodana, nie zdając sobie sprawy z tego, że nie osiągną one wymaganej nasycenia roztworu. Dodatkowo, wybór 74,4 g jest również niepoprawny, ponieważ przekracza to ilość siarczanu, która mogłaby rozpuścić się w 500 g roztworu w temp. 30°C, co prowadzi do nadmiaru substancji rozpuszczonej, a tym samym do błędnych wniosków dotyczących stężenia. W związku z tym, kluczowe jest zrozumienie proporcji w kontekście rozpuszczalności oraz umiejętność przeprowadzania obliczeń, aby prawidłowo obliczać ilości składników potrzebnych do uzyskania właściwego roztworu nasyconego. Edukacja w obszarze chemii jest kluczowa, aby unikać typowych błędów i wprowadzać precyzyjne dane do praktyki laboratoryjnej.

Pytanie 20

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 11,2 dm3
B. 22,4 dm3
C. 4,48 dm3
D. 2,24 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 21

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w kolbie miarowej
B. w cylindrze miarowym
C. w zlewce
D. w kolbie stożkowej
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 22

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol

A. 2,50 g stałego NaOH.
B. 0,05 g stałego NaOH.
C. 25,0 g stałego NaOH.
D. 2,00 g stałego NaOH.
Wybór błędnej odpowiedzi wynika z kilku powszechnych błędów w obliczaniach związanych z masami molowymi i stężeniami roztworów. Podejścia takie jak obliczenie masy na podstawie niewłaściwej liczby moli lub pomylenie jednostek objętościowych mogą prowadzić do niepoprawnych wyników. Na przykład, jeśli ktoś odważyłby 2,50 g NaOH, to byłoby to znacznie więcej niż wymagane 2 g. Użytkownik mógł nie zaświadczyć, że przy obliczeniach trzeba stosować odpowiednie wzory oraz przeliczenia, by uzyskać dokładne wyniki. W przypadku opcji 0,05 g również brakuje zrozumienia tematu, ponieważ to wartość zbyt mała w kontekście wymaganej ilości NaOH do przygotowania roztworu o stężeniu 0,2 mola. Stosowanie 25,0 g jest kolejnym przypadkiem, gdzie wyraźnie przekroczono potrzebną masę, co może prowadzić do niebezpiecznych reakcji chemicznych. Obliczanie masy substancji chemicznych wymaga staranności i precyzji, dlatego zawsze należy upewnić się, że wszystkie wartości są odpowiednio przeliczone i stosowane w praktyce. Zrozumienie różnicy pomiędzy molami, masą molową a stężeniem roztworu jest kluczem do poprawnego przygotowania chemikaliów w laboratoriach.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Substancje, które wykorzystuje się do ustalania miana roztworu, to

A. wtórne
B. robocze
C. podstawowe
D. miarowe
Wiele osób myli substancje robocze, wtórne i miarowe z substancjami podstawowymi, co może prowadzić do różnych nieporozumień przy ustalaniu miana roztworu. Substancje robocze to zazwyczaj roztwory, które przygotowujemy w laboratorium i ich jakość oraz stężenie mogą być różne. Użycie takich substancji może prowadzić do błędów w pomiarze, bo nie zawsze mamy pewność, że są one dokładne i stabilne. Substancje wtórne powstają zazwyczaj w procesie syntezy chemicznej lub są pochodnymi substancji podstawowych, więc ich stężenie nie jest tak precyzyjnie określone. Z kolei substancje miarowe, mimo że też używamy ich do pomiarów, nie mają takich samych właściwości jak substancje podstawowe, co może też prowadzić do błędnych wyników. To, co często mylimy, to założenie, że każda substancja w laboratorium jest substancją podstawową, co jest błędnym podejściem do kalibracji i oceny wyników. Żeby mieć wiarygodne i powtarzalne wyniki w analizach chemicznych, musimy naprawdę zrozumieć różnice między tymi substancjami oraz ich zastosowanie w praktyce laboratoryjnej.

Pytanie 25

W chemicznym laboratorium apteczka pierwszej pomocy powinna zawierać

A. leki nasercowe
B. spirytus salicylowy
C. środki opatrunkowe
D. leki przeciwbólowe
Środki opatrunkowe są niezbędnym elementem apteczki pierwszej pomocy w laboratorium chemicznym, ponieważ ich podstawową funkcją jest zabezpieczenie ran oraz ochrona przed zakażeniem. W przypadku wystąpienia urazów, takich jak skaleczenia czy oparzenia, odpowiednie opatrunki umożliwiają szybkie udzielenie pomocy i zmniejszają ryzyko późniejszych powikłań. Na przykład, w sytuacji, gdy pracownik ma do czynienia z chemikaliami, niektóre z nich mogą powodować podrażnienia lub oparzenia. Szybkie zastosowanie opatrunku może złagodzić skutki i przyspieszyć proces gojenia. Dodatkowo, zgodnie z wytycznymi organizacji takich jak OSHA (Occupational Safety and Health Administration) oraz NFPA (National Fire Protection Association), każda przestrzeń robocza w laboratoriach powinna być odpowiednio wyposażona w materiały opatrunkowe, aby zapewnić bezpieczeństwo pracowników. Warto również pamiętać o regularnym przeglądaniu oraz uzupełnianiu apteczki, aby zawsze była gotowa do użycia, gdy zajdzie taka potrzeba.

Pytanie 26

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 2,92 g
B. 5,83 g
C. 5,30 g
D. 2,65 g
Podczas rozwiązywania zadania, można się łatwo pomylić w obliczeniach dotyczących reagentów. Często się zdarza, że ktoś po prostu przyjmuje masę sody potrzebną do reakcji z 2-naftolem na podstawie masy 2-naftolu, nie patrząc na stechiometrię reakcji. Z równania to wiadomo, że na każdy 2 mole 2-naftolu potrzeba 1 mol Na2CO3. Jak się to ignoruje, to może się to skończyć błędami w obliczeniach. Często też pomijany jest nadmiar reagentu, co jest dość powszechnym błędem. W praktyce dodanie nadmiaru zapewnia, że reakcja przebiegnie do końca i zmniejsza ryzyko zostawienia nieprzereagowanych reagentów. Również niektórzy mogą się pomylić przy wyliczaniu masy molowej Na2CO3, co też prowadzi do złych wyników. Ważne, żeby dokładnie obliczyć masę molową i użyć odpowiednich wzorów chemicznych, bo nawet małe błędy tu mogą dać duże różnice w wynikach. W końcu, żeby dobrze to rozwiązać, trzeba aplikować zasady chemiczne i stechiometrię oraz skrupulatnie robić obliczenia.

Pytanie 27

Czego się używa w produkcji z porcelany?

A. szkiełka zegarkowe oraz szalki Petriego
B. moździerze i parowniczki
C. naczynia wagowe oraz krystalizatory
D. zlewki oraz bagietki
Moździerze i parowniczki są przykładami przedmiotów laboratoryjnych wykonanych z porcelany, co wynika z ich właściwości chemicznych oraz strukturalnych. Porcelana jest materiałem odpornym na wysokie temperatury i agresywne chemikalia, co czyni ją idealnym materiałem do produkcji sprzętu laboratoryjnego, który ma kontakt z substancjami chemicznymi. Moździerze służą do rozdrabniania substancji stałych oraz do ich mieszania, a ich gładka powierzchnia pozwala na efektywne przeprowadzanie reakcji chemicznych. Parowniczki, z kolei, są wykorzystywane do odparowywania cieczy, co również wymaga materiału odpornego na działanie wysokiej temperatury oraz na chemikalia. Używanie porcelanowych naczyń w laboratoriach jest zgodne z najlepszymi praktykami, ponieważ minimalizuje ryzyko zanieczyszczenia prób i zapewnia ich wysoką jakość. Dodatkowo, porcelana ma estetyczny wygląd, co może być istotne w laboratoriach, gdzie organizowane są prezentacje lub spotkania naukowe.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Na podstawie danych zawartych w tabeli wskaż, który dodatek należy zastosować, w celu konserwacji próbek wody przeznaczonych do oznaczania jej twardości.

Tabela. Techniki konserwacji próbek wody
Stosowany dodatek
lub technika
Rodzaje próbek, do których dodatek lub technika jest stosowana
Kwas siarkowy(VI)zawierające węgiel organiczny, oleje lub tłuszcze, przeznaczone do oznaczania ChZT, zawierające aminy lub amoniak
Kwas azotowy(V)zawierające związki metali
Wodorotlenek soduzawierające lotne kwasy organiczne lub cyjanki
Chlorek rtęci(II)zawierające biodegradowalne związki organiczne oraz różne formy azotu i fosforu
Chłodzenie w
temperaturze 4°C
zawierające mikroorganizmy, barwę, zapach, organiczne formy węgla, azotu i fosforu, przeznaczone do określenia kwasowości, zasadowości oraz BZT

A. Chlorek rtęci(II).
B. Wodorotlenek sodu.
C. Kwas siarkowy(VI).
D. Kwas azotowy(V).
Kwas azotowy(V) jest powszechnie stosowany w laboratoriach do konserwacji próbek wody, zwłaszcza gdy istnieje potrzeba oznaczania twardości wody. Twardość wody jest głównie spowodowana obecnością kationów wapnia i magnezu, które mogą reagować z zanieczyszczeniami. Kwas azotowy(V) działa jako środek konserwujący, stabilizując próbki i zapobiegając ich degradacji przy jednoczesnym zachowaniu właściwości chemicznych. W praktyce, dodatek tego kwasu pozwala na dłuższe przechowywanie próbek przed analizą, co jest kluczowe dla dokładnych wyników. W standardach laboratoriach analitycznych, takich jak ISO 5667 dotyczący pobierania próbek wody, zaleca się stosowanie odpowiednich środków konserwujących, w tym kwasu azotowego(V), w celu uzyskania rzetelnych wyników analitycznych. Stosowanie tego kwasu w praktyce zapewnia, że próbki zachowują swoją integralność chemiczną, co jest niezbędne do precyzyjnego określenia twardości wody.

Pytanie 32

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. HCl i HNO3 w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 1:3
C. HNO3 i HCl w proporcji objętościowej 3:1
D. H2SO4 i HCl w proporcji objętościowej 3:1
Wybór odpowiedzi, która wskazuje na stosunek HNO3 i HCl w proporcji 3:1, jest mylący. Choć kwasy te rzeczywiście stanowią składniki wody królewskiej, to ich stosunek objętościowy jest kluczowy dla skuteczności tej mieszanki. Stosunek 3:1, z HCl jako głównym składnikiem, zapewnia, że reakcja chemiczna między tymi kwasami przebiega efektywnie, co jest istotne przy rozpuszczaniu metali szlachetnych. Z kolei propozycja użycia H2SO4 w połączeniu z HCl w różnych proporcjach, takich jak 1:3 czy 3:1, jest nieprawidłowa, ponieważ kwas siarkowy (H2SO4) nie jest składnikiem wody królewskiej. W rzeczywistości, H2SO4 ma inne właściwości chemiczne i nie działa synergicznie z HCl w kontekście rozpuszczania metali szlachetnych. Powszechnym błędem jest mylenie tych kwasów, co może prowadzić do niewłaściwego użycia i, co ważniejsze, do niebezpiecznych sytuacji w laboratoriach. Warto zauważyć, że skuteczność wody królewskiej, jako rozpuszczalnika dla metali, wynika z odpowiednich proporcji, które stymulują reakcję chemiczną. Dlatego ważne jest, aby mieć pełne zrozumienie właściwych stosunków oraz zastosowań tych substancji w praktyce laboratoryjnej.

Pytanie 33

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Pominąć etap ważenia przy sporządzaniu roztworu.
B. Zastosować wagę analityczną o dokładności do 0,1 mg.
C. Użyć linijki do określenia objętości substancji.
D. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 34

Zaleca się schładzanie próbek wody transportowanych do laboratorium do temperatury

A. 9±1°C
B. 12±1°C
C. 16±2°C
D. 5±3°C
Odpowiedź 5±3°C jest prawidłowa, ponieważ zgodnie z normami, takimi jak ISO 5667, próbki wody powinny być transportowane w temperaturze, która minimalizuje zmiany ich właściwości chemicznych oraz biologicznych. Obniżenie temperatury próbek do przedziału 2°C – 8°C (5±3°C) pozwala na spowolnienie procesów metabolismu mikroorganizmów oraz chemicznych reakcji, co jest kluczowe dla zachowania autentyczności analizowanych próbek. Przykładowo, w przypadku analizy składu chemicznego wody pitnej, zbyt wysoka temperatura transportu może prowadzić do degradacji związków organicznych lub wzrostu liczby mikroorganizmów, co skutkuje błędnymi wynikami. Dobre praktyki laboratoryjne zalecają także stosowanie odpowiednich kontenerów oraz lodu lub żeli chłodzących w celu utrzymania właściwej temperatury, co jest istotne w kontekście zgodności z wymaganiami prawnymi oraz normami badań środowiskowych.

Pytanie 35

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, statyw, bagietka
B. Zlewka, lejek, waga, bagietka
C. Zlewka, lejek, trójnóg, tygiel
D. Zlewka, waga, tryskawka, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 36

W którym wierszu tabeli podano ilości substancji i wody, potrzebne do sporządzenia 350 g roztworu o stężeniu 7%?

Masa substancjiMasa wody
A.24,5 g350 g
B.24,5 g325,5 g
C.7 g343 g
D.7 g350 g

A. B.
B. D.
C. C.
D. A.
Odpowiedź B jest poprawna, ponieważ została obliczona zgodnie z zasadami dotyczących stężenia roztworów. Stężenie 7% oznacza, że w 100 g roztworu znajduje się 7 g substancji rozpuszczonej. W przypadku 350 g roztworu, masa substancji wynosi 7% z 350 g, co daje 24.5 g. Różnica między masą całkowitą roztworu a masą substancji, czyli 350 g - 24.5 g, daje 325.5 g wody. Takie obliczenia są zgodne z fundamentalnymi zasadami chemii i są powszechnie stosowane w laboratoriach chemicznych, farmaceutycznych i różnych dziedzinach przemysłu, gdzie precyzyjne przygotowanie roztworów jest kluczowe. Zrozumienie obliczeń stężenia roztworów pozwala na dokładne przygotowania roztworów o określonych właściwościach, co jest istotne w procesach analitycznych oraz produkcyjnych.

Pytanie 37

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. chroniące przed substancjami chemicznymi
B. płócienne
C. zwykłe gumowe
D. zapewniające izolację termiczną
Wybór rękawic w laboratoriach jest naprawdę ważny i powinien zależeć od tego, co się tam robi. Rękawice gumowe czy płócienne to nie najlepszy wybór, bo nie dają odpowiedniej ochrony w przypadku obróbki szkła. Gumowe rękawice co prawda chronią przed chemikaliami, ale nie zapewniają izolacji termicznej, co jest ryzykowne przy pracy z gorącym szkłem. Jak ktoś sięgnie po gorący element, to może się mocno poparzyć, a to nieciekawa sprawa. Z płóciennymi rękawicami jest podobnie, bo one w ogóle nie mają właściwości ochronnych przed wysoką temperaturą czy chemikaliami, więc to jeszcze większe ryzyko. Trzeba też pamiętać, że rękawice chemiczne powinno się nosić tylko tam, gdzie jest zagrożenie kontaktu z toksycznymi substancjami, ale przy wysokich temperaturach to nie wystarcza. Ludzie czasem zapominają, że wybierając sprzęt ochronny, trzeba myśleć o specyfice pracy i zagrożeniach, żeby stosować się do najlepszych praktyk i zasad BHP, co na koniec dnia ma chronić ich zdrowie.

Pytanie 38

Podaj kolejność odczynników chemicznych według rosnącego stopnia czystości?

A. Czysty do analizy, chemicznie czysty, czysty spektralnie, czysty
B. Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie
C. Czysty spektralnie, chemicznie czysty, czysty do analizy, czysty
D. Czysty, chemicznie czysty, czysty do analizy, czysty spektralnie
Twoje uszeregowanie odczynników chemicznych jako 'Czysty, czysty do analizy, chemicznie czysty, czysty spektralnie' jest całkiem trafne. To widać, bo pokazuje to, jak rośnie czystość tych substancji. Zaczynając od 'Czysty', to jest taki poziom czystości, który może mieć zanieczyszczenia. Potem mamy 'czysty do analizy' - ta substancja była oczyszczona na tyle, że można ją używać w analizach chemicznych, gdzie te zanieczyszczenia naprawdę mogą namieszać wyniki. 'Chemicznie czysty' to taki poziom, który nie ma zanieczyszczeń chemicznych, więc nadaje się do bardziej wymagających zastosowań. I na koniec, 'czysty spektralnie' oznacza, że dana substancja jest wolna od zanieczyszczeń, które mogą zepsuć analizy spektroskopowe. W laboratoriach chemicznych często korzysta się z takich preparatów do uzyskiwania wiarygodnych wyników. Czyli, jak widać, odpowiednie standardy czystości są mega ważne dla powtarzalności i precyzji w eksperymentach i analizach.

Pytanie 39

Przedstawiony sposób dotyczy pobierania próbki wody do przeprowadzenia badań

Sposób pobierania próbki wody do przeprowadzenia badań:
- próbki pobrać do sterylnych butelek;
- przed przystąpieniem do pobierania wody zdjąć z kurka wszelkie urządzenia, zeskrobać zanieczyszczenia, następnie całkowicie otwierając i zamykając zawór, wielokrotnie płukać;
- metalowy kurek wysterylizować płomieniem, a kurek z tworzywa sztucznego alkoholem etylowym;
- kurek otworzyć do połowy przepływu i spuszczać wodę przez około 2-3 minuty do osiągnięcia stałej temperatury;
- pobrać próbkę wody napełniając butelkę do około ¾ objętości i natychmiast zamknąć korkiem.

A. w celu oznaczenia zawartości rozpuszczonych gazów.
B. mikrobiologicznych.
C. fizykochemicznych.
D. w celu oznaczenia zawartości metali ciężkich.
Odpowiedź wskazująca na badania mikrobiologiczne jest poprawna, ponieważ proces pobierania próbki wody wymaga szczególnej dbałości o sterylność, aby uniknąć zanieczyszczenia mikroorganizmami. W kontekście badań mikrobiologicznych, każde wprowadzenie obcych mikroorganizmów może zafałszować wyniki analizy. Przykładowo, w laboratoriach stosuje się specjalne techniki sterylizacji, takie jak autoklawowanie, aby zapewnić, że wszystkie sprzęty i pojemniki są wolne od patogenów i niespecyficznych mikroorganizmów. Standardy takie jak ISO 17025 określają wymagania dotyczące kompetencji laboratoriów, w tym procedury pobierania próbki wody do badań mikrobiologicznych. W praktyce, jeśli próbka zostanie zanieczyszczona, może to prowadzić do błędnych wyników, co z kolei może mieć poważne konsekwencje dla bezpieczeństwa wody pitnej i zdrowia publicznego.

Pytanie 40

Woda, która została poddana dwukrotnej destylacji, to woda

A. odmineralizowana
B. odejonizowana
C. redestylowana
D. ultra czysta
Woda dwukrotnie destylowana to woda, która została poddana procesowi destylacji dwa razy, co pozwala na usunięcie znacznej większości zanieczyszczeń i rozpuszczonych substancji chemicznych. Dzięki temu uzyskuje się wodę o wysokiej czystości, często określaną mianem wody redestylowanej. Woda redestylowana jest szczególnie cenna w zastosowaniach laboratoryjnych i przemysłowych, gdzie wymagana jest wysoka jakość wody, np. w analizach chemicznych, w produkcji farmaceutyków, czy w zastosowaniach technologicznych, takich jak chłodzenie urządzeń. W kontekście standardów, woda redestylowana spełnia wymagania norm dotyczących czystości wody, takich jak te ustalone przez Farmakopeę. Przykładem jej zastosowania może być przygotowanie roztworów do badań, gdzie obecność nawet minimalnych zanieczyszczeń może wpłynąć na wyniki. Dlatego jej produkcja i wykorzystanie powinny odbywać się zgodnie z najlepszymi praktykami, aby zapewnić najwyższą jakość.