Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 maja 2025 08:45
  • Data zakończenia: 13 maja 2025 08:47

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wskaż tryb operacyjny, w którym komputer wykorzystuje najmniej energii

A. hibernacja
B. gotowość (pracy)
C. uśpienie
D. wstrzymanie
Tryb uśpienia, choć również zmniejsza zużycie energii, nie jest tak efektywny jak hibernacja. W trybie uśpienia komputer pozostaje w stanie aktywności z zachowaną zawartością pamięci RAM, co oznacza, że wymaga ciągłego zasilania, by utrzymać ten stan. To podejście jest przydatne w sytuacjach, gdy użytkownik planuje krótką przerwę, ale w dłuższej perspektywie prowadzi do większego zużycia energii. Gotowość to kolejny tryb, który, podobnie jak uśpienie, nie wyłącza zasilania, co czyni go nieoptymalnym dla dłuższych przerw. Wstrzymanie to stan, który w praktyce nie jest często stosowany jako tryb oszczędzania energii, ponieważ w rzeczywistości nie różni się znacząco od trybu gotowości. Użytkownicy mogą mylnie sądzić, że te tryby są wystarczające dla oszczędzania energii, nie zdając sobie sprawy z ich ograniczeń. Podejmując decyzję o wyborze trybu, ważne jest zrozumienie różnic między nimi oraz ich wpływu na zużycie energii. Zaleca się korzystanie z hibernacji jako najskuteczniejszego rozwiązania dla dłuższych przerw w użytkowaniu, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej.

Pytanie 2

Element płyty głównej, który jest odpowiedzialny za wymianę danych między procesorem a innymi komponentami płyty, to

A. układ chłodzenia
B. chipset
C. pamięć RAM
D. BIOS ROM
Chipset jest naprawdę ważnym elementem płyty głównej. Odpowiada za to, jak różne części komputera ze sobą rozmawiają, na przykład procesor, pamięć RAM czy karty graficzne. Można powiedzieć, że to taki pośrednik, który sprawia, że wszystko działa razem. Weźmy na przykład gry komputerowe - bez chipsetu przesyłanie danych między procesorem a kartą graficzną byłoby chaosem, a przecież każdy chce płynnej grafiki. Chipsety są różne, bo mają różne architektury, co ma potem wpływ na to, jak działają z różnymi procesorami. W branży mamy standardy jak Intel czy AMD, które mówią, jakie chipsety są dostępne i co potrafią. Moim zdaniem, dobrze dobrany chipset to podstawa, żeby cały system działał stabilnie i wydajnie, zwłaszcza gdy korzystamy z aplikacji wymagających sporo mocy obliczeniowej.

Pytanie 3

Program df działający w systemach z rodziny Linux pozwala na wyświetlenie

A. nazwa aktualnego katalogu
B. zawartości katalogu ukrytego
C. tekstu, który odpowiada wzorcowi
D. danych dotyczących dostępnej przestrzeni na dysku
To narzędzie df (disk free) w systemach Unix i Linux jest naprawdę przydatne! Dzięki niemu możesz sprawdzić, ile miejsca zostało na dysku i jak dużo już zajmują pliki. Używa się go z różnymi opcjami, a jednym z najczęściej stosowanych poleceń jest 'df -h', które pokazuje wszystko w przystępnej formie, na przykład w MB czy GB. Fajnie jest wiedzieć, jak wygląda sytuacja z dyskiem, bo to pomaga w planowaniu przestrzeni na różne aplikacje czy pliki. Dobrze jest też robić kopie zapasowe, a to narzędzie pozwala szybciej zauważyć, gdy czegoś brakuje. Generalnie, znajomość tego, co można z tym narzędziem zrobić, jest naprawdę ważna dla zachowania sprawnego działania całego systemu.

Pytanie 4

Jaką funkcję pełni serwer FTP?

A. nadzorowanie sieci
B. udostępnianie plików
C. administracja kontami poczty
D. synchronizacja czasu
Wprowadzenie do tematu serwerów FTP trochę wymaga zrozumienia, że pełnią one dość specyficzne funkcje dotyczące transferu plików. Wybór rzeczy jak monitoring sieci, synchronizacja czasu czy zarządzanie kontami pocztowymi, szczerze mówiąc, nie oddaje całego obrazu tego, co potrafi serwer FTP. Na przykład monitoring sieci to już całkiem inna bajka i dotyczy analizy działania systemów sieciowych przez różne narzędzia, a nie przez serwery FTP. Synchronizacja czasu to coś, co robi się przy użyciu protokołów takich jak NTP, a z FTP w ogóle nie ma to nic wspólnego. No i zarządzanie kontami pocztowymi to sprawa e-maili, więc też nie ma związku z serwerem FTP. Często niewłaściwie oceniamy rolę tych technologii, co prowadzi do złych wniosków o funkcjach serwera FTP. Warto to zrozumieć, bo to właśnie FTP jest stworzony do transferu plików, co czyni go mega przydatnym w aplikacjach potrzebujących dobrej wymiany danych. Musimy dobrze rozumieć protokoły i funkcje systemów, żeby lepiej zarządzać naszą infrastrukturą IT.

Pytanie 5

Sieć, w której funkcjonuje komputer o adresie IP 192.168.100.50/28, została podzielona na 4 podsieci. Jakie są poprawne adresy tych podsieci?

A. 192.168.100.48/27; 192.168.100.52/27; 192.168.100.56/27; 192.168.100.58/27
B. 192.168.100.50/28; 192.168.100.52/28; 192.168.100.56/28; 192.168.100.60/28
C. 192.168.100.48/29; 192.168.100.54/29; 192.168.100.56/29; 192.168.100.58/29
D. 192.168.100.48/30; 192.168.100.52/30; 192.168.100.56/30; 192.168.100.60/30
Podczas analizy pozostałych odpowiedzi, warto zwrócić uwagę na kilka istotnych błędów koncepcyjnych. Odpowiedzi, które wykorzystują maski /29 lub /27, nie są adekwatne do opisanego problemu, ponieważ nie prowadzą do utworzenia czterech odrębnych podsieci z dostępnego zakresu adresów. W przypadku maski /29, każda z podsieci ma 8 adresów (6 użytecznych dla hostów), co oznacza, że w rezultacie można by utworzyć jedynie dwie podsieci z początkowego zakresu 192.168.100.48/28. Z kolei maska /27, która oferuje 32 adresy (30 użytecznych), również nie odpowiada na potrzebę utworzenia czterech podsieci; zamiast tego, prowadziłaby do nieefektywnego wykorzystania dostępnych adresów. Dodatkowo, wszystkie podane odpowiedzi błędnie próbują użyć istniejącego adresu 192.168.100.50/28 jako podstawy do podziału, co jest mylące, ponieważ to prowadzi do nieprawidłowych obliczeń. Kluczowym błędem myślowym jest niezrozumienie, jak właściwie dzielić sieci na mniejsze podsieci, co jest fundamentalną umiejętnością w administracji sieci. Zrozumienie zasad podziału adresów IP oraz efektywnego wykorzystania dostępnych zasobów jest niezmiernie ważne dla inżynierów sieciowych i administratorów, zwłaszcza w kontekście zarządzania dużymi infrastrukturami sieciowymi.

Pytanie 6

Którą kartę rozszerzeń w komputerze przedstawia to zdjęcie?

Ilustracja do pytania
A. telewizyjną (TV)
B. graficzną
C. dźwiękową
D. sieciową
Odpowiedź graficzna wskazuje na mylne rozumienie przeznaczenia karty rozszerzeń. Karty graficzne są odpowiedzialne za renderowanie obrazu i są wyposażone w specjalne porty do podłączenia monitorów takie jak HDMI DVI czy DisplayPort. Mają także zaawansowane układy chłodzenia ze względu na generowane ciepło przez procesor graficzny GPU. Karta telewizyjna TV to rozszerzenie które umożliwia odbiór sygnału telewizyjnego często wyposażona w wejścia antenowe oraz funkcje dekodowania sygnału telewizyjnego. W środowiskach komputerowych służy do odbierania i nagrywania programów telewizyjnych co znacznie różni się od funkcji sieciowych. Karta dźwiękowa natomiast jest przeznaczona do przetwarzania sygnałów audio umożliwiając odtwarzanie i nagrywanie dźwięku. Wyposażone są w porty takie jak jack RCA a także złącza cyfrowe SPDIF. Często integrują wzmacniacze i przetworniki cyfrowo-analogowe DAC aby zapewnić wysoką jakość dźwięku. Wybór niepoprawnych odpowiedzi najczęściej wynika z powierzchownej analizy fizycznej budowy karty a nie jej konkretnego zastosowania. Aby uniknąć takich błędów warto zwrócić uwagę na specyficzne cechy kart jak rodzaj złącz czy obecność charakterystycznych elementów funkcjonalnych. Zrozumienie tych różnic pomoże w dokładnej identyfikacji i wyborze odpowiednich komponentów do określonych potrzeb technicznych w komputerze.

Pytanie 7

Podaj polecenie w systemie Linux, które umożliwia określenie aktualnego katalogu użytkownika.

A. cls
B. path
C. mkdir
D. pwd
Odpowiedzi takie jak 'cls', 'path' czy 'mkdir' są mylące i nie spełniają funkcji identyfikacji bieżącego katalogu roboczego. 'cls' to polecenie używane w systemie Windows, które służy do czyszczenia ekranu terminala, a nie do sprawdzania lokalizacji. Użytkownicy często mylą je z podobnymi poleceniami, co prowadzi do nieporozumień w kontekście systemów Unixowych, w których 'clear' pełni rolę czyszczenia ekranu. Z kolei 'path' w systemach Unixowych nie jest poleceniem, a zmienną środowiskową, która określa zestaw katalogów, w których system operacyjny przeszukuje pliki wykonywalne. Użytkownicy mogą nie zdawać sobie sprawy, że zmiana zmiennej 'PATH' nie wpływa na lokalizację w terminalu, a jedynie definiuje, które foldery są przeszukiwane przy uruchamianiu programów. Natomiast 'mkdir' to polecenie do tworzenia nowych katalogów, co jest całkowicie inną czynnością, niezwiązaną z określaniem bieżącej lokalizacji. Często użytkownicy nowi w systemach Unixowych nie rozumieją różnicy między tymi poleceniami, co prowadzi do frustracji i pomyłek w codziennej pracy z systemem. Kluczowe jest zrozumienie, które polecenia służą do jakich celów, co nie tylko zwiększa efektywność pracy, ale również minimalizuje ryzyko błędów.

Pytanie 8

Jaki jest adres broadcastowy dla sieci posiadającej adres IP 192.168.10.0/24?

A. 192.168.0.0
B. 192.168.10.0
C. 192.168.10.255
D. 192.168.0.255
Wybór adresu 192.168.0.0 jest niepoprawny, ponieważ ten adres oznacza inną sieć. Adres 192.168.0.0 z maską /24 stanowi identyfikator sieci i nie może być użyty jako adres rozgłoszeniowy dla sieci 192.168.10.0. Z tego powodu przejrzystość w zrozumieniu struktury adresacji IP jest kluczowa, zwłaszcza w kontekście organizacji wewnętrznych sieci komputerowych. Adres 192.168.10.0 jest także niewłaściwy jako adres rozgłoszeniowy, ponieważ pełni funkcję adresu identyfikacyjnego tej sieci. Użytkownicy mogą mylnie sądzić, że adresy rozgłoszeniowe są jedynie alternatywą dla adresów hostów, co jest nieprawdziwe. Adres 192.168.0.255 to również mylna odpowiedź, ponieważ adres rozgłoszeniowy tej sieci należy do innej klasy adresów. Każda sieć ma unikalny adres rozgłoszeniowy, dlatego pomyłka w jego określeniu prowadzi do nieefektywnej komunikacji w sieci. Ponadto, błędne zrozumienie zasad maskowania adresów IP może prowadzić do poważnych problemów z konfiguracją sieci, takich jak kolizje adresów i problemy z routingiem. Wiedza na temat struktury adresów IP oraz ich funkcji w sieciach komputerowych jest niezbędna dla wszystkich, którzy zajmują się administracją sieci.

Pytanie 9

W systemie Windows przypadkowo zlikwidowano konto użytkownika, lecz katalog domowy pozostał nietknięty. Czy możliwe jest odzyskanie nieszyfrowanych danych z katalogu domowego tego użytkownika?

A. to osiągalne tylko przy pomocy oprogramowania typu recovery
B. to możliwe za pośrednictwem konta z uprawnieniami administratorskimi
C. to niemożliwe, dane są trwale utracone wraz z kontem
D. to niemożliwe, gdyż zabezpieczenia systemowe uniemożliwiają dostęp do danych
Wielu użytkowników może błędnie sądzić, że dane użytkownika są bezpowrotnie utracone w momencie usunięcia konta, co jest nieprawdziwe. Istnieje kilka czynników, które prowadzą do tego nieporozumienia. Po pierwsze, usunięcie konta użytkownika w Windows nie oznacza automatycznego usunięcia jego katalogu domowego. System operacyjny oddziela te dwa procesy, a katalog domowy użytkownika może pozostać na dysku twardym. W związku z tym, bez dostępu do konta administracyjnego, użytkownik nie ma możliwości przeglądania ani odzyskiwania tych danych, co prowadzi do przekonania, że są one utracone. Innym błędnym założeniem jest myślenie, że dane są zawsze chronione przez systemowe zabezpieczenia. Choć system Windows ma wbudowane mechanizmy ochrony, takie jak uprawnienia dostępu i szyfrowanie, to w przypadku usunięcia konta te mechanizmy nie mają zastosowania, gdyż katalog domowy pozostaje dostępny dla administratora. Ponadto, niektóre narzędzia do odzyskiwania danych mogą być mylnie postrzegane jako jedyne rozwiązanie, mimo że konta administracyjne mogą przywrócić dostęp do plików bez dodatkowych aplikacji. Z tego powodu kluczowe jest zrozumienie, że dostęp do danych jest możliwy przy odpowiednich uprawnieniach, a nie tylko za pomocą specjalistycznych programów.

Pytanie 10

Który z podanych adresów protokołu IPv4 jest adresem klasy D?

A. 10.0.3.5
B. 128.1.0.8
C. 191.12.0.18
D. 239.255.203.1
Wybór adresów 10.0.3.5, 128.1.0.8 oraz 191.12.0.18 jako adresów klasy D jest niepoprawny, ponieważ należą one do innych klas adresowych w protokole IPv4. Adres 10.0.3.5 znajduje się w klasie A, która obejmuje adresy od 0.0.0.0 do 127.255.255.255. Klasa A jest przeznaczona głównie dla dużych organizacji, które potrzebują dużej liczby adresów IP. Z kolei adres 128.1.0.8 to adres klasy B (od 128.0.0.0 do 191.255.255.255), a klasa B jest zazwyczaj wykorzystywana przez średniej wielkości organizacje, które nie potrzebują tak dużej przestrzeni adresowej jak klasa A. Ostatni adres, 191.12.0.18, także należy do klasy B. Typowym błędem jest mylenie klas adresowych i nieznajomość ich przeznaczenia. W praktyce, klasy adresowe mają kluczowe znaczenie dla routingu i efektywnego alokowania zasobów w sieciach komputerowych. Zrozumienie różnic między klasami A, B, C i D jest fundamentalne dla administratorów sieci, ponieważ wpływa na sposób, w jaki sieci są projektowane i zarządzane. Klasa D, przeznaczona dla transmisji multicastowych, ma zupełnie inną funkcję niż klasy A i B, które są skierowane do direkt komunikacji między pojedynczymi hostami.

Pytanie 11

W systemie Linux plik ma przypisane uprawnienia 765. Jakie działania może wykonać grupa związana z tym plikiem?

A. odczytać oraz wykonać
B. odczytać oraz zapisać
C. może jedynie odczytać
D. odczytać, zapisać i wykonać
Wybór odpowiedzi sugerujących różne kombinacje uprawnień dla grupy nie zrozumiał uprawnień ustalonych dla pliku w systemie Linux. Gdy przyjrzymy się uprawnieniom 765, ważne jest, aby zrozumieć, że każda cyfra w tej notacji reprezentuje różne poziomy dostępu. Grupa ma przypisane uprawnienia na poziomie 6, co oznacza, że może odczytywać oraz zapisywać plik, ale nie ma uprawnienia do jego wykonywania. Odpowiedzi, które sugerują, że grupa może tylko odczytać plik, są błędne, ponieważ pomijają możliwość zapisu, co jest kluczowe w kontekście współpracy i zarządzania plikami. Z kolei odpowiedzi, które wskazują na możliwość wykonywania pliku, są mylącą interpretacją, ponieważ uprawnienia do wykonania przysługują jedynie właścicielowi pliku lub innym użytkownikom, w zależności od ich przypisanych uprawnień. Tego rodzaju pomyłki często wynikają z niepełnego zrozumienia systemu uprawnień w Linuxie, który opiera się na binarnej reprezentacji dostępu. Kluczowe jest, aby użytkownicy zdawali sobie sprawę z tego, jak przydzielanie uprawnień wpływa na bezpieczeństwo i dostępność danych, co powinno być podstawą do efektywnego zarządzania plikami w środowisku wieloużytkownikowym.

Pytanie 12

Który z protokołów umożliwia szyfrowanie połączenia?

A. TELNET
B. DHCP
C. SSH
D. DNS
Wybór innych protokołów, takich jak DNS, DHCP czy TELNET, nie zapewnia szyfrowania połączenia, co jest kluczowym aspektem bezpieczeństwa w dzisiejszym świecie cyfrowym. DNS, czyli Domain Name System, jest odpowiedzialny za tłumaczenie nazw domen na adresy IP, ale sam w sobie nie oferuje żadnej formy szyfrowania. Oznacza to, że wszystkie zapytania DNS mogą być narażone na podsłuch i manipulacje, co prowadzi do ataków typu DNS spoofing. DHCP, z kolei, jest protokołem służącym do automatycznego przypisywania adresów IP urządzeniom w sieci. Nie tylko nie szyfruje danych, ale również może być źródłem luk bezpieczeństwa, takich jak ataki DHCP spoofing, które mogą prowadzić do przejęcia kontroli nad ruchem w sieci. TELNET to z kolei protokół służący do zdalnego dostępu do systemów, jednak nie oferuje żadnego rodzaju szyfrowania, co czyni go bardzo niebezpiecznym w użyciu, szczególnie w niezabezpieczonych sieciach. Użytkownicy, którzy korzystają z TELNET, narażają się na ryzyko przechwycenia haseł oraz innych wrażliwych danych, ponieważ wszystkie informacje są przesyłane w postaci tekstu jawnego. W związku z tym, zarówno DNS, DHCP, jak i TELNET są niewłaściwymi wyborami w kontekście ochrony danych przesyłanych w sieci.

Pytanie 13

Graficzny symbol pokazany na ilustracji oznacza

Ilustracja do pytania
A. bramę
B. przełącznik
C. most
D. koncentrator
Koncentrator, znany także jako hub, jest prostym urządzeniem sieciowym, które przesyła pakiety danych do wszystkich podłączonych urządzeń, niezależnie od ich adresu docelowego. Takie działanie prowadzi do większego ruchu sieciowego i potencjalnych kolizji danych, co czyni go mniej efektywnym w porównaniu do przełącznika. Most, czyli bridge, działa na podobnej zasadzie jak przełącznik, ale jest wykorzystywany głównie do łączenia dwóch sieci w jedną. Mosty operują na drugiej warstwie modelu OSI i mogą zmniejszać segmenty sieci, ale ich funkcjonalność jest ograniczona w porównaniu do nowoczesnych przełączników. Brama, czyli gateway, to urządzenie działające na warstwie aplikacji modelu OSI, które umożliwia komunikację między różnymi protokołami i architekturami sieciowymi. Bramki są kluczowe w translacji danych między różnymi systemami, ale nie zarządzają ruchem w sieciach lokalnych jak przełączniki. Częstym błędem jest mylenie tych urządzeń z przełącznikami ze względu na podobne zastosowanie w infrastrukturze sieciowej. Jednakże każde z tych urządzeń pełni odrębną rolę i jest projektowane do specyficznych zadań. Zrozumienie ich różnic i zastosowań jest niezbędne dla efektywnego projektowania i zarządzania nowoczesnymi sieciami komputerowymi.

Pytanie 14

Licencja grupowa na oprogramowanie Microsoft należy do typu

A. OEM
B. GNU
C. MOLP
D. EULA
Odpowiedzi GNU, OEM i EULA dotyczą różnych modeli licencjonowania, ale niestety nie pasują do tego, jak działa grupowa licencja oprogramowania Microsoft. GNU, czyli GNU General Public License, to typ licencji otwartego oprogramowania, w której użytkownicy mogą swobodnie korzystać z oprogramowania, kopiować je, modyfikować i dystrybuować. Wiąże się to z ruchem open-source, przez co nie jest to zgodne z zamkniętymi modelami licencjonowania komercyjnego, jakie ma Microsoft. Jak wybierzesz GNU, to nie dostajesz praw komercyjnych do oprogramowania, co różni je od MOLP. Z kolei OEM, czyli Original Equipment Manufacturer, to taka licencja związana z konkretnym sprzętem; zazwyczaj sprzedawana jest razem z komputerem i nie można jej przenieść na inne urządzenie. Takie licencje OEM są mniej elastyczne niż MOLP. A EULA (End User License Agreement) to umowa między tobą a dostawcą oprogramowania, która określa, jak możesz korzystać z produktu, ale to w sumie nie jest model licencji grupowej, a tylko formalna umowa. Użytkownicy czasem się gubią w tych terminach, bo każda z nich odnosi się do praw używania, ale mają różne zastosowania i ograniczenia, więc można się łatwo pomylić przy wyborze odpowiedniego modelu licencjonowania.

Pytanie 15

Komenda uname -s w systemie Linux służy do identyfikacji

A. wolnego miejsca na dyskach twardych
B. stanu aktualnych interfejsów sieciowych
C. ilości dostępnej pamięci
D. nazwa jądra systemu operacyjnego
Polecenie 'uname -s' w systemie Linux jest używane do wyświetlania nazwy jądra systemu operacyjnego. Jest to istotna informacja, ponieważ nazwa jądra pozwala zidentyfikować, z jakim systemem operacyjnym mamy do czynienia, co jest szczególnie przydatne w kontekście zarządzania systemem i rozwiązywania problemów. Przykładowo, w przypadku otrzymania zgłoszenia dotyczącego błędu w aplikacji, znajomość jądra może pomóc w określeniu, czy problem jest specyficzny dla danej wersji systemu. W praktyce, administratorzy systemu często wykorzystują polecenie 'uname' w skryptach automatyzujących, aby określić, na jakim systemie operacyjnym działają, co pozwala na dynamiczne dostosowanie działań w zależności od środowiska. Warto zwrócić uwagę, że 'uname' może być używane z innymi opcjami, takimi jak '-a', aby uzyskać bardziej szczegółowe informacje o systemie, w tym wersję jądra, datę kompilacji i architekturę. Z tego względu, zrozumienie funkcji polecenia 'uname' jest kluczowe dla administratorów systemów oraz programistów zajmujących się rozwijaniem oprogramowania dla systemów operacyjnych.

Pytanie 16

Która z wymienionych czynności nie jest związana z personalizacją systemu operacyjnego Windows?

A. Wybór domyślnej przeglądarki internetowej
B. Ustawienie wielkości partycji wymiany
C. Dostosowanie ustawień dotyczących wyświetlania pasków menu i narzędziowych
D. Zmiana koloru tła pulpitu na jeden lub kilka przenikających się odcieni
Ustawienie koloru tła pulpitu czy jakieś opcje dotyczące pasków narzędziowych rzeczywiście mają spory wpływ na to, jak działa interfejs Windowsa. Często ludzie myślą, że to mało ważne zmiany, ale one są kluczowe w codziennym użytkowaniu. Na przykład, zmiana koloru tła pulpitu może naprawdę poprawić estetykę i wygodę patrzenia na ekran, co jest istotne, jak siedzimy przy komputerze przez dłuższy czas. Użytkownicy mogą dostosować różne rzeczy pod siebie, co może podnieść ich produktywność. Ustawienia pasków menu też sprawiają, że łatwiej jest dostać się do często używanych funkcji, co zwiększa wygodę. Wybór domyślnej przeglądarki też jest ważny, bo wpływa na bezpieczeństwo i komfort korzystania z neta. Moim zdaniem mylenie tych rzeczy z ustawieniami wydajności, jak partycja wymiany, to błąd; te elementy są naprawdę fundamentem personalizacji i mają spore znaczenie w codziennym użytkowaniu systemu.

Pytanie 17

Aby określić rozmiar wolnej oraz zajętej pamięci RAM w systemie Linux, można skorzystać z polecenia

A. cat /proc/meminfo
B. tail -n 10 /var/log/messages
C. lspci | grep -i raid
D. dmidecode -t baseboard
Polecenie 'cat /proc/meminfo' jest jedną z podstawowych metod monitorowania pamięci w systemie Linux. Plik '/proc/meminfo' zawiera szczegółowe informacje na temat wykorzystania pamięci, w tym ilość wolnej pamięci, pamięci zajętej, pamięci wymiany (swap) oraz buforów i pamięci podręcznej. Używanie tego polecenia jest zgodne z dobrymi praktykami administracyjnymi, ponieważ pozwala na szybkie uzyskanie informacji o stanie pamięci, co jest kluczowe dla diagnozowania problemów z wydajnością systemu. Na przykład, jeśli podczas monitorowania zauważysz, że wykorzystanie pamięci operacyjnej zbliża się do 100%, może to wskazywać na konieczność optymalizacji aplikacji działających na serwerze, zwiększenia pamięci RAM lub przeprowadzenia analizy procesów consuming memory. Rekomenduje się również regularne sprawdzanie tych danych w celu utrzymania stabilności systemu oraz planowania przyszłych zasobów. W kontekście standardów branżowych, monitorowanie pamięci powinno być częścią rutynowych audytów systemu operacyjnego.

Pytanie 18

Ikona błyskawicy widoczna na ilustracji służy do identyfikacji złącza

Ilustracja do pytania
A. Thunderbolt
B. Micro USB
C. DisplayPort
D. HDMI
Złącze HDMI, choć szeroko stosowane w telewizorach i monitorach do przesyłania obrazu i dźwięku, nie jest oznaczane symbolem błyskawicy. HDMI koncentruje się bardziej na przesyle multimediów i nie oferuje tak wielkiej przepustowości i wszechstronności jak Thunderbolt. Micro USB, choć było popularnym standardem do ładowania i transferu danych w urządzeniach mobilnych, jest powoli zastępowane przez USB-C i nigdy nie było oznaczane symbolem błyskawicy. Micro USB nie obsługuje również funkcji wideo i jest ograniczone pod względem szybkości przesyłu danych w porównaniu z Thunderbolt. DisplayPort, używany głównie do przesyłania sygnału wideo, nie jest oznaczany symbolem błyskawicy, a jego główną funkcją jest transmisja obrazu i dźwięku w wysokiej jakości. Błąd może wynikać z mylenia funkcji tego złącza ze złączem Thunderbolt, które integruje jego funkcje, ale jest oddzielnie oznaczane własnym, charakterystycznym symbolem. Symbol błyskawicy jest zastrzeżony dla Thunderbolt i jest używany do oznaczania jego dużej przepustowości i wszechstronności w przesyłaniu danych oraz obrazu, co jest jego główną cechą wyróżniającą.

Pytanie 19

W systemie Linux można uzyskać kopię danych przy użyciu komendy

A. split
B. dd
C. restore
D. tac
Polecenie 'dd' jest jednym z najbardziej wszechstronnych narzędzi w systemie Linux do kopiowania danych oraz tworzenia obrazów dysków. Działa na poziomie blokowym, co oznacza, że może kopiować dane z jednego miejsca do innego, niezależnie od systemu plików. Przykładem użycia 'dd' może być tworzenie obrazu całego dysku, na przykład: 'dd if=/dev/sda of=/path/to/image.img bs=4M', gdzie 'if' oznacza 'input file' (plik wejściowy), 'of' oznacza 'output file' (plik wyjściowy), a 'bs' oznacza rozmiar bloku. Narzędzie to jest również używane do naprawy systemów plików oraz przywracania danych. W kontekście dobrych praktyk, 'dd' wymaga ostrożności, ponieważ błędne użycie (np. podanie niewłaściwego pliku wyjściowego) może prowadzić do utraty danych. Użytkownicy powinni zawsze upewnić się, że wykonują kopie zapasowe przed przystąpieniem do operacji 'dd', a także rozważyć wykorzystanie opcji 'status=progress' dla monitorowania postępu operacji.

Pytanie 20

Najlepszym sposobem na zabezpieczenie domowej sieci Wi-Fi jest

A. stosowanie szyfrowania WEP
B. zmiana nazwy SSID
C. stosowanie szyfrowania WPA-PSK
D. zmiana adresu MAC routera
Zmiana adresu MAC rutera, chociaż może wydawać się użytecznym środkiem zabezpieczającym, nie stanowi skutecznej metody ochrony. Adres MAC jest unikalnym identyfikatorem przypisanym do karty sieciowej i zmiana go nie sprawi, że sama sieć stanie się bardziej bezpieczna. Techniki takie jak spoofing pozwalają hakerom na łatwe przechwycenie i podmianę adresów MAC, co umniejsza skuteczność tej metody. Zmiana identyfikatora SSID, który jest nazwą sieci, również nie zapewnia prawdziwej ochrony. Choć ukrycie SSID może zmniejszyć widoczność sieci dla potencjalnych intruzów, nie zapewnia to żadnego szyfrowania ani autoryzacji, co czyni sieć nadal podatną na ataki. Co więcej, zmienić SSID można w prosty sposób, a zaawansowani użytkownicy mogą łatwo go odkryć. Szyfrowanie WEP, pomimo że było kiedyś powszechnie stosowane, jest obecnie uznawane za niebezpieczne. Algorytmy WEP są łatwe do złamania z wykorzystaniem dostępnych narzędzi, co prowadzi do nieautoryzowanego dostępu do sieci. Wszystkie te metody są oparte na błędnym myśleniu, które polega na przekonaniu, że zmiany w konfiguracji mogą zastąpić solidne zabezpieczenia. Skuteczne zabezpieczenie sieci Wi-Fi wymaga zastosowania zaawansowanych standardów szyfrowania, takich jak WPA-PSK, które zapewniają odpowiednią ochronę przed wieloma rodzajami ataków.

Pytanie 21

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. zaciskania wtyków RJ45
B. ściągania izolacji z przewodu
C. instalacji przewodów w złączach LSA
D. weryfikacji poprawności połączenia
Narzędzie przedstawione na rysunku to narzędzie do instalacji przewodów w złączach LSA znane również jako narzędzie Krone. Jest ono powszechnie stosowane w telekomunikacji oraz instalacjach sieciowych do zakończenia przewodów w panelach krosowych lub gniazdach. Narzędzie to umożliwia wciśnięcie przewodów w złącza IDC (Insulation Displacement Connector) bez konieczności zdejmowania izolacji co zapewnia szybkie i niezawodne połączenie. Wciśnięcie przewodu powoduje przemieszczenie izolacji co skutkuje bezpośrednim kontaktem przewodnika z metalowymi stykami. Dzięki temu technologia LSA zapewnia trwałe i stabilne połączenia bez ryzyka uszkodzenia przewodów. Narzędzie to posiada również funkcję odcinania nadmiaru przewodu co jest istotne dla utrzymania porządku w stosowanych instalacjach. Stosowanie narzędzi LSA jest standardem w branży co wynika z ich precyzji oraz wydajności. Wielu specjalistów uznaje je za niezbędny element wyposażenia podczas pracy z systemami telekomunikacyjnymi co potwierdza ich niezastąpioną rolę w procesie instalacji.

Pytanie 22

W systemie Linux komenda usermod -s umożliwia dla danego użytkownika

A. zmianę jego katalogu domowego
B. przypisanie go do innej grupy
C. zablokowanie jego konta
D. zmianę jego powłoki systemowej
Zablokowanie konta użytkownika w systemie Linux realizuje się za pomocą polecenia usermod -L lub passwd -l, które uniemożliwiają logowanie się danemu użytkownikowi. Wybierając te komendy, administrator skutecznie zastrzega konto, co jest przydatne w sytuacjach, gdy użytkownik nie powinien mieć dostępu do systemu, na przykład w przypadku zwolnienia pracownika. Przypisanie użytkownika do nowej grupy odbywa się przez użycie opcji -G w poleceniu usermod, co pozwala na zarządzanie uprawnieniami i dostępem w systemie. Warto również zauważyć, że zmiana katalogu domowego użytkownika jest realizowana za pomocą opcji -d w tym samym poleceniu, co pozwala na przeniesienie użytkownika w inne miejsce w strukturze systemu plików, co może być użyteczne w różnych scenariuszach administracyjnych, takich jak reorganizacja zasobów. Błędne podejście do interpretacji opcji -s prowadzi do nieporozumień o funkcjonalności tego polecenia, co jest powszechnym błędem wśród osób mniej doświadczonych w administracji systemami Linux. Dlatego kluczowe jest zrozumienie kontekstu, w jakim używamy różnych poleceń oraz ich opcji, aby skutecznie i bezpiecznie zarządzać systemem operacyjnym.

Pytanie 23

W systemie binarnym liczba 3FC7 będzie zapisana w formie:

A. 11111111000111
B. 0011111111000111
C. 10111011110111
D. 01111111100011
Wiele osób popełnia błędy przy konwersji z systemu szesnastkowego na binarny, co może prowadzić do nieprawidłowych wyników. Często mylnie przekształcają cyfry szesnastkowe, traktując je jako pojedyncze liczby, zamiast przeliczać je na odpowiadające im bity. Na przykład, w przypadku pierwszej opcji odpowiedzi, 01111111100011, można zauważyć, że nie uwzględnia ona pierwszej cyfry szesnastkowej poprawnie; połączenie binarnego przedstawienia cyfra F, która wynosi 1111, z innymi cyferkami nie daje prawidłowego wyniku. Podobnie w drugiej opcji 11111111000111, gdzie również dochodzi do zafałszowania w wyniku błędnej konwersji cyfry C oraz braku odpowiedniego zrozumienia struktury liczby szesnastkowej. Ostatnia opcja, 0011111111000111, jest nieprawidłowa, gdyż nie bierze pod uwagę pełnej konwersji z systemu szesnastkowego. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, często obejmują próbę przekształcenia całej liczby na raz bez rozbicia jej na poszczególne cyfry. Warto zwrócić uwagę na standardowe praktyki konwersji oraz ćwiczyć różne przykłady, aby nabrać biegłości w tym zakresie. Zrozumienie systemów liczbowych jest kluczowe dla analizy danych oraz programowania, co czyni tę wiedzę niezbędną dla każdego profesjonalisty w branży IT.

Pytanie 24

Jakie zadanie pełni router?

A. eliminacja kolizji
B. konwersja nazw na adresy IP
C. ochrona sieci przed atakami zewnętrznymi i wewnętrznymi
D. przekazywanie pakietów TCP/IP z sieci źródłowej do docelowej
Chociaż eliminowanie kolizji, tłumaczenie nazw na adresy IP oraz zabezpieczanie sieci są ważnymi aspektami zarządzania sieciami komputerowymi, nie są one bezpośrednio związane z podstawową rolą routera. Eliminowanie kolizji jest zadaniem przełączników sieciowych, które operują na warstwie drugiej modelu OSI, zarządzając ruchem danych w lokalnych sieciach i zapewniając, że pakiety nie kolidują ze sobą podczas przesyłania. Z kolei tłumaczenie nazw na adresy IP jest funkcją serwerów DNS, które przekształcają czytelne dla człowieka domeny internetowe na odpowiednie adresy IP, umożliwiając urządzeniom łatwiejsze nawiązywanie połączeń. Zabezpieczenie sieci to natomiast głównie zadanie zapór sieciowych i systemów IDS/IPS, które monitorują i chronią sieć przed potencjalnymi zagrożeniami z zewnątrz i wewnątrz. W praktyce, mylenie zadań routerów z innymi funkcjami sieciowymi może prowadzić do nieefektywnego projektowania architektury sieci, co może skutkować problemami z wydajnością i bezpieczeństwem. Zrozumienie ról różnych urządzeń w sieci jest kluczowe dla skutecznego zarządzania infrastrukturą IT.

Pytanie 25

Podczas uruchamiania komputera ukazuje się komunikat "CMOS checksum error press F1 to continue press DEL to setup". Naciśnięcie klawisza DEL skutkuje

A. przejściem do ustawień systemu Windows
B. wejściem do BIOS-u komputera
C. usunięciem pliku setup
D. przeszukiwaniem zawartości pamięci CMOS
Jak wybierzesz opcję do BIOS-u, klikasz DEL, to dostajesz dostęp do takich podstawowych ustawień sprzętu. BIOS, czyli Basic Input/Output System, jest odpowiedzialny za to, żeby komputer się uruchomił i wszystko zaczęło działać. Jeśli zobaczysz komunikat o błędzie, na przykład "CMOS checksum error", to znaczy, że coś poszło nie tak z pamięcią CMOS, która trzyma wszystkie ustawienia BIOS-u, jak data czy godzina. Możesz tam ustawić datę, godzinę i inne ważne rzeczy, na przykład kolejność rozruchu. Jak komputer nie widzi twojego dysku twardego, to właśnie w BIOS-ie można to naprawić, zmieniając pewne ustawienia. Znajomość BIOS-u jest mega ważna, bo dzięki temu możesz lepiej zarządzać swoim sprzętem i rozwiązywać różne problemy. Pamiętaj też, że sposób dostępu do BIOS-u może się różnić, zależnie od producenta płyty głównej, a informacje na ten temat znajdziesz w dokumentacji.

Pytanie 26

Jaka jest podstawowa funkcja protokołu SMTP?

A. Przeglądanie stron WWW
B. Przesyłanie plików
C. Wysyłanie wiadomości e-mail
D. Odbieranie wiadomości e-mail
Odpowiedź wskazująca na odbieranie wiadomości e-mail jako funkcję SMTP wynika z mylnego zrozumienia ról protokołów pocztowych. SMTP jest odpowiedzialny za wysyłanie wiadomości, podczas gdy odbieranie obsługują protokoły takie jak POP3 (Post Office Protocol) i IMAP (Internet Message Access Protocol). POP3 pobiera wiadomości z serwera i często usuwa je po pobraniu, natomiast IMAP umożliwia dostęp do wiadomości bez ich przenoszenia z serwera. Popularnym błędem jest także przypisywanie SMTP funkcji przesyłania plików. Tego typu zadania są realizowane przez protokoły takie jak FTP (File Transfer Protocol) czy SFTP (Secure File Transfer Protocol), które są zoptymalizowane do przesyłu plików z serwera na serwer. Natomiast przeglądanie stron WWW to domena protokołu HTTP (Hypertext Transfer Protocol), który umożliwia komunikację między przeglądarką internetową a serwerem WWW. HTTP jest odpowiedzialny za przesyłanie dokumentów hipertekstowych, które są podstawą stron internetowych. Zrozumienie tych różnic jest kluczowe w pracy z sieciami komputerowymi, ponieważ pozwala na skuteczne zarządzanie ruchem danych i jego poprawne kierowanie. Każdy z tych protokołów ma specyficzne zastosowanie i jest zoptymalizowany pod kątem zadań, do których został stworzony.

Pytanie 27

Jaką maksymalną ilość rzeczywistych danych można przesłać w ciągu 1 sekundy przez łącze synchroniczne o wydajności 512 kbps, bez użycia sprzętowej i programowej kompresji?

A. W przybliżeniu 5 kB
B. Ponad 64 kB
C. W przybliżeniu 55 kB
D. Więcej niż 500 kB
Wybór innych odpowiedzi, takich jak "Ponad 500 kB" czy "Ponad 64 kB", wynika z błędnego zrozumienia podstawowych zasad przesyłu danych w sieciach komputerowych. Przede wszystkim, warto zauważyć, że łącze o przepustowości 512 kbps odnosi się do ilości bitów, które mogą być przesyłane w ciągu jednej sekundy, a nie bezpośrednio do bajtów. 1 kilobit to 1/8 kilobajta, zatem konwersja na bajty jest kluczowa dla uzyskania właściwego wyniku. Stąd wynika, że prawidłowe przeliczenie daje 64 kB, ale to tylko teoretyczna wartość. W praktyce, protokoły sieciowe wprowadzają dodatkowe obciążenie, co oznacza, że rzeczywista ilość przesyłanych danych będzie niższa. Często występującym błędem jest niebranie pod uwagę overheadu związanego z nagłówkami pakietów czy różnymi protokołami komunikacyjnymi. Na przykład, w protokole TCP/IP, część pasma jest wykorzystywana na nagłówki, co wpływa na rzeczywistą przepustowość. W rezultacie, odpowiadając na pytanie, możemy stwierdzić, że przesyłanie danych na poziomie 500 kB czy 64 kB bez uwzględnienia strat przynosi błędne wnioski. Kluczowe jest zrozumienie, że praktyczne zastosowania w sieciach komputerowych wymagają uwzględnienia strat związanych z protokołami, co przyczynia się do bardziej realistycznych prognoz przesyłania danych.

Pytanie 28

Jaką wartość liczbową ma BACA zapisaną w systemie heksadecymalnym?

A. 1100101010111010 (2)
B. 135316 (8)
C. 1011101011001010 (2)
D. 47821 (10)
Zgadza się! Twoja odpowiedź 1011101011001010 w systemie binarnym jest trafna, bo liczba BACA w heksadecymalnym odpowiada tej samej wartości w binarnym. Jak to działa? Wystarczy przetłumaczyć każdy znak z heksadecymalnego na binarny. Na przykład: B to 1011, A to 1010, C to 1100 i A znowu to 1010. Łącząc to wszystko dostajemy 1011101011001010. W praktyce, zrozumienie konwersji między systemami liczbowymi jest mega ważne, zwłaszcza w programowaniu i inżynierii komputerowej, bo to pomaga w zarządzaniu danymi w pamięci czy komunikacji między systemami. Dobrze jest też znać standardy, jak np. IEEE 754, które pokazują, jak reprezentować liczby zmiennoprzecinkowe. Wiedza na ten temat naprawdę wspiera lepsze zarządzanie danymi oraz optymalizację algorytmów, co jest kluczowe, gdy chodzi o precyzyjne obliczenia.

Pytanie 29

Aby przywrócić dane z sformatowanego dysku twardego, konieczne jest zastosowanie programu

A. CDTrack Rescue
B. Acronis True Image
C. CD Recovery Toolbox Free
D. RECUVA
Odzyskiwanie danych z sformatowanego dysku twardego wymaga specjalistycznych narzędzi i programów, jednak nie wszystkie z wymienionych opcji są odpowiednie w tym kontekście. CDTrack Rescue to program, który koncentruje się na odzyskiwaniu danych z uszkodzonych nośników CD i DVD, a nie na dyskach twardych, co czyni go nieodpowiednim w tym przypadku. Acronis True Image jest narzędziem, które służy głównie do tworzenia obrazów dysków oraz kopii zapasowych, a jego funkcjonalność nie obejmuje bezpośredniego odzyskiwania danych z sformatowanych dysków. Choć może być użyteczne w kontekście ochrony danych, to nie jest najlepszym wyborem przy odzyskiwaniu danych po formatowaniu. Z kolei CD Recovery Toolbox Free koncentruje się na odzyskiwaniu danych z nośników CD i DVD, co również nie odnosi się do problematyki dysków twardych. Często błędne rozumienie ról tych programów wynika z braku wiedzy na temat ich specyfikacji i zastosowań. Kluczowe w wyborze odpowiedniego narzędzia jest zrozumienie, że każdy program ma swoje unikalne funkcje i ograniczenia, a skuteczne odzyskiwanie danych wymaga zastosowania narzędzi zaprojektowanych specjalnie do danego rodzaju nośnika oraz sytuacji, w jakiej się znajdujemy.

Pytanie 30

Adres komórki pamięci został podany w kodzie binarnym 1110001110010100. Jak zapisuje się ten adres w systemie szesnastkowym?

A. 493
B. 7E+092
C. E394
D. D281
Niepoprawne odpowiedzi wynikają z nieprawidłowej konwersji adresu binarnego na system szesnastkowy. Jednym z typowych błędów jest pomijanie kluczowego kroku, jakim jest grupowanie bitów w zestawy po cztery. Na przykład, odpowiedzi takie jak 7E+092 sugerują błędne użycie notacji naukowej, co jest całkowicie nieadekwatne w kontekście zapisywania adresów pamięci. W notacji szesnastkowej nie wykorzystuje się operatora '+' ani nie ma potrzeby stosowania notacji naukowej dla wartości adresów, co prowadzi do nieporozumienia. Inne nieprawidłowe odpowiedzi, takie jak 493 czy D281, wynikają z błędnych przeliczeń w systemie szesnastkowym. Dla 493, konwersja binarna nie zgadza się z podanym adresem, a D281 nie ma uzasadnienia w kontekście przedstawionego adresu binarnego. Takie pomyłki mogą być wynikiem nieuwagi lub nieznajomości zasad konwersji między systemami liczbowymi. W praktyce, znajomość konwersji binarno-szesnastkowej jest niezbędna, zwłaszcza przy pracy z mikroprocesorami i systemami wbudowanymi, gdzie adresy pamięci są kluczowymi elementami w architekturze komputerowej. Ważne jest, aby regularnie ćwiczyć te umiejętności i stosować odpowiednie narzędzia do konwersji w codziennej pracy.

Pytanie 31

Na przedstawionej grafice wskazano strzałkami funkcje przycisków umieszczonych na obudowie projektora multimedialnego. Dzięki tym przyciskom można

Ilustracja do pytania
A. dostosowywać odwzorowanie przestrzeni kolorów
B. przełączać źródła sygnału
C. zmieniać intensywność jasności obrazu
D. regulować zniekształcony obraz
Projektory multimedialne są wyposażone w przyciski do regulacji geometrii obrazu umożliwiające dostosowanie zniekształceń spowodowanych kątem projekcji. Często używaną funkcją w tym kontekście jest korekcja trapezowa która pozwala na eliminację efektów zniekształcenia trapezowego gdy projektor nie jest umieszczony idealnie prostopadle do ekranu. Przykładem może być sytuacja w której projektor musi być umieszczony nieco wyżej lub niżej względem środka ekranu a obraz nie jest właściwie wyświetlany. Użytkownik może użyć przycisków na obudowie aby dostosować kształt obrazu tak aby był zgodny z rzeczywistymi proporcjami. Regulacja zniekształceń jest kluczowym elementem poprawy jakości prezentacji zwłaszcza gdy zachodzi konieczność pracy w różnych lokalizacjach o odmiennych warunkach projekcji. Dobre praktyki polegają na ustawieniu projektora w możliwie najbardziej optymalnej pozycji już na etapie instalacji aby minimalizować potrzebę korekt. Jednak w sytuacjach gdy idealne ustawienie projektora jest niemożliwe funkcja regulacji zniekształceń pozwala na uzyskanie zadowalającego efektu wizualnego co jest zgodne z profesjonalnymi standardami branżowymi zapewniając wysoką jakość prezentacji wizualnych

Pytanie 32

Skaner, który został przedstawiony, należy podłączyć do komputera za pomocą złącza

Ilustracja do pytania
A. Micro USB
B. USB-B
C. Mini USB
D. USB-A
Złącze USB-A to standardowy port USB, który można znaleźć głównie w komputerach, zasilaczach i innych urządzeniach peryferyjnych jako port żeński, do którego podłączamy inne urządzenia za pomocą kabli zakończonych wtykiem USB-A. USB-B, z kolei, jest złączem używanym głównie w urządzeniach peryferyjnych takich jak drukarki i skanery, ale w większych, stacjonarnych wersjach, co czyni tę opcję nieodpowiednią dla przenośnych skanerów. Mini USB znajduje zastosowanie w kompaktowych urządzeniach elektronicznych, co jest zgodne z typem skanera wskazanego w pytaniu. Micro USB, choć bardziej nowoczesne i mniejsze niż Mini USB, nie jest odpowiednim wyborem, jeśli urządzenie zostało wyprodukowane w czasie, gdy Mini USB było standardem de facto dla małych urządzeń. Powszechnym błędem jest przypuszczenie, że wszystkie skanery są wyposażone w złącze USB-A lub Micro USB, ponieważ są one bardziej znane użytkownikom współczesnym. Jednak pominięcie specyfiki technicznej danego urządzenia może prowadzić do tego rodzaju błędnych wniosków. Właściwe zrozumienie standardów złączy i ich ewolucji jest kluczowe w podejmowaniu odpowiednich decyzji dotyczących kompatybilności urządzeń elektronicznych, zwłaszcza w kontekście sprzętu wykorzystywanego w specjalistycznych zadaniach zawodowych.

Pytanie 33

Administrator systemu Linux wyświetlił zawartość katalogu /home/szkoła w terminalu, uzyskując następujący rezultat -rwx –x r-x 1 admin admin 25 04-09 15:17 szkola.txt. Następnie wydał polecenie ```chmod ug=rw szkola.txt | Is``` Jaki będzie rezultat tego działania, pokazany w oknie terminala?

A. -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt
B. -rw- rw- r-x 1 admin admin 25 04-09 15:17 szkola.txt
C. -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt
D. -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt
Wybór innej odpowiedzi opiera się na nieporozumieniu dotyczącym działania polecenia chmod. Wiele osób może błędnie zakładać, że użycie 'ug=rw' automatycznie przyznaje pełne uprawnienia wszystkim grupom, co jest nieprawdziwe. Na przykład, odpowiedź -rw- rw- rw- 1 admin admin 25 04-09 15:17 szkola.txt sugeruje, że wszyscy użytkownicy - w tym właściciel, grupa i inni - mają pełne uprawnienia do odczytu i zapisu, co nie jest poprawne w kontekście działania polecenia chmod. Kluczowe jest zrozumienie, że zmiana uprawnień odnosi się tylko do określonych kategorii użytkowników, a nie do wszystkich. Podobnie, odpowiedź -rwx ~x rw- 1 admin admin 25 04-09 15:17 szkola.txt wskazuje na nieprawidłowe modyfikacje w uprawnieniach, które również są niezgodne z działaniem chmod. Ponadto, -rwx r-x r-x 1 admin admin 25 04-09 15:17 szkola.txt nie uwzględnia zmian wprowadzonych przez polecenie, co prowadzi do błędnych wniosków o stanie pliku po zastosowaniu chmod. To ilustruje, jak istotne jest zrozumienie, jakie konkretne uprawnienia są przyznawane lub odbierane przez polecenia w systemie Linux. Ignorowanie tej zasady może prowadzić do problemów z bezpieczeństwem oraz zarządzaniem dostępem do plików.

Pytanie 34

W jakiej warstwie modelu ISO/OSI wykorzystywane są adresy logiczne?

A. Warstwie fizycznej
B. Warstwie łącza danych
C. Warstwie sieciowej
D. Warstwie transportowej
Wybór warstwy fizycznej jest nietrafiony, bo ta warstwa skupia się na przesyłaniu sygnałów, takich jak elektryczność czy światło, a nie na adresowaniu. W modelu ISO/OSI warstwa fizyczna odpowiada za to, co się dzieje na poziomie kabli i różnych urządzeń, a nie na identyfikacji komputerów w sieci. Adresy logiczne raczej nie mają tu zastosowania. Z drugiej strony warstwa łącza danych, choć też dotyczy przesyłania danych, zajmuje się błędami transmisji i ramkami danych w lokalnej sieci. Używa adresów MAC, które są przypisane do sprzętu i służą do identyfikacji w danej sieci lokalnej, a nie do komunikacji między różnymi sieciami. Warstwa transportowa za to odpowiada za niezawodne przesyłanie danych między aplikacjami na końcu, używając protokołów jak TCP czy UDP. Tak więc, wybór warstwy fizycznej, łącza danych lub transportowej jako miejsca dla adresów logicznych wynika z nieporozumień co do ich funkcji i celów w modelu ISO/OSI. Rozumienie roli każdej z tych warstw jest naprawdę kluczowe, gdy chodzi o projektowanie i zarządzanie sieciami.

Pytanie 35

Jakie składniki systemu komputerowego wymagają utylizacji w wyspecjalizowanych zakładach przetwarzania z powodu obecności niebezpiecznych substancji lub pierwiastków chemicznych?

A. Przewody
B. Obudowy komputerów
C. Radiatory
D. Tonery
Obudowy komputerów, przewody i radiatory nie są odpadami, które wymagają specjalistycznej utylizacji ze względu na zawartość niebezpiecznych substancji. Obudowy komputerowe zazwyczaj wykonane są z plastiku i metalu, które można poddać recyklingowi w standardowych procesach przetwarzania materiałów. Przewody, z kolei, często składają się z miedzi i innych metali, które również są cennymi surowcami do odzysku. Radiatory, które zazwyczaj są wykonane z aluminium lub miedzi, są recyklingowane w podobny sposób. Typowe błędne założenie, które może prowadzić do pomylenia tych elementów z odpadami niebezpiecznymi, wynika z niepełnej wiedzy na temat zawartości materiałów w tych komponentach i ich wpływie na środowisko. Użytkownicy komputerów powinni być świadomi, że niektóre materiały, takie jak tonery, mają wyraźne regulacje dotyczące ich utylizacji, podczas gdy inne, jak wymienione elementy, mogą być przetwarzane w bardziej standardowy sposób. Właściwe postrzeganie i klasyfikacja odpadów elektronicznych są kluczowe dla efektywnego recyklingu i ochrony środowiska.

Pytanie 36

Gniazdo w sieciach komputerowych, które jednoznacznie identyfikuje dany proces na urządzeniu, stanowi kombinację

A. adresu fizycznego i adresu IP
B. adresu IP i numeru sekwencyjnego danych
C. adresu fizycznego i numeru portu
D. adresu IP i numeru portu
Widzę, że wybrałeś jedną z błędnych odpowiedzi, co pokazuje, że możesz mieć pewne wątpliwości co do tego, jak działają sieci komputerowe. Na przykład, połączenie 'adresu fizycznego i adresu IP' nie jest tym, co potrzebujemy, bo adres fizyczny (adres MAC) to coś, co działa na innym poziomie niż aplikacje. Te dwa pojęcia są mylone, bo to, co identyfikuje urządzenie, to nie to samo, co identyfikuje procesy. Z kolei odpowiedź 'adres fizyczny i numer portu' też jest nietrafiona, bo porty są częścią warstwy transportowej, a adres MAC pozostaje na pierwszym poziomie. I jeszcze 'adres IP i numer sekwencyjny danych' - to kompletnie inna bajka, bo numery sekwencyjne odnoszą się do przesyłania danych, a nie do identyfikowania aplikacji. Takie pomyłki mogą powodować sporo problemów, szczególnie przy konfiguracji sieci. Warto skupić się na tym, jak adres IP i numery portów współpracują ze sobą, bo to klucz do efektywnej komunikacji w złożonych systemach.

Pytanie 37

Czym jest skrót MAN w kontekście sieci?

A. miejską
B. lokalną
C. bezprzewodową
D. rozległą
Odpowiedzi sugerujące, że skrót MAN odnosi się do sieci bezprzewodowej, rozległej lub lokalnej, opierają się na niepełnym zrozumieniu terminów i koncepcji związanych z infrastrukturą sieciową. Sieci bezprzewodowe, takie jak WLAN (Wireless Local Area Network), są ukierunkowane na lokalne połączenia, wykorzystując fale radiowe do komunikacji, co różni się od założenia MAN, które koncentruje się na większym obszarze, obejmującym wiele lokalnych sieci. Z kolei sieci rozległe (WAN) zajmują się łącznością na znacznie większym obszarze, często obejmującym różne miasta czy państwa, co także nie jest celem MAN. Sieci lokalne (LAN) natomiast są ograniczone do niewielkiego obszaru, takiego jak jedno biuro czy budynek, co również nie pasuje do definicji MAN. W skutek tego, można zauważyć, że pomyłki w zrozumieniu tych terminów mogą prowadzić do sytuacji, w których użytkownicy mylnie klasyfikują różne typy sieci. MAN pełni kluczową rolę w integracji i synchronizacji danych w obrębie obszarów miejskich, co czyni go istotnym elementem nowoczesnych systemów telekomunikacyjnych. Zrozumienie różnic między tymi typami sieci jest niezbędne do właściwego ich zastosowania oraz do efektywnej budowy infrastruktury telekomunikacyjnej. W praktyce, wiedza ta ma olbrzymie znaczenie, szczególnie w kontekście projektowania i zarządzania sieciami w obszarze miejskim, co jest zgodne z normami i standardami branżowymi.

Pytanie 38

Komenda "mmc" w systemach Windows 2000 oraz Windows XP uruchamia aplikację do tworzenia, zapisywania i otwierania

A. dziennika operacji dyskowych w systemie plików NTFS
B. plików multimedialnych, zawierających filmy
C. katalogu oraz jego podkatalogów na partycji sformatowanej w systemie plików NTFS
D. zestawu narzędzi administracyjnych zwanych konsolami, służących do zarządzania sprzętem i oprogramowaniem
Analizując inne odpowiedzi, można zauważyć, że wiele z nich opiera się na mylnej interpretacji funkcji narzędzi dostępnych w systemie Windows. Pierwsza z opcji sugeruje, że polecenie "mmc" służy do tworzenia pliku dziennika operacji dyskowych w systemie plików NTFS. Jednakże, pliki dziennika w systemie NTFS są tworzone automatycznie przez system operacyjny i nie są zarządzane za pomocą konsoli MMC. Takie podejście mylnie wskazuje na funkcjonalności, które nie są właściwe dla tego narzędzia. Inna odpowiedź odnosi się do katalogów i podkatalogów na partycji NTFS, co także jest niezgodne z przeznaczeniem MMC, które nie zajmuje się bezpośrednio zarządzaniem strukturnymi elementami systemu plików, lecz narzędziami do zarządzania systemem. Wspomnienie plików multimedialnych również jest nieadekwatne, ponieważ MMC nie ma zastosowania w kontekście zarządzania treściami multimedialnymi, a jego funkcje ograniczają się do administracyjnych zadań na poziomie systemowym. W przypadku tych niepoprawnych odpowiedzi, występuje typowy błąd w myśleniu, polegający na myleniu narzędzi do zarządzania systemem z funkcjami związanymi ze strukturą dysków czy plików. Dokładne zrozumienie roli MMC w zarządzaniu zasobami komputerowymi jest kluczowe dla efektywnego wykorzystania potencjału systemów Windows.

Pytanie 39

Jeśli w ustawieniach karty graficznej zostanie wybrane odświeżanie obrazu przewyższające zalecane wartości, monitor CRT, który spełnia normy TCO 99

A. nie wyłączy się, jedynie wyświetli fragment obrazu
B. nie wyłączy się, wyświetli czarny ekran
C. przejdzie w tryb uśpienia lub wyświetli okno z powiadomieniem
D. może ulec uszkodzeniu
Użytkownicy często mylą skutki ustawienia nieodpowiedniego odświeżania z bardziej dramatycznymi konsekwencjami, takimi jak uszkodzenie sprzętu. W rzeczywistości, kiedy odświeżanie obrazu przewyższa możliwości monitora, sprzęt najczęściej nie wyłącza się, a zamiast tego nie jest w stanie zinterpretować sygnału, co prowadzi do utraty obrazu. Wyświetlanie części obrazu lub czarnego ekranu również nie jest typowe, ponieważ monitory CRT mają wbudowane mechanizmy ochronne, które zapobiegają uszkodzeniom. Pojawienie się czarnego obrazu nie oznacza, że monitor działa w sposób prawidłowy — to raczej symptom braku synchronizacji między urządzeniami. Użytkownicy mogą również zakładać, że monitor zgaśnie w momencie wykrycia problemu, jednak tak się nie dzieje. Ostatecznie, powód, dla którego monitory CRT przechodzą w stan uśpienia, jest związany z ich konstrukcją i systemami zabezpieczeń, które mają na celu ochronę przed trwałymi uszkodzeniami. Mylne przekonania co do działania sprzętu mogą prowadzić do niepotrzebnego strachu przed uszkodzeniem, co jest nieuzasadnione, gdyż odpowiednie monitorowanie i dostosowywanie ustawień zapewnia bezpieczne użytkowanie. Ważne jest, aby podczas konfiguracji sprzętu kierować się zaleceniami producentów i stosować się do standardów, co zminimalizuje ryzyko problemów z wyświetlaniem.

Pytanie 40

Jaki instrument jest używany do usuwania izolacji?

Ilustracja do pytania
A. Rys. A
B. Rys. B
C. Rys. C
D. Rys. D
Rysunki A, B i D przedstawiają narzędzia, które nie są przeznaczone do ściągania izolacji, co jest powszechnym błędem w rozpoznawaniu specyficznych funkcji narzędzi. Na przykład rysunek A może wskazywać na narzędzie o zupełnie innym przeznaczeniu, które być może nie posiada mechanizmu do precyzyjnego usuwania izolacji z przewodów. Wybór takiego narzędzia do ściągania izolacji może prowadzić do uszkodzenia przewodów poprzez zarysowanie lub przecięcie rdzeni miedzianych, co znacznie osłabia połączenia elektryczne. Podobnie, rysunek B również nie przedstawia typowego ściągacza izolacji, a jego zastosowanie w tym kontekście może wynikać z niepełnego zrozumienia specyfikacji narzędzia, które może być zaprojektowane do innych czynności, jak np. zaciskanie lub cięcie. Narzędzia te, choć przydatne w innych aspektach instalacji elektrycznych, nie oferują precyzji i bezpieczeństwa niezbędnego do efektywnego ściągania izolacji. Rysunek D również może obrazować urządzenie o innym trybie działania, które w rzeczywistości nie zapewnia funkcji ściągania izolacji zgodnie z branżowymi standardami wymagającymi zachowania integralności przewodów podczas przygotowywania ich do połączeń. Brak znajomości prawidłowego narzędzia może prowadzić do błędów instalacyjnych, dlatego kluczowe jest rozpoznanie i zrozumienie właściwych narzędzi oraz ich zastosowań w praktyce zawodowej aby spełniać wymagania norm i zapewnić bezpieczeństwo instalacji elektrycznych. Poprawne rozróżnianie narzędzi i zrozumienie ich zastosowania jest fundamentem skutecznej i profesjonalnej pracy w branży elektrycznej.