Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 15 kwietnia 2025 19:10
  • Data zakończenia: 15 kwietnia 2025 19:44

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W celu wymiany uszkodzonego czujnika ciśnienia TPMS należy uprzednio rozmontować

A. fragment układu wydechowego.
B. przepływomierz powietrza.
C. część układu chłodzenia.
D. koło pojazdu.
Aby wymienić uszkodzony czujnik ciśnienia TPMS (Tire Pressure Monitoring System), kluczowym krokiem jest demontaż koła pojazdu. Czujnik TPMS jest zazwyczaj zamontowany na obręczy felgi i znajduje się wewnątrz opony, co oznacza, że bez ściągnięcia koła nie można uzyskać dostępu do czujnika. Wymiana czujnika TPMS jest istotna, ponieważ nieprawidłowe ciśnienie w oponach może prowadzić do niebezpiecznych sytuacji na drodze, takich jak zwiększone zużycie paliwa, zmniejszona przyczepność czy nawet ryzyko wypadku. Praktycznie, aby wymienić czujnik, należy najpierw zdjąć koło, a następnie powoli zdemontować oponę z felgi, co pozwala na dostęp do czujnika. Ważne jest również, aby po wymianie czujnika przeprowadzić kalibrację systemu TPMS, aby zapewnić prawidłowe działanie i monitorowanie ciśnienia w oponach zgodnie z wymaganiami producenta. Praca ta powinna być wykonywana zgodnie z wytycznymi producenta i normami branżowymi, co zapewni bezpieczeństwo oraz efektywność działania systemu.

Pytanie 2

Zanim przeprowadzisz pomiar ciśnienia sprężania w silniku wysokoprężnym czterocylindrowym, należy najpierw usunąć

A. wszystkie świece zapłonowe
B. świecę zapłonową z analizowanego cylindra
C. wtryskiwacz z analizowanego cylindra
D. wszystkie świec żarowych
Wymontowanie wtryskiwacza z badanego cylindra przed badaniem ciśnienia sprężania jest nieprawidłowe, ponieważ wtryskiwacze nie mają wpływu na ten pomiar. Ich główną funkcją jest wtrysk paliwa do cylindra, co nie ma związku z procesem sprężania powietrza. Z kolei demontaż świec zapłonowych w silniku wysokoprężnym jest niewłaściwy, gdyż silniki te nie są wyposażone w świece zapłonowe, a zamiast tego korzystają ze świec żarowych. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla właściwej diagnostyki silników wysokoprężnych. Zgubienie lub pominięcie detali, takich jak rodzaj stosowanej świecy, może prowadzić do błędnych założeń i mylnych diagnoz. Ponadto, demontowanie świecy zapłonowej z badanego cylindra w silniku wysokoprężnym jest zbędne, ponieważ te silniki nie mają takiego rodzaju zapłonu. Właściwe przygotowanie do testu ciśnienia sprężania wymaga zrozumienia konstrukcji silnika oraz jego komponentów. Zaniedbanie tych elementów może skutkować nieprecyzyjnymi pomiarami, co ma poważne konsekwencje dla dalszej diagnostyki i ewentualnych napraw silnika. Dlatego tak ważne jest, aby przed przystąpieniem do badania ciśnienia sprężania zrozumieć zasady działania silnika i jego poszczególnych części.

Pytanie 3

Zgięty wahacz w pojeździe należy

A. wyprostować w niskiej temperaturze
B. wymienić na nowy
C. wzmocnić dodatkowym elementem
D. wyprostować w wysokiej temperaturze
Wymiana zgiętego wahacza na nowy jest zdecydowanie najlepszym rozwiązaniem w przypadku uszkodzenia tego kluczowego elementu zawieszenia pojazdu. Wahacz odpowiada za stabilność oraz komfort jazdy, a jego deformacja może prowadzić do poważnych problemów z geometrą zawieszenia, co wpływa na bezpieczeństwo pojazdu. W praktyce, wahacze wykonane są z materiałów takich jak stal lub aluminium, które po zgięciu mogą stracić swoje właściwości mechaniczne. Nawet jeśli wahacz wydaje się być wyprostowany, w jego strukturze mogą pozostać mikropęknięcia, które z czasem mogą prowadzić do dalszych uszkodzeń. Wymiana wahacza na nowy zapewnia pełną niezawodność oraz zgodność z normami producenta, co jest kluczowe dla prawidłowego funkcjonowania układu zawieszenia. Dodatkowo, nowe wahacze są projektowane z uwzględnieniem najnowszych standardów i technologii, co może przyczynić się do poprawy osiągów pojazdu oraz jego trwałości. W sytuacji wystąpienia zgięcia wahacza zawsze należy zwrócić uwagę na jego wymianę, a nie na naprawę, aby zachować maksymalne bezpieczeństwo i komfort jazdy.

Pytanie 4

W mechanizmie silnika tłokowo-korbowego występują zmieniające się obciążenia, które prowadzą do uszkodzeń śrub korbowodowych na skutek

A. starzenia się materiału
B. zużycia w wyniku erozji
C. zużycia mechanicznego
D. zmęczenia struktury materiałowej
Zmęczenie materiału to proces, w którym materiał ulega uszkodzeniu wskutek cyklicznych obciążeń, co jest typowe w mechanizmie tłokowo-korbowym. W silnikach spalinowych, śruby korbowodowe narażone są na zmienne siły, które działają na nie podczas pracy silnika. Te siły powodują, że mikrodefekty w strukturze materiału zaczynają się powiększać, co w końcu prowadzi do pęknięć i zniszczenia elementu. Przykładem wpływu zmęczenia materiału jest zjawisko zmęczenia zmiennego, które można obserwować przy silnikach pracujących w trybie o zmiennej prędkości obrotowej. W praktyce, inżynierowie muszą projektować elementy silników zgodnie z normami, takimi jak ISO 1099, które dotyczą wytrzymałości na zmęczenie, aby zapewnić ich długotrwałą funkcjonalność. Używanie materiałów o wysokiej trwałości oraz odpowiednich powłok ochronnych również przyczynia się do wydłużenia żywotności takich komponentów.

Pytanie 5

Jakie jest łączne wydatki na naprawę systemu smarowania, jeśli cena pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a cena oleju silnikowego to 160 zł? Czas potrzebny na naprawę to 150 minut przy stawce za godzinę roboczą wynoszącej 100 zł?

A. 450 zł
B. 600 zł
C. 650 zł
D. 550 zł
Całkowity koszt naprawy układu smarowania wynosi 600 zł, co wynika z sumy kosztów części oraz robocizny. Koszt pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a koszt oleju silnikowego to 160 zł. Łącznie, wydatki na części wynoszą 145 zł + 45 zł + 160 zł = 350 zł. Następnie obliczamy koszt robocizny. Czas naprawy to 150 minut, co odpowiada 2,5 godziny. Przy stawce 100 zł za roboczo-godzinę, koszt robocizny wynosi 2,5 * 100 zł = 250 zł. Sumując koszty części oraz robocizny, otrzymujemy 350 zł + 250 zł = 600 zł. Warto zaznaczyć, że dokładne obliczenia kosztów naprawy są kluczowe w warsztatach, ponieważ pomagają w określeniu ceny dla klienta oraz w zarządzaniu budżetem warsztatu. Praktyczne podejście do kalkulacji kosztów naprawczych może również przyczynić się do lepszego planowania i kontroli wydatków.

Pytanie 6

Kolorowa kropka umieszczona na boku nowej opony oznacza

A. bok, który powinien być zamontowany do wewnątrz.
B. bok, który powinien być zamontowany do zewnątrz.
C. miejsce, w którym znajduje się znacznik zużycia bieżnika.
D. miejsce, w którym powinien znaleźć się zawór powietrza.
Odpowiedź, że kolorowa kropka na boku opony wskazuje miejsce, w którym powinien znaleźć się zawór powietrza, jest poprawna. W branży motoryzacyjnej, podczas produkcji opon, producenci stosują różne oznaczenia, aby ułatwić prawidłowy montaż opon na obręczach. Kolorowa kropka, zazwyczaj w formie małej naklejki, wskazuje najlepszą lokalizację dla zaworu, co ma kluczowe znaczenie dla zachowania równowagi koła. Umiejscowienie zaworu w miejscu oznaczonym kropką pozwala zminimalizować ryzyko wibracji podczas jazdy, co wpływa na komfort podróży oraz trwałość opon i podzespołów zawieszenia. W praktyce, mechanicy i specjaliści ds. opon zawsze zwracają uwagę na to oznaczenie, ponieważ niewłaściwe umiejscowienie zaworu może prowadzić do niestabilności pojazdu, co w skrajnych przypadkach może skutkować niebezpiecznymi sytuacjami na drodze. Dlatego ważne jest, aby stosować się do tych wskazówek, co jest zgodne z dobrymi praktykami w zakresie serwisowania pojazdów.

Pytanie 7

Jakie właściwości mierzona są przy użyciu lampy stroboskopowej?

A. kąta wyprzedzenia zapłonu
B. natężenia oświetlenia
C. podciśnienia w cylindrze
D. czasu wtrysku paliwa
Lampy stroboskopowe są niezwykle ważnym narzędziem w diagnostyce silników spalinowych, szczególnie przy pomiarze kąta wyprzedzenia zapłonu. Umożliwiają one precyzyjne synchronizowanie momentu zapłonu mieszanki paliwowo-powietrznej w cylindrze, co jest kluczowe dla uzyskania optymalnej wydajności silnika. Stroboskop działa na zasadzie emitowania krótkich błysków światła, które są synchronizowane z obrotami wału korbowego. Dzięki temu, możliwe jest obserwowanie oznaczeń na kole zamachowym lub na obudowie silnika, co pozwala na dokładne ustawienie kąta zapłonu. W praktyce, jeśli kąt wyprzedzenia jest zbyt duży lub zbyt mały, może to prowadzić do detonacji, spadku mocy czy zwiększonego zużycia paliwa. Standardy branżowe, takie jak SAE J1349, sugerują odpowiednie metody pomiaru, zapewniając, że proces diagnostyki jest zgodny z uznawanymi normami oraz dobrą praktyką inżynierską. Warto pamiętać, że precyzyjne ustawienie kąta zapłonu przyczynia się nie tylko do efektywności pracy silnika, ale także do redukcji emisji zanieczyszczeń, co jest szczególnie istotne w kontekście rosnących norm ekologicznych.

Pytanie 8

W systemie chłodzenia cieczą silnika spalinowego wykorzystywane są pompy

A. membranowe
B. zębate
C. wirnikowe
D. tłoczkowe
Pompy zębate, tłoczkowe i membranowe są stosowane w różnych miejscach w przemyśle, ale do chłodzenia silników spalinowych się nie nadają. Pompy zębate działają na zasadzie zębatek i przez to mogą generować wyższe ciśnienia i pulsacje w systemie, co nie jest fajne. Zresztą, jak chodzi o pompowanie dużych objętości cieczy, to nie są najlepsze. Z kolei pompy tłoczkowe pracują na zasadzie zmiany objętości w komorach, ale są bardziej skomplikowane i wymagają więcej uwagi serwisowej, co czyni je trochę niewygodnymi do chłodzenia silników. A pompy membranowe? One wykorzystują elastyczne membrany, ale są dobre głównie tam, gdzie trzeba precyzyjnie dozować ciecz, a nie w chłodzeniu, bo nie obsłużą dużych objętości, a to w silnikach jest mega ważne. Dlatego wybór złej pompy do układu chłodzenia może prowadzić do przegrzewania się silnika i ogólnych problemów z jego efektywnością.

Pytanie 9

Który z płynów hamulcowych charakteryzuje się najwyższą temperaturą wrzenia?

A. R3
B. DOT5
C. DOT4
D. DOT3
Płyn hamulcowy DOT5 jest syntetycznym płynem, który posiada jedną z najwyższych temperatur wrzenia wśród dostępnych płynów hamulcowych. Temperatura wrzenia DOT5 wynosi około 260°C, co czyni go idealnym wyborem dla zastosowań, gdzie występują wysokie temperatury, takich jak sport motoryzacyjny oraz w zastosowaniach wyścigowych. Dzięki swoim właściwościom, DOT5 minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamulców. Jest on również odporny na wilgoć, co przyczynia się do dłuższej trwałości układu hamulcowego. DOT5 jest zalecany w pojazdach, które nie są narażone na kontakt z wodą, ponieważ zawiera silikon, który nie absorbuje wilgoci. W branży motoryzacyjnej standardy dotyczące płynów hamulcowych, takie jak FMVSS 116, określają wymagania dla płynów hamulcowych, co dodatkowo potwierdza wysoką jakość DOT5. W praktyce, stosowanie DOT5 może znacząco poprawić bezpieczeństwo i wydajność hamulców w ekstremalnych warunkach.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Określając natężenie prądu podczas ładowania akumulatora za pomocą prostownika sieciowego, jakie czynniki powinny być brane pod uwagę?

A. nominalny prąd rozruchowy
B. nominalne napięcie akumulatora
C. maksymalny prąd rozładowania
D. elektryczną pojemność akumulatora
Maksymalny prąd rozładowania, nominalny prąd rozruchowy oraz nominalne napięcie akumulatora to parametry, które mogą być mylnie uznawane za kluczowe przy ustalaniu natężenia prądu ładowania. Maksymalny prąd rozładowania odnosi się do maksymalnej wartości prądu, jaką akumulator może dostarczyć podczas rozładowania, co nie ma bezpośredniego wpływu na proces ładowania. W rzeczywistości, zbyt wysokie natężenie prądu podczas ładowania może prowadzić do uszkodzenia akumulatora, a nie do jego efektywnego zasilania. Nominalny prąd rozruchowy określa wartość prądu potrzebnego do uruchomienia silnika, co również nie jest wskaźnikiem dla procesu ładowania. Jego znaczenie jest ograniczone do momentów, gdy akumulator jest używany w układach rozruchowych. Nominalne napięcie akumulatora, mimo że jest istotnym parametrem, nie odzwierciedla całkowitej pojemności akumulatora i nie powinno być jedynym czynnikiem decydującym o natężeniu prądu ładowania. Niestety, ignorowanie elektrycznej pojemności akumulatora i opieranie się na tych innych parametrach może prowadzić do przeładowania lub niewystarczającego naładowania, co w dłuższej perspektywie skutkuje skróceniem żywotności akumulatora oraz zwiększeniem ryzyka awarii. Dlatego zrozumienie i uwzględnienie pojemności akumulatora jest niezbędne dla zapewnienia jego optymalnego działania oraz bezpieczeństwa podczas ładowania.

Pytanie 12

Gdzie znajduje się filtr kabinowy w systemie?

A. w systemie smarowania
B. w systemie chłodzenia
C. w systemie paliwowym
D. w systemie klimatyzacji
Filtr kabinowy, znany również jako filtr powietrza kabinowego, pełni kluczową funkcję w systemie klimatyzacji pojazdu. Jego głównym zadaniem jest oczyszczanie powietrza, które dostaje się do wnętrza kabiny, eliminując kurz, pyłki, zanieczyszczenia oraz nieprzyjemne zapachy. Użycie filtra kabinowego poprawia jakość powietrza, co jest szczególnie istotne dla osób cierpiących na alergie czy astmę. W kontekście standardów branżowych, regularna wymiana filtra kabinowego jest zalecana co 15 000 do 30 000 kilometrów, w zależności od warunków eksploatacji oraz typu pojazdu. Dbanie o filtr kabinowy przyczynia się nie tylko do komfortu pasażerów, ale także do efektywności pracy systemu klimatyzacji, który może być obciążony przez zanieczyszczony filtr, prowadząc do wyższych kosztów eksploatacji. Regularna konserwacja systemu klimatyzacji, w tym wymiana filtra kabinowego, wpisuje się w najlepsze praktyki utrzymania pojazdu, co może przedłużyć jego żywotność oraz zwiększyć bezpieczeństwo podróżowania.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Najbardziej efektywną metodą ochrony antykorozyjnej nadwozia w trakcie produkcji jest

A. malowanie blach farbami chlorokauczukowymi
B. cynkowanie części nadwozia
C. montowanie osłon z plastiku
D. pokrywanie metalu pastami uszczelniającymi
Metody takie jak powlekanie blach pastami uszczelniającymi, zakładanie osłon plastikowych oraz powlekanie blach farbami chlorokauczukowymi mają swoje zastosowania, jednak nie oferują odpowiedniego poziomu ochrony antykorozyjnej, jaką zapewnia cynkowanie. Powlekanie blach pastami uszczelniającymi, choć może zapobiegać wnikaniu wody do wnętrza elementów nadwozia, nie chroni przed korozją w dłuższej perspektywie, ponieważ pasta może ulegać degradacji pod wpływem warunków atmosferycznych. Zakładanie osłon plastikowych może chronić przed mechanicznymi uszkodzeniami, jednak nie stanowi efektywnej bariery przed działaniem czynników korozyjnych, takich jak wilgoć czy sole drogowe. Farby chlorokauczukowe, mimo że oferują pewną formę ochrony, są bardziej stosowane w kontekście ochrony przed chemikaliami, a ich trwałość w warunkach atmosferycznych nie dorównuje trwałości cynku. Wybór tych metod często wynika z błędnego przekonania o ich skuteczności, co może prowadzić do przedwczesnej korozji nadwozia. W praktyce, aby zapewnić odpowiednią ochronę, producenci powinni stosować kompleksowe podejście, które uwzględnia różnorodne metody zabezpieczeń, jednak cynkowanie pozostaje najlepszym rozwiązaniem w kontekście długotrwałej ochrony przed rdzą, zgodnie z przyjętymi standardami branżowymi.

Pytanie 16

W celu ustalenia luzu w układzie kierowniczym pojazdu, jakie działania można podjąć?

A. listwą pomiarową
B. organoleptycznie
C. na wyważarce
D. na rolkach
Lokalizacja luzu w układzie kierowniczym za pomocą wyważarki nie jest właściwym podejściem, ponieważ wyważarki są narzędziami do analizy stanu kół oraz opon, a nie układów kierowniczych. Ich głównym zadaniem jest ocena równowagi koła, co nie ma bezpośredniego związku z luzami w mechanizmach kierowniczych. Użycie listwy pomiarowej w kontekście diagnostyki luzów również nie jest standardową metodą. Listwy pomiarowe są stosowane głównie do precyzyjnego pomiaru wymiarów elementów, a nie do oceny ruchomości czy luzów w układzie kierowniczym. Przekonanie, że można ocenić luz w tych wymiarach, prowadzi do błędnych wniosków o stanie technicznym pojazdu. Również lokalizacja luzu na rolkach jest nieadekwatna, ponieważ rolki stosuje się w innych kontekstach, jak na przykład w testowaniu zawieszenia pojazdu. Typowe błędy myślowe związane z tymi podejściami wynikają z nieznajomości zasad funkcjonowania układów kierowniczych oraz nieodpowiedniego przypisania narzędzi do zadań, do których nie zostały zaprojektowane. Wiedza na temat funkcji i zastosowania narzędzi diagnostycznych jest kluczowa, aby zapewnić skuteczne i bezpieczne diagnozowanie stanu technicznego pojazdu.

Pytanie 17

Czym jest prąd elektryczny?

A. uporządkowany ruch ładunków elektrycznych
B. chaotyczny ruch ładunków elementarnych
C. ukierunkowany przepływ ładunków neutralnych
D. swobodny ruch ładunków ujemnych
Prąd elektryczny to uporządkowany ruch ładunków elektrycznych, co oznacza, że w danym kierunku poruszają się ładunki naładowane elektrycznie, głównie elektrony. W praktyce odnosi się to do przepływu prądu w obwodach elektrycznych, gdzie elektrony poruszają się od ujemnego bieguna źródła zasilania do dodatniego. To uporządkowanie odzwierciedla nie tylko zjawisko fizyczne, ale także zastosowanie w projektowaniu urządzeń elektrycznych, takich jak silniki, generatory czy układy scalone. W przypadku silników elektrycznych, na przykład, uporządkowany ruch elektronów w przewodnikach generuje pole magnetyczne, które działa na elementy wirujące, co prowadzi do wykonywania pracy mechanicznej. Zrozumienie, że prąd elektryczny jest uporządkowanym ruchem, pozwala inżynierom i technikom na projektowanie bardziej efektywnych systemów oraz na przewidywanie zachowania obwodów w różnych warunkach. Wiedza ta jest kluczowa w kontekście standardów branżowych takich jak IEC 60038, które regulują parametry napięcia i prądu w urządzeniach elektrycznych.

Pytanie 18

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. podciśnienia ssania
B. wydatku pompy
C. ciśnienia tłoczenia
D. ciśnienia wtrysku
Podczas diagnostyki pompy paliwowej, niektórzy mogą pomyśleć, że pomiar ciśnienia wtrysku jest kluczowy, jednak takie podejście jest mylące. Ciśnienie wtrysku wiąże się z pracą układu wtryskowego, który jest niezależny od samej pompy paliwowej. Pompa ma za zadanie dostarczenie paliwa pod określonym ciśnieniem, a wtryskiwacze kontrolują, kiedy i jak dużo paliwa dostarczyć do komory spalania. Z tego powodu, pomiar ciśnienia wtrysku nie dostarcza informacji o efektywności pompy. Dodatkowo, pomiar ciśnienia tłoczenia jest kluczowy, ponieważ pozwala ocenić, czy pompa dostarcza odpowiednią ilość paliwa do silnika. Pomiar wydatku pompy, który określa, ile paliwa jest w stanie dostarczyć pompa w danym czasie, również jest niezbędny do oceny jej wydajności. Niewłaściwe zrozumienie roli poszczególnych elementów systemu paliwowego może prowadzić do błędnych diagnoz i niewłaściwych decyzji dotyczących naprawy. Użytkownicy często mylą funkcje pompy z funkcjami wtryskiwaczy, co może skutkować próbami diagnozowania problemu w niewłaściwy sposób. Dlatego ważne jest, aby w diagnostyce koncentrować się na pomiarach, które bezpośrednio odnoszą się do działania pompy, aby właściwie ocenić jej stan i uniknąć zbędnych napraw.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Nieszczelną aluminiową chłodnicę należy

A. wymienić na nową.
B. naprawić metodą lutowania twardego.
C. naprawić metodą klejenia.
D. naprawić metodą spawania.
Wymiana nieszczelnej aluminiowej chłodnicy na nową jest najbardziej zalecaną opcją ze względu na kilka kluczowych czynników. Przede wszystkim, chłodnice aluminiowe są często stosowane w różnych aplikacjach, w tym w motoryzacji i chłodnictwie przemysłowym, ze względu na ich doskonałe właściwości przewodzenia ciepła oraz lekkość. W przypadku nieszczelności, mogą występować mikropęknięcia lub uszkodzenia, które mogą wpłynąć na ich efektywność i bezpieczeństwo eksploatacji. Naprawa poprzez lutowanie lub spawanie może wydawać się kusząca, jednak w praktyce często prowadzi to do kompromisów w wytrzymałości materiału oraz ryzyka ponownego uszkodzenia. Dodatkowo, standardy jakości w wielu branżach, takie jak ISO 9001, zachęcają do wymiany uszkodzonych elementów, co zapewnia długoterminową niezawodność i bezpieczeństwo. Dlatego inwestycja w nową chłodnicę jest z perspektywy technicznej i ekonomicznej bardziej uzasadniona, a także zapewnia zgodność z najlepszymi praktykami inżynieryjnymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Refraktometr nie jest przeznaczony do diagnozowania

A. elektrolitu używanego w akumulatorach samochodowych
B. płynu chłodzącego
C. płynu do spryskiwaczy
D. czynnika chłodzącego do napełnienia klimatyzacji
Czynnik chłodzący do napełnienia klimatyzacji rzeczywiście nie jest diagnozowany za pomocą refraktometru. Refraktometr jest narzędziem stosowanym do pomiaru współczynnika załamania światła substancji, co pozwala ocenić stężenie rozpuszczeń. W przypadku płynów chłodzących, elektrolitów do baterii czy płynów do spryskiwaczy, refraktometr może być użyty do określenia ich właściwości fizykochemicznych, takich jak stężenie czy jakość. Na przykład, w samochodach używa się refraktometrów do pomiaru stężenia glikolu w płynie chłodzącym, co jest istotne dla zapewnienia odpowiednich właściwości ochronnych w zmiennych warunkach temperatury. Z kolei w przypadku elektrolitów do baterii, pomiar gęstości roztworu pozwala ocenić stan naładowania akumulatora. Jednakże, refraktometry nie są przeznaczone do analizy czynników chłodzących stosowanych w systemach klimatyzacyjnych, które wymagają innych metod diagnostycznych, takich jak pomiar ciśnienia czy analizy chemiczne, aby określić ich jakość i ilość.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Silnik ZI z systemem wtrysku paliwa utrzymuje na biegu jałowym wysokie obroty. Może być uszkodzony

A. silnik krokowy
B. układ wydechowy
C. przekaźnik zasilania pompy paliwa
D. przewód w układzie zapłonowym
Silnik krokowy jest kluczowym elementem w systemach wtrysku paliwa, który reguluje obroty silnika na biegu jałowym. W przypadku jego uszkodzenia, silnik może pracować z nieprawidłowymi obrotami, co objawia się ich niekontrolowanym wzrostem. Silnik krokowy, działając na zasadzie zmiany położenia, precyzyjnie dostosowuje ilość powietrza dostającego się do komory spalania, co jest kluczowe dla stabilizacji biegu jałowego. Przykładowo, w nowoczesnych systemach wtrysku, takich jak EFI (Electronic Fuel Injection), silnik krokowy współpracuje z jednostką sterującą silnika (ECU), aby zapewnić odpowiednią mieszankę paliwowo-powietrzną, co przekłada się na wydajność i emisję spalin. Regularna diagnostyka i konserwacja silnika krokowego są zgodne z najlepszymi praktykami w branży motoryzacyjnej i mogą zapobiec poważnym problemom mechanicznych.

Pytanie 25

Kolumna McPhersona stanowi część zawieszenia pojazdu

A. elastyczny
B. skrętny
C. sztywny
D. tłumiący
Wybór odpowiedzi, która nie odnosi się do funkcji tłumiącej kolumny McPhersona, prowadzi do nieporozumienia w zakresie mechaniki zawieszenia. Odpowiedzi wskazujące na cechy takie jak sztywność, elastyczność czy skrętność w kontekście kolumny McPhersona nie uwzględniają jej podstawowej roli w systemie zawieszenia. Sztywność elementów zawieszenia odnosi się do ich zdolności do oporu przeciwko deformacji pod wpływem sił zewnętrznych. Chociaż kolumna McPhersona ma pewne właściwości sztywne, jej kluczowe znaczenie tkwi w zdolności do tłumienia drgań. Elastyczność, z drugiej strony, dotyczy zdolności materiałów do rozciągania i deformacji, co nie jest główną cechą kolumny McPhersona, która jest projektowana z myślą o zapewnieniu stabilności. Skrętność, związana z reakcją zawieszenia na obroty pojazdu, jest również niewłaściwie odnoszona do kolumny McPhersona, ponieważ jej funkcja jest bardziej związana z absorpcją wstrząsów niż z reakcją na kierunek jazdy. Zrozumienie tych różnic jest kluczowe dla kompetentnej analizy układów zawieszenia oraz do projektowania pojazdów, które muszą spełniać określone normy bezpieczeństwa i komfortu jazdy.

Pytanie 26

W hydrokinetycznym sprzęgle elementem przenoszącym napęd jest

A. przekładnia pasowa
B. układ kół zębatych
C. pole elektromagnetyczne
D. ciecz
Sprzęgło hydrokinetyczne jest elementem przekładni, w którym napęd jest przenoszony za pomocą cieczy. Działa na zasadzie transferu energii z wirnika napędowego do wirnika odbiorczego poprzez ciecz, na przykład olej, który krąży w zamkniętej komorze. Podczas pracy, wirnik napędowy wprowadza ciecz w ruch, co powoduje, że wirnik odbiorczy również zaczyna obracać się. Taki system umożliwia płynne przenoszenie momentu obrotowego, co jest szczególnie przydatne w pojazdach i maszynach, gdzie wymagana jest efektywność i redukcja wstrząsów związanych z nagłymi zmianami obrotów. W praktyce sprzęgła hydrokinetyczne są szeroko stosowane w automatycznych skrzyniach biegów, gdzie pozwalają na płynne przejścia między biegami. Dzięki właściwościom cieczy, które pozwalają na absorpcję energii, sprzęgła te są w stanie zredukować zużycie elementów mechanicznych oraz zwiększyć komfort jazdy. W branży motoryzacyjnej, normy dotyczące efektywności i bezpieczeństwa wymagają zastosowania tego typu rozwiązań technicznych, co wpisuje się w aktualne standardy produkcji pojazdów.

Pytanie 27

Zapieczoną nakrętkę w układzie zawieszenia należy poluzować za pomocą

A. podgrzewacza indukcyjnego.
B. rurhaka.
C. szlifierki kątowej.
D. młotka.
Użycie młotka do poluzowania zapieczonej nakrętki w układzie zawieszenia jest podejściem, które może prowadzić do poważnych uszkodzeń. Młotek generuje siłę udarową, co może spowodować nieodwracalne deformacje nakrętki lub śruby, a także uszkodzenie otaczających komponentów, co z kolei może prowadzić do konieczności wymiany całego elementu zawieszenia. W kontekście mechaniki pojazdowej, takie nieostrożne podejście jest niezgodne z zaleceniami producentów oraz normami branżowymi, które podkreślają konieczność zapobiegania uszkodzeniom podczas napraw. Rurhak jest narzędziem wykorzystywanym w niektórych zastosowaniach, ale jego działanie opiera się na przekładni dźwigni, co w przypadku zapieczonej nakrętki może okazać się niewystarczające. Przy dużym oporze, rurhak może nie tylko nie przynieść oczekiwanych rezultatów, lecz także narazić użytkownika na kontuzje. Z kolei szlifierka kątowa, chociaż skuteczna w cięciu lub szlifowaniu, może prowadzić do generowania dużych ilości ciepła, co zagraża integralności metalowych elementów oraz może wywołać pożar. Każdy z tych błędów myślowych wynika z niedostatecznego zrozumienia mechaniki materiałów oraz zastosowania odpowiednich metod w pracy z elementami konstrukcyjnymi.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby zamontować tłok z pierścieniami w cylindrze, należy użyć

A. prasy hydraulicznej
B. opaski zaciskowej do pierścieni
C. prasy śrubowej
D. szczypiec do pierścieni
Wybór innych odpowiedzi, takich jak prasę hydrauliczną, szczypce do pierścieni lub prasę śrubową, wskazuje na pewne nieporozumienia związane z procesem montażu tłoka w cylindrze. Użycie prasy hydraulicznej do montażu pierścieni jest niewłaściwe, ponieważ siła generowana przez prasę może uszkodzić delikatne pierścienie lub prowadnice cylindrów, co prowadzi do ich deformacji. W przemyśle motoryzacyjnym i maszynowym zaleca się unikanie nadmiernego nacisku, który może mieć negatywny wpływ na integralność komponentów. Z kolei szczypce do pierścieni, choć mogą być użyteczne w pewnych sytuacjach, nie zapewniają odpowiedniego rozkładu siły i kontroli, co jest kluczowe dla prawidłowego montażu. Mogą również powodować nieodwracalne uszkodzenia pierścieni, szczególnie przy nieostrożnym użytkowaniu. Prasa śrubowa, z drugiej strony, chociaż może oferować stabilność, jest również nieodpowiednia, ze względu na ryzyko zbyt dużego nacisku oraz niewłaściwego ustawienia pierścieni, co może prowadzić do ich zacięcia w cylindrze. Właściwe podejście do montażu tłoka wymaga zastosowania narzędzi, które są specyficznie zaprojektowane do tego celu, co zapewnia bezpieczeństwo komponentów oraz ich długotrwałą funkcjonalność.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
B. górnozaworowy z jednym wałkiem rozrządu w głowicy
C. górnozaworowy z dwoma wałkami rozrządu w głowicy
D. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
Odpowiedź wskazująca na górnozaworowy układ z dwoma wałkami rozrządu w głowicy (DOHC) jest poprawna, ponieważ skrót ten pochodzi z angielskiego 'Double Overhead Camshaft'. Ta konstrukcja silnika zapewnia lepsze osiągi i wyższą efektywność pracy, co jest szczególnie istotne w nowoczesnych jednostkach napędowych. Dwa wałki rozrządu umożliwiają niezależne sterowanie zaworami ssącymi i wydechowymi, co przekłada się na lepsze parametry silnika, wyższe obroty oraz efektywne spalanie mieszanki paliwowo-powietrznej. W praktyce oznacza to zwiększenie mocy i momentu obrotowego, a także redukcję emisji spalin. Konstrukcje DOHC są powszechnie stosowane w silnikach sportowych oraz w nowoczesnych samochodach osobowych, co czyni je standardem w branży motoryzacyjnej. Zastosowanie systemu VVT (Variable Valve Timing) w połączeniu z DOHC może dodatkowo zwiększyć wydajność silnika w różnych warunkach pracy, co jest zgodne z trendami w inżynierii silników. Wysoka jakość wykonania i precyzyjne dopasowanie elementów są kluczowe w tej technologii.

Pytanie 33

Jaką podstawę ma identyfikacja pojazdu?

A. numer VIN nadwozia
B. numer dowodu rejestracyjnego pojazdu
C. numer karty pojazdu
D. numer silnika
Numer VIN (Vehicle Identification Number) to unikalny identyfikator pojazdu, który zawiera istotne informacje dotyczące jego konstrukcji, producenta oraz daty produkcji. Jest to 17-znakowy kod składający się z liter i cyfr, który pozwala na jednoznaczną identyfikację konkretnego pojazdu w rejestrach, a także w systemach monitorowania kradzieży czy w historii serwisowej. Przykładowo, podczas zakupu używanego samochodu, sprawdzenie numeru VIN umożliwia weryfikację jego historii, co jest niezbędne dla dokonania świadomego wyboru. W praktyce, numer VIN jest także stosowany przez organy ścigania oraz ubezpieczycieli w celu identyfikacji pojazdów, co czyni go kluczowym elementem w procesach związanych z rejestracją i ubezpieczeniem. W związku z tym, właściwe posługiwanie się numerem VIN jest nie tylko standardem branżowym, ale także najlepszą praktyką w zarządzaniu flotą pojazdów oraz w handlu motoryzacyjnym.

Pytanie 34

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. średnicówki czujnikowej
B. suwmiarki modułowej
C. głębokomościomierza
D. mikrometru
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 35

Jakie urządzenie powinno być zastosowane do pomiaru siły hamowania w serwisie samochodowym?

A. manometru
B. urządzenia rolkowego
C. wakuometru
D. opóźnieniomierza
Urządzenie rolkowe jest kluczowym narzędziem stosowanym do pomiaru siły hamowania w pojazdach. Działa na zasadzie symulacji warunków rzeczywistych, co pozwala na ocenę skuteczności układów hamulcowych w warunkach testowych. Zastosowanie takiego urządzenia pozwala na dokładne pomiary siły, jakie są generowane podczas hamowania, co jest niezbędne do oceny bezpieczeństwa i wydajności pojazdu. W praktyce, urządzenia rolkowe są wykorzystywane w warsztatach do przeprowadzania testów przed i po serwisie, co pozwala na weryfikację poprawności działania układu hamulcowego. Standardy branżowe, takie jak normy ISO, podkreślają znaczenie testowania hamulców w rzeczywistych warunkach, co potwierdza, że urządzenia rolkowe są niezbędnym elementem wyposażenia warsztatowego. Umożliwiają one również porównanie wyników pomiarów siły hamowania z wartościami określonymi przez producentów pojazdów, co ma kluczowe znaczenie dla zapewnienia bezpieczeństwa na drodze.

Pytanie 36

Jakie jest oznaczenie środka używanego do uzupełniania obiegu chłodzenia?

A. G12+
B. L-DAB
C. WD-40
D. GL-4
Płyn oznaczony jako G12+ jest jednym z wielu typów chłodnic, które są powszechnie stosowane w pojazdach, zwłaszcza tych produkowanych przez grupę Volkswagen. G12+ to płyn na bazie glikolu etylenowego, który zawiera dodatki zapobiegające korozji oraz osadzaniu się kamienia kotłowego. Jego właściwości termiczne sprawiają, że efektywnie odprowadza ciepło z silnika, a także chroni przed zamarzaniem w niskich temperaturach. Kluczową cechą G12+ jest to, że jest kompatybilny z innymi płynami chłodniczymi oznaczonymi jako G12, co ułatwia mieszanie i uzupełnianie płynów w układzie chłodzenia. W praktyce, użycie odpowiedniego płynu, takiego jak G12+, jest niezbędne dla zapewnienia długowieczności układu chłodzenia oraz optymalnej pracy silnika. W przypadku niewłaściwego płynu, użytkownik może doświadczyć korozji komponentów układu, co prowadzi do kosztownych napraw.

Pytanie 37

Podczas pokonywania zakrętu przez pojazd, stabilizator w układzie zawieszenia zapobiega

A. przemieszczaniu się bocznemu kół.
B. przesunięciu geometrycznemu osi drogi.
C. blokowaniu kół.
D. utracie przyczepności kół wewnętrznych.
Utrata przyczepności kół wewnętrznych podczas pokonywania zakrętu jest kluczowym aspektem, który stabilizator w układzie zawieszenia ma na celu minimalizować. Stabilizatory, znane również jako stabilizatory poprzeczne, działają poprzez połączenie dwóch przeciwnych kół wzdłuż osi pojazdu, co umożliwia równomierne rozłożenie obciążeń. Kiedy samochód wchodzi w zakręt, siły odśrodkowe powodują przechylanie się nadwozia, co może prowadzić do utraty przyczepności kół wewnętrznych. Stabilizator ogranicza to przechylenie, utrzymując koła w optymalnej pozycji na drodze, co zwiększa przyczepność i stabilność pojazdu, szczególnie w zakrętach. Przykłady zastosowania stabilizatorów można znaleźć w samochodach osobowych, sportowych, a także w pojazdach użytkowych, gdzie stabilność i bezpieczeństwo są kluczowe. Dobór odpowiedniego stabilizatora jest zgodny z normami branżowymi, takimi jak ISO 9001, które podkreślają znaczenie jakości i bezpieczeństwa w projektowaniu układów zawieszenia.

Pytanie 38

Czym jest honowanie?

A. metoda obróbki wygładzającej
B. metoda obróbki chemicznej
C. metoda obróbki plastycznej
D. metoda obróbki cieplnej
Honowanie to proces obróbczy, który ma na celu wygładzenie i poprawę jakości wykończenia powierzchni w otworach cylindrycznych, jak również w innych kształtach. Używa się go głównie do osiągania wysokiej precyzji wymiarowej i gładkości powierzchni, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak produkcja silników, skrzyń biegów, czy elementów hydraulicznych. Proces honowania polega na użyciu narzędzi skrawających, które wykonują ruch posuwisto-zwrotny, co pozwala na usunięcie mikrowad i nadmiaru materiału. Przykłady zastosowania honowania obejmują przygotowanie otworów cylindrycznych w silnikach spalinowych, gdzie wymagana jest duża dokładność, oraz w produkcji wałów korbowych. Zgodnie z dobrymi praktykami branżowymi, honowanie jest realizowane na maszynach honujących, które są zaprojektowane tak, aby zapewnić stałą kontrolę nad parametrami obróbczy, co przekłada się na powtarzalność i jakość wytwarzanych elementów. W standardach przemysłowych, takich jak ISO 9001, honowanie jest uznawane za kluczowy proces w utrzymaniu wysokiej jakości produkcji.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.