Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 kwietnia 2025 11:37
  • Data zakończenia: 25 kwietnia 2025 12:02

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. przerwanym przewodem pneumatycznym
D. siłownikiem
Wybór odpowiedzi dotyczącej "rozerwanego przewodu pneumatycznego" nie jest właściwy, ponieważ chociaż uszkodzony przewód może prowadzić do niebezpiecznych sytuacji, nie jest on bezpośrednią przyczyną uderzenia. W praktyce takie przypadki są zazwyczaj wynikiem wcześniejszych problemów z instalacją i konserwacją, a nie bezpośrednio związane z eksploatacją układu. Z kolei siłownik jako element wykonawczy, mimo że może generować znaczne siły, stanowi bardziej kontrolowany element układu, który w odpowiednio zaprojektowanych systemach nie powinien stwarzać zagrożenia dla użytkowników. Tłoczysko siłownika również nie jest przyczyną zagrożenia, o ile system jest odpowiednio zabezpieczony. Zastosowanie standardów takich jak ISO 12100, dotyczących bezpieczeństwa maszyn, podkreśla znaczenie analizy ryzyka oraz dostosowania środków ochronnych, aby zapobiec sytuacjom, w których elementy ruchome mogłyby stać się zagrożeniem dla osób w ich otoczeniu. Wiele osób mylnie utożsamia ogólne ryzyko związane z uszkodzeniem elementów układu z bezpośrednim zagrożeniem, co prowadzi do niewłaściwych wniosków. Kluczowe jest zrozumienie, że to zazwyczaj niewłaściwe działania związane z instalacją i konserwacją, a nie same elementy, stają się źródłem zagrożeń.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 1,2 A
B. 3,6 A
C. 0,6 A
D. 15,0 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 6

Przez jaki element manipulatora realizowane są różne operacje manipulacyjne?

A. Silnika
B. Regulatora
C. Sondy
D. Chwytaka
Sonda, silnik i regulator to elementy, które pełnią różne funkcje w systemach automatyzacji, ale nie są bezpośrednio odpowiedzialne za operacje manipulacyjne. Sonda, na przykład, jest używana do pomiaru i detekcji, co oznacza, że zbiera dane o otoczeniu lub obiektach, ale nie wykonuje operacji manipulacyjnych. W kontekście automatyzacji, sondy mogą być stosowane do lokalizacji obiektów lub monitorowania warunków, ale ich rolą nie jest chwytanie czy przenoszenie. Silnik z kolei napędza ruch manipulatora, ale to chwytak jest tym elementem, który bezpośrednio wchodzi w interakcję z obiektami. Regulator natomiast zarządza pracą silnika, kontrolując jego parametry pracy, co może wpływać na precyzję ruchu, lecz nie jest on odpowiedzialny za manipulację samych obiektów. Typowe błędy myślowe, które prowadzą do mylnej percepcji tych elementów, wynikają z niepełnego zrozumienia ich roli w systemie automatyzacji. Użytkownicy często mylą funkcje kontrolne z operacjami manipulacyjnymi, co prowadzi do nieprawidłowych wniosków podczas oceny działania systemów. Właściwe zrozumienie tych różnic jest kluczowe dla efektywnego projektowania i zastosowania technologii automatyzacji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Czarnym
B. Żółtym
C. Niebieskim
D. Brązowym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. zapleczu zakładu pracy.
B. widoczności.
C. zasięgu ręki.
D. pomieszczeniu, gdzie znajduje się stanowisko pracy.
Umieszczanie narzędzi w zasięgu wzroku może wydawać się ok, ale w rzeczywistości to nie wystarcza. Owszem, widzisz narzędzia, ale jeśli są daleko, musisz się przemieszczać, co zwiększa ryzyko kontuzji. Pracownicy często narzekają na ból związany z takim układem. A jak narzędzia są w magazynie, to trzeba tracić czas na ich szukanie, co jest nieefektywne. Czasem pomieszczenia nie są przystosowane do pracy, więc to nie jest idealne rozwiązanie. Współczesna ergonomia zaleca, żeby dobrze rozplanować stanowisko pracy i dostosować je do zadań, co jest zgodne z podejściem lean management i metodyką 5S, które mówią o porządku i ograniczaniu zbędnych ruchów.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. USB
B. RS 485
C. IRDA
D. RS 232
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zmierzyć rezystancję cewki
B. wymienić uszczelkę
C. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
D. wymienić membranę
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 22

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. spływ kondensatu wodnego do najniższego punktu instalacji
B. rozbijanie kropli oleju strumieniem sprężonego powietrza
C. odfiltrowanie cząstek stałych z powietrza
D. rozchodzenie się mgły olejowej w instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 23

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
B. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
C. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
D. oblać dłoń wodą utlenioną i nałożyć opatrunek
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. absorpcją
B. konwekcją
C. desorpcją
D. adsorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 26

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
B. przeprowadzić reanimację poszkodowanego i wezwać pomoc
C. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
D. wezwać pomoc i przeprowadzić sztuczne oddychanie
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 6 wejściach i 4 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 8 wejściach i 6 wyjściach
D. S7-200 o 24 wejściach i 16 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Sprężarka
B. Zawór redukcyjny
C. Smarownica
D. Filtr
Wydaje mi się, że wybranie sprężarki jako części zespołu przygotowania powietrza to trochę nieporozumienie. Sprężarka jest tym, co generuje sprężone powietrze, a zespół przygotowania to trochę inna sprawa, bo chodzi o obróbkę tego powietrza przed jego użyciem w przemyśle. Zawór redukcyjny to kluczowa sprawa, bo reguluje ciśnienie powietrza, co jest niezbędne do prawidłowego działania maszyn. Filtry mają za zadanie usunąć niechciane cząstki i wodę, co jest istotne, żeby nie uszkodzić urządzeń. Smarownice też są ważne, bo nawilżają powietrze, a to potrzebne w systemach, gdzie smarowanie musi być precyzyjne. Wszystkie te elementy są naprawdę częścią przygotowania powietrza, a ich funkcje mają ogromne znaczenie dla efektywności i bezpieczeństwa operacji. Nie można tego bagatelizować, bo złe zarządzanie może prowadzić do awarii.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Aby poprawić efektywność montażu połączeń gwintowych, wykorzystuje się klucze

A. płaskie
B. oczko
C. zapadkowe
D. uniwersalne
Stosowanie kluczy uniwersalnych, oczkowych czy płaskich w kontekście zwiększenia wydajności montażu połączeń gwintowych może być mylące, gdyż każdy z tych typów narzędzi ma swoje ograniczenia, które wpływają na efektywność pracy. Klucze uniwersalne, choć oferują wszechstronność, mogą nie zapewniać odpowiedniego momentu obrotowego i precyzji potrzebnej w aplikacjach wymagających dużej siły. Ich konstrukcja nie zawsze pozwala na łatwe dopasowanie do różnych głowic śrubowych, co może prowadzić do uszkodzenia elementów. Klucze oczkowe natomiast są przeznaczone do dokręcania śrub z główkami sześciokątnymi, ale ich użycie może wymagać częstego przestawiania narzędzia do kolejnych ruchów, co znacząco spowalnia proces. Klucze płaskie, choć również powszechnie stosowane, mają ograniczoną możliwość działania w ciasnych przestrzeniach, co może prowadzić do trudności w pracy w niektórych aplikacjach. Warto zauważyć, że błędne przekonania o uniwersalności tych narzędzi mogą prowadzić do nieefektywności i frustracji w pracy, co może z kolei negatywnie wpływać na czas realizacji projektów oraz jakość montażu. Świadomość tych ograniczeń oraz dobór narzędzi zgodnie z zasadami ergonomii i specyfiki zadania są kluczowe w celu optymalizacji procesów montażowych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. nadprądowy zwłoczny
C. nadnapięciowy zwłoczny
D. różnicowoprądowy
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.