Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 kwietnia 2025 08:58
  • Data zakończenia: 3 kwietnia 2025 09:13

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. pianowej
C. proszkowej
D. halonowej
Gaśnica pianowa jest odpowiednia do gaszenia pożarów instalacji elektrycznych, ponieważ nie przewodzi prądu. W przypadku pożaru w instalacji elektrycznej, kluczowym aspektem jest unikanie używania środków gaśniczych, które mogą przewodzić prąd, co może prowadzić do porażenia prądem oraz dodatkowego zagrożenia pożarowego. Standardy ochrony przeciwpożarowej zalecają stosowanie gaśnic pianowych, które tworzą warstwę piany, izolując ogień od tlenu, co skutecznie gasi ogień. Przykładem zastosowania gaśnicy pianowej może być sytuacja, w której dochodzi do zapalenia się przewodów elektrycznych w obiektach przemysłowych. W takich przypadkach, użycie gaśnicy pianowej nie tylko jest zgodne z zasadami bezpieczeństwa, ale również jest skuteczne w ograniczaniu skutków pożaru. Zgodnie z normami, w budynkach użyteczności publicznej oraz w różnych obiektach przemysłowych powinny być dostępne gaśnice pianowe, które są przeszkolone do użycia przez pracowników, co zwiększa bezpieczeństwo w razie zagrożenia.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Aby określić charakterystykę diody prostowniczej, konieczne jest użycie zasilacza, amperomierza oraz

A. oscyloskopu
B. amperometru
C. generatora
D. woltomierza
Aby wyznaczyć charakterystykę diody prostowniczej, niezbędne jest mierzenie napięcia oraz prądu, które są kluczowymi parametrami do określenia jej właściwości. Woltomierz służy do pomiaru napięcia na diodzie, natomiast amperomierz do pomiaru prądu przepływającego przez nią. Te dwa pomiary są niezbędne do skonstruowania charakterystyki prądowo-napięciowej (I-V), która obrazowo pokazuje, jak dioda reaguje na różne wartości napięcia i prądu. Zrozumienie tej charakterystyki jest istotne w zastosowaniach inżynieryjnych, ponieważ pozwala na dobór odpowiednich komponentów w obwodach elektronicznych, takich jak zasilacze czy układy prostownicze. W praktyce, dobry woltomierz powinien mieć odpowiednią klasę dokładności, aby zapewnić precyzyjne pomiary, co jest zgodne z najlepszymi praktykami w branży elektronicznej, gdzie jakość i dokładność pomiarów są kluczowe dla prawidłowego działania urządzeń.

Pytanie 6

Jaką liczbę wyjść ma konwerter TWIN?

A. jedno wyjście
B. dwa wyjścia
C. cztery wyjścia
D. osiem wyjść
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 7

Nagłe zmiany temperatury (np. z powodu pieców czy otwartych okien) mogą powodować zakłócenia w działaniu detektora umieszczonego w jego pobliżu?

A. dymu
B. światła
C. czadu
D. ruchu
Wybór dymu, światła lub czadu jako odpowiedzi na pytanie o wpływ gwałtownych zmian temperatury na detektory nie oddaje rzeczywistego mechanizmu działania tych urządzeń. Detektory dymu działają na zupełnie innych zasadach, najczęściej polegających na wykrywaniu cząsteczek dymu w powietrzu, co czyni je mniej wrażliwymi na zmiany temperatury. Takie detektory mają swoje specyficzne wymagania dotyczące instalacji, które są bardziej związane z wentylacją i obecnością źródeł dymu, a nie z nagłymi skokami temperatury. Podobnie, detektory światła bazują na fotokomorze, która reaguje na natężenie światła, a więc ich działanie nie jest bezpośrednio związane z temperaturą otoczenia. W przypadku detektorów czadu, ich funkcjonalność opiera się na pomiarze stężenia tlenku węgla, a nie na zmianach temperatury. Typowym błędem myślowym jest mylenie różnych typów detektorów i ich zasad działania. Aby skutecznie zainstalować systemy alarmowe, kluczowe jest zrozumienie, jakie czynniki wpływają na ich działanie, co jest istotne nie tylko dla zapewnienia bezpieczeństwa, ale także dla efektywności operacyjnej całego systemu. Zarówno normy, jak i dobre praktyki w branży zabezpieczeń podkreślają znaczenie dobrego doboru i rozmieszczenia detektorów, aby maksymalizować ich skuteczność w odpowiednich warunkach.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Na podstawie informacji zawartych w tabeli pomiarowej, oszacuj wzmocnienie napięciowe KUMAX dla częstotliwości środkowej fO=260 Hz? Uwej=200mV

f[Hz]4080100140180220260
Uwyj
[V]
0,410,821,21,411,922,12,40
f[Hz]300340380420460500540
Uwyj
[V]
2,21,921,431,20,820,420,22

A. KUMAX = 24 V/V
B. KUMAX = 12 V/V
C. KUMAX = 2,4 V/V
D. KUMAX = 260 V/V
Wybór odpowiedzi innej niż KUMAX = 12 V/V może wynikać z kilku nieporozumień dotyczących pomiarów wzmocnienia napięciowego. Na przykład, jeżeli ktoś obliczał wzmocnienie na podstawie niewłaściwych wartości napięcia, mógł dojść do błędnych wniosków. W przypadku pomiaru wzmocnienia ważne jest, aby korzystać z dokładnych danych, w tym właściwych wartości napięcia wejściowego i wyjściowego. Użycie napięcia wyjściowego 2,4 V w połączeniu z napięciem wejściowym 200 mV jest kluczowe, a błędne wartości mogą prowadzić do znaczących różnic w obliczeniach. Przykładowe pomyłki to mylenie jednostek – np. przeliczenie napięcia z miliwoltów na wolty lub odwrotnie, co może prowadzić do znacznych błędów w obliczeniach. Ważne jest również zrozumienie, że wzmocnienie napięciowe nie jest stałe dla wszystkich częstotliwości; może się zmieniać w zależności od charakterystyki układu oraz zastosowanych komponentów. Niekiedy osoby oceniające wzmocnienie mogą również zapominać, że wzmocnienie napięciowe jest wartością bezwymiarową, co oznacza, że nie wiąże się z jednostkami, a jego interpretacja wymaga starannego podejścia do analizy sygnałów. Dlatego kluczowe jest przeanalizowanie wszystkich danych i zastosowanie odpowiednich metod obliczeniowych, aby uzyskać prawidłowy wynik.

Pytanie 11

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
B. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
C. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
D. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa B
B. Klasa A
C. Klasa AB
D. Klasa C
Wzmacniacze klasy C są projektowane głównie do pracy w aplikacjach radiowych, gdzie sygnały są modulowane i nie wypadają w zakresie akustycznym. Ich struktura bazuje na pracy w trybie nasycenia, co oznacza, że przełączają się w stan aktywny na krótki czas, co prowadzi do znacznych zniekształceń nieliniowych. Dlatego nie nadają się do wzmacniania sygnałów akustycznych, które wymagają wysokiej jakości i minimalnych zniekształceń. W praktyce, wzmacniacze klasy C są używane w nadajnikach FM oraz w aplikacjach RF, gdzie istotne jest uzyskanie wysokiej efektywności i mocy wyjściowej, jednak zniekształcenia sygnału mogą być tolerowane. W kontekście audio, najlepszym wyborem są wzmacniacze klasy A lub AB, które oferują znacznie lepszą linearność i niższe zniekształcenia, co jest zgodne z dobrymi praktykami w produkcji sprzętu audio.

Pytanie 14

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmW
B. dBµV
C. dBµΩ
D. dBmA
Odpowiedzi dBmW, dBµΩ i dBmA są nieprawidłowe w kontekście pomiaru poziomu sygnału w gniazdku abonenckim TV naziemnej, ponieważ każda z tych jednostek odnosi się do innych parametrów elektrycznych. dBmW oznacza decybele miliwatów, co jest jednostką mocy. Choć moc sygnału jest istotna, to w kontekście telewizji naziemnej istotniejszy jest poziom napięcia sygnału, który jest mierzony w dBµV. Użycie mocy w miliwatach do określenia jakości sygnału telewizyjnego prowadzi do nieporozumień, ponieważ poziom sygnału odbieranego przez antenę jest ściśle związany z napięciem a nie z mocą. dBµΩ to jednostka oporu, a jej zastosowanie w kontekście telewizyjnym byłoby niewłaściwe, ponieważ nie ma bezpośredniego związku z jakością sygnału. Z kolei dBmA, czyli decybele miliamperów, odnosi się do pomiaru prądu, co również nie ma zastosowania w kontekście oceny sygnału telewizyjnego. Pojmowanie parametrów elektrycznych w niewłaściwym kontekście może prowadzić do błędnych wniosków podczas instalacji i konfiguracji systemów odbioru telewizyjnego. Dlatego kluczowe jest zrozumienie, że do pomiaru jakości sygnału telewizyjnego należy używać jednostki dBµV, która jest standardem w branży telekomunikacyjnej.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. niesymetryczne (unbalanced)
B. symetryczne (balanced)
C. sygnalizacyjne YKSwXs
D. sygnalizacyjne YKSY
Odpowiedź "symetryczne (balanced)" jest poprawna, ponieważ w przypadku połączeń znacznie odległych urządzeń akustycznych ważne jest minimalizowanie zakłóceń elektromagnetycznych oraz strat sygnału. Kable symetryczne są zaprojektowane w taki sposób, że wykorzystują dwa przewody do przesyłania sygnału, co pozwala na zniesienie zakłóceń dzięki różnicy potencjałów między nimi. W praktyce oznacza to, że sygnał przesyłany jest w formie różnicy napięć, co czyni go odpornym na wpływ zewnętrznych źródeł zakłóceń, takich jak inne urządzenia elektroniczne czy linie energetyczne. Przykładem zastosowania kabli symetrycznych są profesjonalne systemy nagłośnieniowe, gdzie długie odległości pomiędzy mikrofonami a mikserami wymagają wysokiej jakości przesyłu dźwięku bez straty jego integralności. W branży audio standardem jest używanie kabli XLR, które są typowymi kablami symetrycznymi, zapewniającymi niezawodność i wysoką jakość dźwięku. Znajomość tych aspektów jest niezbędna dla każdego technika dźwięku, aby zapewnić optymalne działanie systemów akustycznych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. stosunku sygnału do szumu
B. współczynnika błędów modulacji
C. przesunięcia fazowego
D. bitowej stopy błędów
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. zestawić z tunerem satelitarnym.
B. połączyć go z Internetem.
C. włożyć nośnik USB.
D. spiąć z odtwarzaczem Blu-ray.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 22

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. niesymetryczne (unbalanced)
B. sygnalizacyjne YKSwXs
C. symetryczne (balanced)
D. sygnalizacyjne YKSY
Wybór kabli niesymetrycznych, takich jak kable unbalanced, do długodystansowych połączeń akustycznych jest podejściem niezalecanym. Kable te charakteryzują się prostszą konstrukcją, z jednym przewodem sygnałowym i ekranem, co czyni je bardziej podatnymi na zakłócenia elektromagnetyczne. W praktyce oznacza to, że sygnał przesyłany przez kable niesymetryczne może ulegać degradacji na długich trasach, co skutkuje utratą jakości dźwięku, szumami i innymi niepożądanymi efektami akustycznymi. W kontekście standardów branżowych, takie podejście może być stosowane tylko na krótkich dystansach, na przykład w połączeniach między urządzeniami audio znajdującymi się blisko siebie. Odpowiedzi wskazujące na kable sygnalizacyjne YKSwXs i YKSY również nie są prawidłowe, ponieważ chociaż mogą mieć zastosowanie w specyficznych sytuacjach, nie są one zaprojektowane z myślą o eliminacji zakłóceń na dużych odległościach. W rezultacie, stosowanie tych typów kabli w długodystansowych połączeniach akustycznych naraża system na szereg problemów związanych z jakością dźwięku, co jest podstawowym błędem myślowym w kontekście profesjonalnych instalacji audio.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i wyższej mocy
B. o niższej rezystancji i tej samej mocy
C. o identycznej rezystancji i niższej mocy
D. o wyższej rezystancji i tej samej mocy
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 27

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
B. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
C. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
D. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
Odpowiedzi wskazujące na inne funkcje zwrotnicy antenowej są błędne i wynikają z nieporozumień dotyczących jej rzeczywistego zastosowania. Rozdzielanie sygnału telewizyjnego na kilka odbiorników nie jest zadaniem zwrotnicy, lecz rozdzielacza sygnału, który ma na celu dostarczenie tego samego sygnału do wielu urządzeń. Z kolei przesuwanie pasma częstotliwości sygnału telewizji satelitarnej jest funkcjonalnością, która dotyczy konwerterów LNB, a nie zwrotnic. Umożliwienie podłączenia anteny z wyjściem symetrycznym do asymetrycznego wejścia w odbiorniku telewizyjnym jest również błędnym stwierdzeniem, ponieważ do tego celu stosuje się transformator impedancji, a nie zwrotnicę. Takie nieporozumienia mogą prowadzić do nieefektywnego projektu instalacji antenowej, co skutkuje nie tylko pogorszeniem jakości sygnału, ale również problemami z kompatybilnością urządzeń. Dlatego ważne jest, aby zrozumieć specyfikę tych elementów systemu antenowego oraz zasady ich poprawnej pracy, co pozwala na stworzenie wydajnej i niezawodnej instalacji. W praktyce, dobór odpowiednich komponentów oraz ich prawidłowe zastosowanie zgodnie z normami branżowymi jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie jest zadanie konwertera satelitarnego?

A. przekazywanie sygnału z satelity do odbiornika satelitarnego
B. przesyłanie sygnału z odbiornika satelitarnego do satelity
C. regulacja napięcia w obwodzie antenowym
D. dopasowywanie reaktancji anteny satelitarnej
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 30

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. telewizji dozorowej
B. instalacji antenowej
C. sieci komputerowej
D. systemu alarmowego
Mierniki błędów, takie jak BER, są narzędziami specyficznymi dla transmisji danych, co może prowadzić do nieporozumień dotyczących ich zastosowania w różnych systemach. Na przykład, systemy alarmowe, które opierają się na sygnałach analogowych lub cyfrowych, nie korzystają bezpośrednio z pomiaru BER, ponieważ ich skuteczność jest częściej oceniana na podstawie niezawodności sygnału i czasu reakcji. W przypadku sieci komputerowych, chociaż jakość transferu danych może być istotna, to bardziej odpowiednie do oceny tych systemów są wskaźniki takie jak straty pakietów, opóźnienia czy pasmo. W telewizji dozorowej, z kolei, kluczowym czynnikiem jest jakość obrazu i dźwięku, a nie bezpośrednio miara błędów bitowych. W instalacjach antenowych, gdzie BER rzeczywiście jest istotnym wskaźnikiem, inne systemy, takie jak alarmowe czy telewizji dozorowej, mają swoje specyficzne metody oceny jakości sygnału. Typowe błędy myślowe mogą obejmować mylenie funkcji różnych urządzeń pomiarowych oraz zastosowanie ich w niewłaściwych kontekstach, co może prowadzić do nieefektywnego diagnozowania problemów i obniżenia wydajności systemu. Właściwe zrozumienie roli, jaką BER odgrywa w określonych instalacjach, jest kluczowe dla skutecznego zarządzania i utrzymania jakości usług.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na podstawie dołączonej tabeli określ, ile powinno wynosić natężenie oświetlenia na stanowisku pracy przy wykonywaniu precyzyjnych czynności montażowych układów mikroelektronicznych.

Działalność przemysłowa i rzemieślnicza –
Przemysł elektrotechniczny i elektroniczny
Typ obszaru, zadanie lub działalnośćWymagane natężenie oświetlenia, lx
Produkcja kabli i przewodów300
Uzwojenie:
– duże cewki
– średnie cewki
– małe cewki

300
500
750
Impregnacja cewek300
Galwanizowanie300
Montaż:
– zgrubny, np. duże transformatory,
– średni, np. tablice rozdzielcze
– dokładny, np. telefony, radia, sprzęt IT (komputery)
– precyzyjny, np. sprzęt pomiarowy, płytki obwodów drukowanych

300
500
750
1000
Warsztaty elektroniczne, sprawdzanie, regulacja1500

A. 1500 lx
B. 750 lx
C. 1000 lx
D. 500 lx
Wybrana odpowiedź 1000 lx jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, takimi jak PN-EN 12464-1, natężenie oświetlenia na stanowiskach pracy, gdzie wykonywane są precyzyjne czynności montażowe, powinno wynosić właśnie 1000 lx. W przypadku pracy z układami mikroelektronicznymi, na przykład podczas montażu płytek obwodów drukowanych, niewłaściwe natężenie oświetlenia może prowadzić do uszkodzeń komponentów lub błędów w montażu. Odpowiednie natężenie pozwala na dokładne dostrzeganie detali oraz minimalizuje ryzyko zmęczenia wzroku, co jest kluczowe w pracy wymagającej wysoce precyzyjnych działań. Ponadto, odpowiednie oświetlenie przyczynia się do ogólnej poprawy komfortu i efektywności pracy, co jest istotne dla jakości wytwarzanych produktów. Przykłady zastosowań obejmują prace w laboratoriach i zakładach produkcyjnych, gdzie błędy mogą prowadzić do poważnych konsekwencji finansowych i reputacyjnych.

Pytanie 38

Czy światło słoneczne może doprowadzić do utraty danych w pamięci rodzaju

A. SDRAM
B. EPROM
C. EEPROM
D. DRAM
EPROM (Erasable Programmable Read-Only Memory) to rodzaj pamięci, która może być programowana oraz kasowana za pomocą światła ultrafioletowego. W przeciwieństwie do pamięci EEPROM czy DRAM, EPROM jest pamięcią nieulotną, co oznacza, że zachowuje swoje dane nawet po odłączeniu zasilania. Jednakże, jej zawartość można usunąć poprzez wystawienie na działanie promieniowania UV. To sprawia, że EPROM jest stosunkowo łatwa do kasowania i programowania, co jest przydatne w aplikacjach, gdzie dane muszą być często aktualizowane, ale również wymagają długoterminowego przechowywania. Przykład zastosowania EPROM to w systemach wbudowanych, gdzie może być używana do przechowywania oprogramowania, które wymaga aktualizacji. W branży elektronicznej, standardy zalecają stosowanie pamięci EPROM w urządzeniach, które nie wymagają częstej wymiany danych, ale potrzebują elastyczności w programowaniu. Cały proces programowania i kasowania jest zgodny z dobrymi praktykami inżynierskimi, zapewniając długowieczność i niezawodność sprzętu.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.