Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 6 czerwca 2025 02:03
  • Data zakończenia: 6 czerwca 2025 02:11

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Utrzymanie równomiernego ciśnienia w gazowym zbiorniku można osiągnąć poprzez składowanie biogazu z wykorzystaniem

A. zbiornika komory fermentacyjnej
B. dzwonu gazowego
C. zbiornika ciśnieniowego
D. zbiornika niskociśnieniowego
Pojemnik komory gnilnej, zbiornik ciśnieniowy i zbiornik niskociśnieniowy to rozwiązania, które mają swoje specyficzne zastosowania, ale nie są optymalne do utrzymania stałego ciśnienia w kontekście magazynowania biogazu. Pojemnik komory gnilnej to element, w którym zachodzi proces fermentacji beztlenowej, jednak nie jest on zaprojektowany do regulacji ciśnienia w sposób ciągły. Jego głównym celem jest zapewnienie odpowiednich warunków do przetwarzania materiału organicznego, ale nie kontrolowania gazu wytwarzanego w tym procesie. Zbiornik ciśnieniowy, z drugiej strony, wymaga skomplikowanych systemów zabezpieczeń i regulacji, aby uniknąć niebezpieczeństw związanych z nadmiernym ciśnieniem. Utrzymanie biogazu pod ciśnieniem wiąże się z ryzykiem eksplozji, co czyni to podejście nieodpowiednim dla stabilnego magazynowania. Zbiornik niskociśnieniowy również nie jest w stanie efektywnie zarządzać ciśnieniem, co prowadzi do problemów z wypuszczaniem gazu i może skutkować stratami materiałowymi. Kluczowym błędem jest myślenie, że te zbiorniki mogą pełnić taką samą funkcję jak dzwon gazowy, co ignoruje ich podstawowe różnice i ograniczenia w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 2

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kolektora słonecznego hybrydowego
B. kolektora rurowego próżniowego
C. kotła dwufunkcyjnego
D. pompy ciepła multi-split
Propozycje, takie jak kocioł dwufunkcyjny, pompa ciepła multi-split oraz kolektor rurowy próżniowy, nie są odzwierciedleniem nowoczesnych potrzeb w zakresie jednoczesnego pozyskiwania energii elektrycznej i ciepła ze źródeł odnawialnych. Kocioł dwufunkcyjny, mimo że potrafi efektywnie ogrzewać wodę i pomieszczenia, nie jest zaprojektowany do produkcji energii elektrycznej. Zwykle wykorzystuje paliwa kopalne, co jest sprzeczne z ideą wykorzystywania odnawialnych źródeł energii. Pompa ciepła multi-split, choć efektywna w pozyskiwaniu energii cieplnej z otoczenia, również koncentruje się na ogrzewaniu i chłodzeniu, a nie na wytwarzaniu energii elektrycznej. Kolektor rurowy próżniowy jest doskonały do produkcji ciepła, zwłaszcza w warunkach niskich temperatur, jednak nie generuje energii elektrycznej. Typowe błędy myślowe prowadzące do takich wniosków to mylenie funkcji i zastosowań różnych technologii OZE oraz brak zrozumienia, że dla efektywnej produkcji energii elektrycznej potrzebne są urządzenia, które mogą zarówno produkować prąd, jak i ciepło, jak właśnie kolektory hybrydowe, a nie jedynie koncentrować się na jednym z tych aspektów.

Pytanie 3

Jakie cechy posiada słoma jako biopaliwo?

A. wysoka odporność na wilgoć
B. niska kaloryczność wynosząca około 15 MJ/kg
C. duża kaloryczność wynosząca około 25 MJ/kg
D. znaczna emisja CO2 do atmosfery podczas spalania
Słoma jako biopaliwo wykazuje niską kaloryczność, oscylującą wokół 15 MJ/kg, co czyni ją mniej efektywnym źródłem energii w porównaniu do innych biopaliw, takich jak drewno czy pelet, które mogą osiągać wartość do 25 MJ/kg. To ograniczenie kaloryczności sprawia, że jej użycie w instalacjach energetycznych wymaga dostosowania technologii spalania oraz efektywnego zarządzania surowcem. Przykładowo, w piecach przemysłowych z odpowiednimi systemami odzysku ciepła, słoma może być wykorzystana w procesach produkcyjnych, takich jak suszenie czy ogrzewanie w zakładach przetwórstwa rolno-spożywczego. Zgodnie z normami dotyczącymi biopaliw, kluczowe jest także uwzględnienie aspektów ekologicznych, takich jak zmniejszenie emisji CO2 w porównaniu do paliw kopalnych, co czyni słomę atrakcyjnym rozwiązaniem w kontekście zrównoważonego rozwoju i ochrony środowiska. W praktyce, wybór słomy jako paliwa powinien być poprzedzony szczegółową analizą lokalnych warunków oraz dostępności surowca, co jest zgodne z dobrą praktyką branżową.

Pytanie 4

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. nieodnawialnej
B. petrotermalnej
C. konwencjonalnie nieodnawialnej
D. hydrotermalnej
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 5

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. aluminium lub miedzi
B. aluminium lub mosiądzu
C. plastiku lub stali
D. miedzi lub żeliwa
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 6

Aby w zbiorniku buforowym umożliwić dostarczanie na różnych poziomach czynnika o określonej temperaturze, trzeba zainstalować

A. stratyfikator
B. zespół pompowy
C. odpowietrznik
D. regulator przepływu
Odpowietrznik nie jest urządzeniem przystosowanym do regulacji poziomów temperatury czynnika w zbiorniku buforowym. Jego podstawowym zadaniem jest eliminacja powietrza z systemów hydraulicznych, co jest istotne w zapobieganiu uszkodzeniom pomp i innych elementów układu. Odpowietrzniki działają na zasadzie automatycznego usuwania powietrza, ale nie wpływają na temperaturową stratygrafię cieczy w zbiorniku, co czyni je niewłaściwym wyborem w kontekście tego pytania. Regulator przepływu z kolei służy do kontrolowania ilości przepływającego czynnika, co może wpływać na jego temperaturę, ale nie zapewnia stratyfikacji i nie pozwala na jednoczesne przechowywanie cieczy o różnych temperaturach. To podejście do zarządzania systemem wodnym jest ograniczone i nieefektywne w kontekście złożonych instalacji. Zespół pompowy, pomimo że jest kluczowym elementem systemu hydraulicznego, również nie spełnia wymogów dotyczących temperatury czynnika w zbiorniku buforowym. Pompy odpowiadają za cyrkulację medium, ale nie są w stanie segregować cieczy według temperatury, co jest niezbędne w kontekście stratyfikacji. Błąd w myśleniu polega na myleniu roli poszczególnych komponentów w systemie, co prowadzi do nieefektywnej konfiguracji instalacji, niezgodnej z zasadami inżynierii cieplnej oraz najlepszymi praktykami projektowymi.

Pytanie 7

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło woda, gromadzenie energii powietrze
B. dolne źródło solanka, gromadzenie energii powietrze
C. dolne źródło woda, gromadzenie energii woda
D. dolne źródło powietrze, gromadzenie energii woda
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 8

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. niewystarczająca temperatura czynnika roboczego
B. niedostateczna pojemność naczynia przeponowego
C. nadmierne natężenie przepływu płynu solarnego
D. niskie natężenie przepływu płynu solarnego
Zawór bezpieczeństwa w instalacji grzewczej jest kluczowym elementem, który zapewnia ochronę układu przed nadmiernym ciśnieniem. W przypadku, gdy pojemność naczynia przeponowego jest niewystarczająca, może dojść do nadmiernego wzrostu ciśnienia w układzie, co skutkuje wypływem czynnika grzewczego z zaworu bezpieczeństwa. Naczynie przeponowe ma za zadanie kompensować zmiany objętości płynów w systemie w wyniku podgrzewania, a zbyt mała jego pojemność nie jest w stanie skutecznie zniwelować tych zmian, co prowadzi do niebezpiecznych sytuacji. Na przykład, w systemach słonecznych, gdzie ciepło generowane jest intensywnie, odpowiednia pojemność naczynia przeponowego jest niezbędna, aby zapobiec nadmiernemu wzrostowi ciśnienia. Standardy branżowe, takie jak normy PN EN 12828, podkreślają znaczenie prawidłowego wymiarowania naczynia przeponowego. Dlatego warto regularnie kontrolować pojemność naczynia oraz jego stan techniczny, aby zapewnić bezpieczeństwo i efektywność całego systemu grzewczego.

Pytanie 9

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. biogazowni
B. pompy ciepła
C. turbiny wodnej
D. elektrowni wiatrowej
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 10

Na podstawie danych zawartych w tabeli wskaż wartość całkowitego rocznego zużycia ciepła.

WielkośćWartośćJednostka miary
Ogrzewana powierzchnia150
Średnia wysokość pomieszczeń2,6m
Jednostkowe zapotrzebowanie na moc cieplną50W/m²
Zapotrzebowanie na moc do ogrzewania7,5kW
Jednostkowe zużycie ciepła do ogrzewania120kWh/(m²·a)
Roczne zużycie ciepła do ogrzewania18 000kWh/a
Liczba mieszkańców4-
Obliczeniowe zużycie c.w.u.55dm³/(osoba·d)
Roczne zużycie c.w.u.80
Roczne zużycie ciepła do przygotowania c.w.u.3600kWh/a

A. 18 000 kWh/a
B. 3 600 kWh/a
C. 21 600 kWh/a
D. 7,5 kW/a
No dobra, 21 600 kWh/a to rzeczywiście poprawna odpowiedź. To wynik, który dostajemy, gdy sumujemy dwa kluczowe elementy, czyli zużycie na ogrzewanie i ciepłą wodę użytkową. W praktyce, te obliczenia są mega ważne do oceny efektywności energetycznej budynków. Są też zgodne z normami, takimi jak PN-EN 12831, która mówi o tym, jak obliczać zapotrzebowanie na ciepło. Pamiętaj, że musisz uwzględnić wszystkie źródła ciepła i potrzeby użytkowników, żeby lepiej oszacować całkowite zużycie energii. Fajnie też zwrócić uwagę na izolację termiczną i nowoczesne systemy grzewcze, bo to może mocno pomóc zmniejszyć roczne zużycie energii. A tak w ogóle? Dobre zarządzanie zużyciem energii i optymalizacja systemów grzewczych to też kroki w stronę redukcji emisji CO2, co jest zgodne z globalnymi celami zrównoważonego rozwoju.

Pytanie 11

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. końcowy
B. inwestorski
C. powykonawczy
D. ofertowy
Kosztorys końcowy, powykonawczy i inwestorski to terminy, które często mylone są z kosztorysem ofertowym, jednak nie pełnią one tej samej funkcji. Kosztorys końcowy jest dokumentem, który powstaje po zakończeniu realizacji projektu i zawiera ostateczne zestawienie kosztów, które mogą różnić się od szacunków przedstawionych wcześniej. Jego rola polega na podsumowaniu wydatków oraz ocenie budżetu projektu, a nie na pomocy w początkowej fazie planowania. Kosztorys powykonawczy, z kolei, ma na celu przedstawienie szczegółowych kosztów po zakończeniu robót i jest używany do rozliczenia z wykonawcą. W praktyce, nie można go zastosować w momencie, gdy inwestor dopiero rozważa podjęcie decyzji o inwestycji. Kosztorys inwestorski jest z kolei narzędziem, które skupia się na analizie opłacalności inwestycji, jednak również nie jest używany w fazie ofertowania. Typowe błędy myślowe, które prowadzą do wyboru tych nieprawidłowych odpowiedzi, obejmują mylenie etapu projektowania z etapem realizacji oraz nieznajomość różnic pomiędzy poszczególnymi rodzajami kosztorysów. Aby skutecznie ocenić koszty inwestycji, niezbędne jest zrozumienie, że kosztorys ofertowy jest nie tylko pierwszym krokiem w procesie, ale także kluczowym narzędziem w negocjacjach z wykonawcami oraz w planowaniu finansowym.

Pytanie 12

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Powykonawczego
B. Inwestorskiego
C. Zamiennego
D. Ofertowego
To trochę mylna informacja, bo przyjmowanie, że to wykonawca robi kosztorys inwestorski, jest błędne. W końcu to zadanie inwestora. Kosztorys zamienny, na przykład, to coś, co przygotowuje wykonawca tylko wtedy, gdy coś w projekcie trzeba zmienić. Z kolei kosztorys ofertowy to propozycja wykonawcy za wykonanie robót, co jest dość istotne w przetargach. Nie zapominajmy też o kosztorysach powykonawczych, które dokumentują rzeczywiste wydatki w trakcie realizacji projektu. Zrozumienie, jaka jest rola każdego rodzaju kosztorysu w budowlance, jest kluczowe, żeby uniknąć nieporozumień. Kosztorysy to nie tylko narzędzia finansowe, ale też pomagają w zarządzaniu jakością i efektywnością prac budowlanych. Ważne, żeby były robione według norm, bo to zapewnia ich wiarygodność w analizach ekonomicznych projektów budowlanych.

Pytanie 13

Jakie oznaczenie wskazuje, że produkt jest odporny na pył i wodę oraz zabezpieczony przed wodnym strumieniem pod dowolnym kątem?

A. IP44
B. IP35
C. IP65
D. IP55
Oznaczenie IP65 wskazuje, że produkt jest w pełni chroniony przed pyłem oraz zraszaniem wodą z dowolnego kąta, co jest istotne w kontekście zastosowań zarówno w warunkach domowych, jak i przemysłowych. W standardzie IP, pierwszy cyfra (6) oznacza całkowitą ochronę przed pyłem, co jest kluczowe dla urządzeń używanych w środowiskach, gdzie zanieczyszczenia mogą wpływać na ich działanie. Druga cyfra (5) natomiast wskazuje, że urządzenie jest odporne na strumienie wody, co chroni je przed uszkodzeniami w przypadku deszczu lub kontaktu z wodą. Przykładowo, produkty z oznaczeniem IP65 są powszechnie wykorzystywane w oświetleniu ogrodowym, systemach monitoringu oraz w urządzeniach elektronicznych stosowanych na zewnątrz, gdzie narażone są na zmienne warunki atmosferyczne. Dostosowanie się do norm IP jest podstawowym elementem projektowania urządzeń, które mają zapewnić bezpieczeństwo i trwałość w trudnych warunkach eksploatacji.

Pytanie 14

Rury wykonane z PVC są oznaczane literami

A. PP
B. PE
C. PB
D. PCV
Rury wykonane z polichlorku winylu, oznaczane jako PCV, są powszechnie stosowane w różnych zastosowaniach inżynieryjnych i budowlanych. Polichlorek winylu jest materiałem o wysokiej odporności chemicznej oraz trwałości, co czyni go idealnym wyborem do transportu wody, kanalizacji, a także systemów elektrycznych, gdzie rury PCV są wykorzystywane jako osłony przewodów. Zgodnie z normami EN 1452 i EN 1401, rury PCV muszą spełniać określone standardy dotyczące ich wytrzymałości i szczelności, co zapewnia ich niezawodne działanie przez wiele lat. Dodatkowo, rury te są łatwe w montażu i mają niską wagę, co ułatwia transport oraz instalację. Przykładem zastosowania rur PCV jest ich wykorzystanie w systemach wodociągowych oraz w instalacjach sanitarnych, gdzie ich właściwości odpornościowe na korozję oraz działanie chemikaliów są niezwykle istotne.

Pytanie 15

Jakie urządzenie jest używane do pomiaru natężenia przepływu czynnika roboczego w słonecznej instalacji grzewczej?

A. refraktometr
B. higrometr
C. manometr
D. rotametr
Rotametr jest przyrządem pomiarowym, który służy do określenia natężenia przepływu cieczy lub gazów w instalacjach przemysłowych, w tym w słonecznych systemach grzewczych. Działa na zasadzie pomiaru przepływu w odpowiednio ukształtowanej rurze, w której porusza się pływak. Wraz ze wzrostem natężenia przepływu pływak unosi się wyżej w rurze, co jest wskaźnikiem przepływu. Rotametry są szeroko stosowane w różnych branżach, w tym w energetyce odnawialnej, gdzie precyzyjny pomiar przepływu czynnika roboczego jest kluczowy dla efektywności systemu. W kontekście instalacji solarnych, rotametry mogą pomóc w optymalizacji wydajności, zapewniając, że odpowiednia ilość medium roboczego przepływa przez kolektory słoneczne, co ma bezpośredni wpływ na efektywność konwersji energii słonecznej na ciepło. Dobrą praktyką jest regularne kalibrowanie rotametrów oraz monitorowanie ich stanu technicznego, aby zapewnić dokładne pomiary i zapobiec ewentualnym awariom systemu.

Pytanie 16

Jakie jest uboczne wytwarzanie podczas produkcji biodiesla?

A. etanol
B. glikol
C. gliceryna
D. metanol
Odpowiedzi etanol, glikol oraz metanol nie są poprawnymi odpowiedziami na pytanie dotyczące produktów ubocznych w produkcji biodiesla, gdyż nie odpowiadają one rzeczywistości procesu transestryfikacji. Etanol, jako jeden z najczęściej używanych alkoholi, stanowi reagent w procesie produkcji biodiesla, a nie produkt uboczny. Wykorzystanie etanolu w produkcji biodiesla jest zgodne z praktykami zrównoważonego rozwoju, ponieważ jest on wytwarzany z biomasy, co pozwala na redukcję emisji gazów cieplarnianych. Z kolei glikol, będący substancją chemiczną, jest używany w różnych procesach przemysłowych, ale nie w produkcji biodiesla. W wielu przypadkach glikol jest stosowany jako środek przeciw zamarzaniu lub w produkcji tworzyw sztucznych, co czyni go nieadekwatnym do kontekstu produkcji biodiesla. Metanol, podobnie jak etanol, jest reagentem w procesie produkcji biodiesla, a nie produktem ubocznym. Jest to substancja silnie toksyczna, co stawia dodatkowe wyzwania w zakresie bezpieczeństwa. Kluczowym błędem przy interpretacji tego pytania może być mylenie reagentów z produktami ubocznymi, co jest nie tylko technicznie niepoprawne, ale również może prowadzić do nieefektywnego zarządzania procesem produkcji biodiesla. Aby zrozumieć właściwe zastosowanie każdej z tych substancji, ważne jest, aby przeanalizować każdy etap procesu produkcji biodiesla oraz znać ich rolę w kontekście technologicznym.

Pytanie 17

Aby ochronić kocioł na biomasę przed niską temperaturą czynnika powracającego z systemu c.o., należy zainstalować zawór

A. mieszający na powrocie z systemu.
B. mieszający na zasilaniu systemu.
C. termostatyczny przed grzejnikami c.o.
D. termostatyczny na powrocie z systemu c.o.
Wybór zaworu termostatycznego na powrocie z instalacji c.o. jest nieodpowiedni, ponieważ jego głównym zadaniem jest regulacja temperatury wody w systemie, a nie mieszanie jej z innymi strumieniami. Choć zawory termostatyczne kontrolują przepływ na podstawie temperatury, nie są wystarczające do ochrony kotła na biomasę przed niską temperaturą. Zawory mieszające, w przeciwieństwie do termostatycznych, mają na celu aktywne mieszanie wody o różnych temperaturach, co jest kluczowe w kontekście utrzymania stabilnej i odpowiedniej temperatury roboczej kotła. Podobnie, zastosowanie zaworu mieszającego na zasilaniu instalacji również nie rozwiązuje problemu, ponieważ ciepła woda z kotła powinna być odpowiednio schładzana, aby uniknąć przegrzania układu. Zawory termostatyczne przed grzejnikami c.o. również nie są odpowiednim rozwiązaniem, ponieważ działają na zasadzie regulacji lokalnych temperatur, a nie globalnej ochrony kotła. Zrozumienie funkcji różnych typów zaworów w kontekście instalacji grzewczych jest kluczowe dla efektywności systemu. Wybór niewłaściwego elementu może prowadzić do problemów z komfortem cieplnym i wydajnością energetyczną, co jest niezgodne z najlepszymi praktykami w branży grzewczej. Dlatego kluczowe jest, aby przed podjęciem decyzji o zastosowaniu konkretnego rozwiązania, dokładnie przeanalizować jego funkcjonalności i zastosowanie w kontekście całego systemu grzewczego.

Pytanie 18

Aby osiągnąć jak najlepszą efektywność całorocznej instalacji słonecznej do podgrzewania wody użytkowej w Polsce, kolektory powinny być ustawione pod kątem w stronę południową względem poziomu wynoszącym:

A. 70°
B. 45°
C. 90°
D. 20°
Ustawienie kolektorów słonecznych pod kątem 45° jest uznawane za najlepszą praktykę w Polsce, co wynika z potrzeb optymalizacji wydajności energetycznej. Kąt ten zbliża się do średniej szerokości geograficznej kraju, która wynosi około 52°, co przekłada się na maksymalne wykorzystanie promieniowania słonecznego w ciągu roku. Kolektory ustawione pod tym kątem efektywnie zbierają energię słoneczną, minimalizując straty związane z kątami padania promieni słonecznych w różnych porach roku. Dodatkowo, ustawienie pod kątem 45° korzystnie wpływa na śnieg i deszcz, ponieważ ułatwia ich zsuwanie się z powierzchni kolektorów, co zapewnia ich długotrwałą efektywność. W praktyce, instalacje orientowane na południe z takim kątem są w stanie zwiększyć wydajność systemu o około 10-15% w porównaniu do innych bardziej ekstremalnych kątów. Aby zapewnić sobie maksymalne korzyści, warto także zwrócić uwagę na lokalne warunki atmosferyczne oraz cienie od otaczających obiektów, co podkreśla znaczenie kompleksowego podejścia do projektowania systemów solarnych.

Pytanie 19

Do pomiaru mocy wyjściowej baterii słonecznej, o parametrach podanych w przedstawionej tabeli, należy zastosować

Parametry baterii słonecznej
Moc maksymalna, P max1951 V
Napięcie maksymalne (jałowe), Uoc45,5 V
Napięcie w punkcie mocy maksymalnej, Um36,9 V
Prąd zwarcia, Isc5,63 A
Prąd w punkcie mocy maksymalnej, Im5,37 A

A. amperomierz i woltomierz.
B. miernik natężenia oświetlenia.
C. miernik mocy promieniowania słonecznego.
D. mostek Graetza.
Odpowiedź "amperomierz i woltomierz" jest poprawna, ponieważ do pomiaru mocy wyjściowej baterii słonecznej kluczowe jest zmierzenie zarówno prądu, jak i napięcia w punkcie pracy systemu. Moc elektryczna jest definiowana jako iloczyn prądu (I) i napięcia (V), zgodnie ze wzorem P = I * V. Amperomierz, stosowany do pomiaru natężenia prądu, dostarcza informacji na temat ilości elektronów przepływających przez obwód, co jest kluczowe w kontekście wydajności baterii słonecznych. Z kolei woltomierz mierzy napięcie, które jest istotne dla określenia potencjału elektrycznego w obwodzie. Poprawne korzystanie z tych narzędzi pozwala nie tylko na określenie mocy wyjściowej, ale również na optymalizację pracy systemu fotowoltaicznego, co jest zgodne z najlepszymi praktykami w branży energetycznej. Użycie amperomierza i woltomierza umożliwia także monitorowanie parametrów pracy baterii w czasie rzeczywistym, co jest istotne dla zapewnienia ich długotrwałej efektywności.

Pytanie 20

Łopaty wirnika turbiny wiatrowej o mocy 3,5 MW powinny być wytwarzane

A. ze stali
B. z aluminium
C. z miedzi
D. z włókien szklanych
Łopaty wirników w turbinach wiatrowych z włókien szklanych to naprawdę dobry wybór. Mają świetne właściwości mechaniczne i aerodynamiczne. Włókna szklane są super lekkie, a mimo to bardzo wytrzymałe, co pozwala na zrobienie dużych łopat, które nie ważą zbyt dużo. To ważne, bo dzięki temu turbina mniej się obciąża i działa lepiej. Dodatkowo, te włókna są odporne na różne niekorzystne warunki, jak deszcz czy słońce, co sprawia, że łopaty są trwałe i niezawodne przez długi czas. Wiesz, normy IEC mówią, żeby stosować kompozyty, w tym włókna szklane, by osiągnąć najlepsze wyniki. Przykłady to nowoczesne turbiny, które muszą być zarówno wydajne, jak i bezpieczne w eksploatacji.

Pytanie 21

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Frezu
B. Tarnika
C. Gratownika
D. Nażynki
Gratownik jest narzędziem zaprojektowanym specjalnie do usuwania zadziorów oraz nierówności na krawędziach materiałów, w tym rur z polietylenu. Jego zastosowanie jest kluczowe w procesie obróbki rur, ponieważ zadzior to ostry, wystający fragment materiału, który może prowadzić do uszkodzeń podczas dalszej instalacji lub eksploatacji. W praktyce, gratownik umożliwia uzyskanie gładkiej krawędzi, co jest istotne z punktu widzenia bezpieczeństwa i funkcjonalności systemów rurociągowych. Zgodnie z normami branżowymi, takim jak PN-EN 1555, zaleca się stosowanie gratowników po każdej operacji cięcia, aby zminimalizować ryzyko przecieków i awarii. Dobre praktyki wskazują, że prawidłowe użycie gratownika poprawia nie tylko estetykę wykonania, ale również wydłuża żywotność instalacji. Warto również zaznaczyć, że gratowanie powinno być częścią standardowego procesu przygotowania przed montażem rur, co pozwala na uniknięcie potencjalnych problemów w przyszłości.

Pytanie 22

W ciągu roku pompa ciepła funkcjonowała przez 1 950 godzin, pobierając średnio moc wynoszącą około 1,67 kW. To przekłada się na roczne zużycie energii równe 3 257 kWh, głównie w czasie nocnej taryfy. Zakładając przeciętny koszt 1 kWh na poziomie 0,30 zł, ile wyniesie roczny wydatek na ogrzewanie oraz przygotowanie CWU?

A. 977,10 zł
B. 585,00 zł
C. 4 280,00 zł
D. 1 631,75 zł
Obliczenie rocznego kosztu ogrzewania i przygotowania ciepłej wody użytkowej (CWU) przy użyciu pompy ciepła polega na pomnożeniu całkowitego zużycia energii (w kWh) przez średni koszt energii elektrycznej za 1 kWh. W tym przypadku, pompa ciepła pracowała przez 1950 godzin, przy średnim poborze mocy wynoszącym 1,67 kW, co daje roczne zużycie energii równające się 1950 godzin * 1,67 kW = 3256,5 kWh, co można zaokrąglić do 3257 kWh. Przyjmując koszt 1 kWh równy 0,30 zł, otrzymujemy całkowity koszt: 3257 kWh * 0,30 zł/kWh = 977,10 zł. Taki sposób obliczeń jest zgodny z praktykami stosowanymi w inżynierii energetycznej i pozwala na dokładne oszacowanie kosztów eksploatacyjnych systemów grzewczych. W praktyce, użytkownicy powinni uwzględnić również okresy szczytowe oraz taryfy nocne, które mogą wpływać na całkowity koszt eksploatacji. Zrozumienie tych zasad jest istotne dla racjonalnego zarządzania kosztami energii i efektywności energetycznej budynków.

Pytanie 23

Jaką wartość ma maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 roku przy t1 >= 16°C?

A. 0,28 W/m2∙K
B. 0,23 W/m2∙K
C. 0,20 W/m2∙K
D. 0,25 W/m2∙K
Maksymalny współczynnik przenikania ciepła dla ścian zewnętrznych nowych budynków, wynoszący 0,23 W/m2∙K, jest zgodny z obowiązującymi normami budowlanymi, które weszły w życie 1 stycznia 2017 roku. Wartość ta wynika z założeń dotyczących efektywności energetycznej budynków oraz polityki zrównoważonego rozwoju, mającej na celu zmniejszenie zużycia energii oraz ograniczenie emisji CO2. Niska wartość Uc ma kluczowe znaczenie dla zapewnienia komfortu cieplnego wewnątrz budynków, a także dla obniżenia kosztów ogrzewania. Przykładem zastosowania tej normy jest budownictwo pasywne, w którym projektowane budynki muszą spełniać rygorystyczne wymogi dotyczące izolacyjności termicznej. Zastosowanie technologii, takich jak panele izolacyjne o wysokiej wydajności, może znacząco przyczynić się do osiągnięcia wymaganej wartości współczynnika Uc. W praktyce, deweloperzy i architekci powinni zwracać szczególną uwagę na wybór materiałów oraz technologii budowlanych, które pozwolą na spełnienie tych norm, co wpływa na ogólną jakość budynku oraz jego efektywność energetyczną.

Pytanie 24

W standardowych warunkach temperaturowych i ciśnieniowych (STC) do uzyskania mocy nominalnej systemu na poziomie 1 kWp potrzebna będzie powierzchnia 1 m2 modułu, który cechuje się teoretyczną efektywnością wynoszącą 100%. Przeciętna efektywność paneli krystalicznych dostępnych na rynku wynosi około 14%. Dlatego, aby stworzyć farmę fotowoltaiczną o mocy 1 MWp z paneli o tej efektywności nominalnej, całkowita powierzchnia powinna wynosić w przybliżeniu

A. 14 tys. m2
B. 4 tys. m2
C. 10 tys. m2
D. 7 tys. m2
Wprowadzenie w błąd może wynikać z niepełnego zrozumienia koncepcji sprawności paneli fotowoltaicznych oraz ich zastosowania w praktyce. W przypadku odpowiedzi sugerujących mniejszą lub większą powierzchnię niż 7000 m², należy zrozumieć, że sprawność paneli jest kluczowym wskaźnikiem efektywności konwersji energii słonecznej na energię elektryczną. Przy sprawności 14% oznacza to, że tylko 14% padającego na panel promieniowania słonecznego jest przekształcane w energię elektryczną. W rzeczywistości, dla osiągnięcia 1 MWp potrzeba znacznie większej powierzchni niż sugerowane 4000 m², ponieważ wówczas nie byłoby możliwe osiągnięcie wymaganej mocy. Z drugiej strony, odpowiedzi wskazujące na większe wartości, takie jak 14000 m², również mogą sugerować nadmierną ostrożność, co sprawia, że projekt jest nieefektywny w wykorzystaniu dostępnej przestrzeni. Takie błędne podejście może prowadzić do nadmiernych kosztów inwestycyjnych oraz nieoptymalnej wydajności systemu. Fundamentalne jest zrozumienie, że zapotrzebowanie na energię i efektywność technologii powinny być ścisłe powiązane z rzeczywistymi warunkami eksploatacji, co wymaga odpowiednich kalkulacji oraz symulacji przed dokonaniem jakichkolwiek inwestycji w systemy fotowoltaiczne. Znalezienie równowagi pomiędzy liczbą paneli a ich rozmieszczeniem jest kluczowe dla skuteczności całej instalacji.

Pytanie 25

Brak diodek blokujących w systemie off-grid może prowadzić do

A. przepływu prądu przez ogniwo w czasie zacienienia
B. przeładowania akumulatora
C. całkowitego wyczerpania akumulatora
D. uszkodzenia ogniwa w przypadku intensywnego zacienienia ogniwa
Wiele osób może mylnie uważać, że brak diody blokującej w systemie off-grid prowadzi do uszkodzenia ogniwa podczas silnego zacienienia, jednak nie jest to do końca prawda. W rzeczywistości, silne zacienienie nie powoduje uszkodzenia samego ogniwa, ale raczej wpływa na jego wydajność, co może prowadzić do niepożądanych zjawisk, takich jak przepływ prądu w przeciwnym kierunku. Również koncepcja całkowitego rozładowania akumulatora nie ma bezpośredniego związku z brakiem diody blokującej, ponieważ akumulatory w dobrze zaprojektowanych systemach posiadają zabezpieczenia przed nadmiernym rozładowaniem. Z kolei przeładowanie akumulatora jest konsekwencją braku odpowiednich regulatorów ładowania, a nie braku diody blokującej. Typowe błędy myślowe związane z tymi nieporozumieniami często polegają na niewłaściwym zrozumieniu funkcji diod, regulatorów i wpływu zacienienia na systemy PV. W kontekście projektowania systemów off-grid, kluczowe jest zrozumienie, że zabezpieczenia oraz odpowiednie komponenty muszą być właściwie dobrane i rozmieszczone, aby zapewnić optymalną pracę i bezpieczeństwo systemu. Właściwe podejście do projektowania powinno uwzględniać standardy branżowe, które wskazują na konieczność użycia odpowiednich elementów zabezpieczających, aby system działał w sposób niezawodny.

Pytanie 26

W trakcie montażu systemów energii odnawialnej multicyklony wykorzystywane są jako urządzenia redukujące emisję do atmosfery

A. tlenku siarki
B. koksu
C. tlenku węgla
D. pyłu
Pył jest składnikiem, który może być emitowany podczas różnych procesów przemysłowych, w tym w energetyce odnawialnej, gdzie jego ograniczenie jest kluczowe dla ochrony środowiska. Multicyklony to urządzenia wykorzystywane do separacji cząstek stałych z gazów, co pozwala na skuteczne wychwytywanie pyłu przed jego uwolnieniem do atmosfery. W takich instalacjach, jak elektrownie wiatrowe czy biogazownie, multicyklony są używane do kontroli jakości powietrza i redukcji negatywnego wpływu na zdrowie ludzi oraz środowisko. Standardy takie jak ISO 14001 dotyczące systemów zarządzania środowiskowego nakładają na przedsiębiorstwa obowiązek monitorowania i ograniczania emisji pyłów i innych zanieczyszczeń. Przykładem zastosowania multicyklonów może być instalacja w przemyśle biomasy, gdzie odpady organiczne spalane są w komorach, a multicyklony wychwytują pył powstający w trakcie tego procesu, co przyczynia się do redukcji emisji pyłów do atmosfery i poprawy efektywności energetycznej systemu.

Pytanie 27

Która metoda transportu kolektorów słonecznych na dach wysokiego budynku jest najbardziej efektywna?

A. Wózkiem widłowym
B. Windą transportową
C. Wciągarką linową
D. Ręcznie przez schody
Transport kolektorów słonecznych na dach wysokiego budynku przy użyciu wózka widłowego, ręcznie po schodach lub wciągarki linowej wiąże się z istotnymi niedogodnościami i zagrożeniami, które mogą wpływać na bezpieczeństwo oraz efektywność takich działań. Wózek widłowy, mimo że może być użyteczny w niektórych kontekstach, nie jest optymalnym rozwiązaniem w przypadku transportu na dużą wysokość. Wózki widłowe są przeznaczone głównie do pracy na płaskich powierzchniach i w ograniczonych przestrzeniach, co ogranicza ich zastosowanie w kontekście wysokich budynków. Ponadto, manewrowanie wózkiem widłowym w ciasnych klatkach schodowych lub windy może stwarzać niebezpieczeństwo dla użytkowników. Ręczne przenoszenie kolektorów po schodach to rozwiązanie, które wiąże się z dużym ryzykiem kontuzji, zarówno dla pracowników, jak i dla samych urządzeń. W przypadku dużych, ciężkich elementów, takich jak kolektory słoneczne, noszenie ich na dużych wysokościach może prowadzić do upadków i urazów. Praktyki BHP jasno wskazują na konieczność unikania manualnego transportu ciężkich przedmiotów w takich warunkach. Wciągarka linowa, chociaż może być rozważana w pewnych kontekstach, wymaga precyzyjnego ustawienia i umiejętności obsługi, co może być trudne do zrealizowania na budowach. Dodatkowo, niewłaściwe użycie wciągarki może prowadzić do wypadków, w tym uszkodzeń mienia i zagrożeń dla zdrowia. Dlatego ważne jest, aby w takich sytuacjach stosować metody transportu, które są zgodne z najlepszymi praktykami branżowymi oraz przepisami BHP, a windę transportową należy uznać za najbardziej bezpieczne i efektywne rozwiązanie.

Pytanie 28

Do kotła, który spala zrębki, można za jednym razem załadować 0,5 m3 paliwa. W ciągu 24 godzin kocioł powinien być załadowany 3 razy. Jaki będzie tygodniowy koszt paliwa, jeśli jego cena za 1 m3 wynosi 50,00 zł?

A. 25,00 zł
B. 50,00 zł
C. 525,00 zł
D. 150,00 zł
Obliczenie tygodniowego kosztu paliwa jest kluczowe w kontekście zarządzania efektywnością energetyczną kotłów. W przypadku przedstawionego pytania, najpierw obliczamy, ile paliwa kocioł potrzebuje w ciągu jednego dnia. Kiedy załadujemy 0,5 m³ paliwa trzy razy dziennie, otrzymujemy 1,5 m³ dziennie. Aby przeanalizować zużycie w ciągu tygodnia, należy pomnożyć tę wartość przez 7 dni, co daje 10,5 m³. Następnie, aby obliczyć koszt, pomnożono tę ilość przez cenę jednostkową paliwa, wynoszącą 50,00 zł za 1 m³. W ten sposób uzyskujemy tygodniowy koszt paliwa wynoszący 525,00 zł. Takie obliczenia są przydatne nie tylko w kontekście zarządzania kosztami, ale również w procesach planowania budżetu i efektywności energetycznej. W branży energetycznej kluczowe jest monitorowanie zużycia paliwa oraz kosztów, co pozwala na optymalizację procesów grzewczych i podejmowania świadomych decyzji dotyczących inwestycji w efektywne źródła energii.

Pytanie 29

Jakie mogą być powody wystąpienia na falowniku kodu błędu wskazującego na zwarcie doziemne podczas uruchamiania systemu fotowoltaicznego?

A. Uszkodzenie izolacji kabla w obwodzie DC
B. Niedostosowanie prądowe modułów
C. Całkowite wyczerpanie akumulatora
D. Uszkodzenie izolacji kabla w obwodzie AC
Uszkodzenie izolacji przewodu w obwodzie DC to naprawdę istotny problem, gdy chodzi o instalacje fotowoltaiczne. Ten obwód łączy panele z falownikiem, więc jakiekolwiek uszkodzenia mogą być groźne. Przewody muszą być solidnie zabezpieczone przed mechanicznymi uszkodzeniami oraz wpływem pogody. W przeciwnym razie może dojść do zwarcia doziemnego, co nie jest dobrym scenariuszem. Jak izolacja jest uszkodzona, prąd może przepływać do ziemi i to prowadzi do błędów na falowniku. Dlatego regularne przeglądy wizualne tych przewodów to co najmniej podstawowe, a używanie materiałów odpornych na warunki atmosferyczne i zgodnych z normami, na przykład IEC 61215, jest super ważne. W praktyce lepiej korzystać z przewodów, które spełniają normy, jak H1Z2Z2-K, bo to znacznie zmniejsza ryzyko różnych problemów.

Pytanie 30

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. obmiar robót
B. harmonogram wykonywanych prac
C. przedmiar robót
D. zapytanie ofertowe
Odpowiedź "przedmiar robót" jest prawidłowa, ponieważ przedmiar robót to dokument, który szczegółowo określa rodzaje i ilości materiałów, które będą potrzebne do realizacji projektu, w tym montażu instalacji solarnej. W kontekście instalacji solarnej, przedmiar robót powinien zawierać elementy takie jak panele słoneczne, inwertery, okablowanie oraz inne komponenty niezbędne do prawidłowego działania systemu. Sporządzenie przedmiaru robót jest kluczowe dla dokładnego oszacowania kosztów projektu oraz dla zapewnienia, że wszystkie niezbędne materiały zostaną uwzględnione i dostarczone na czas. Standardy branżowe, takie jak normy ISO dotyczące zarządzania projektami, podkreślają znaczenie rzetelnego przedmiaru jako podstawy do efektywnego planowania i kontroli wydatków. W praktyce, dobrze opracowany przedmiar robót umożliwia również lepsze porównanie ofert od różnych dostawców oraz ułatwia komunikację z wykonawcami, co przyczynia się do bardziej płynnego przebiegu realizacji projektu.

Pytanie 31

W miarę zwiększania się temperatury ogniwa fotowoltaicznego o 1°C, jego sprawność spadnie o mniej więcej

A. 1,6%
B. 0,1%
C. 2,5%
D. 0,5%
Wiesz, sprawność ogniwa fotowoltaicznego spada o jakieś 0,5%, gdy temperatura wzrasta o 1 stopień Celsjusza. To dlatego wyższe temperatury wpływają na wydajność ogniw – po prostu zwiększa to opór wewnętrzny materiału, przez co mamy mniejsze napięcie i prąd. Dlatego w przypadku instalacji fotowoltaicznych warto dobierać moduły z niskim współczynnikiem temperaturowym. To pozwoli zaoszczędzić energię, szczególnie w cieplejszych miesiącach. Projektanci systemów PV powinni też brać pod uwagę lokalne warunki klimatyczne, żeby jak najlepiej zoptymalizować swoje instalacje. Przy wyborze komponentów, jak np. inwertery, dobrze jest zwrócić uwagę na ich wydajność w różnych temperaturach. Na ogół znajomość tego, jak temperatura wpływa na wydajność ogniw, jest mega ważna, żeby maksymalizować zyski z inwestycji w energię odnawialną.

Pytanie 32

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. ogniwo fotowoltaiczne
B. pompę ciepła
C. kolektor płaski
D. wymiennik ciepła
Prawidłowa odpowiedź to pompa ciepła, która jest urządzeniem służącym do przenoszenia ciepła z jednego miejsca do innego, wykorzystując energię termalną zawartą w otoczeniu. Pompy ciepła mogą pobierać ciepło z powietrza, wody lub gruntu, co czyni je wszechstronnym rozwiązaniem dla systemów ogrzewania i przygotowania ciepłej wody użytkowej. W praktyce pompy ciepła są szeroko stosowane w budownictwie ekologicznym i w domach z systemami OZE, co pozwala na znaczne ograniczenie kosztów energii oraz redukcję emisji CO2. Dzięki wysokiej efektywności energetycznej, pompy ciepła mogą osiągnąć współczynniki wydajności (COP) wynoszące 3-5, co oznacza, że na każdy 1 kWh zużytej energii elektrycznej są w stanie wytworzyć 3-5 kWh ciepła. Zastosowanie pomp ciepła w systemach przygotowania ciepłej wody użytkowej jest więc zarówno ekonomiczne, jak i ekologiczne, zgodne z zasadami zrównoważonego rozwoju i certyfikacjami takimi jak BREEAM czy LEED.

Pytanie 33

Podczas użytkowania systemu grzewczego zasilanego energią słoneczną zaobserwowano opóźnione uruchamianie pompy obiegowej przy wysokiej temperaturze powracającej z kolektora. Możliwą przyczyną tego zjawiska może być

A. zepsuta pompa solarna
B. niewłaściwa histereza ustawiona na regulatorze
C. aktywny tryb urlop na regulatorze
D. wadliwy czujnik temperatury
Uszkodzony czujnik temperatury jest kluczowym elementem systemu grzewczego, który odpowiada za monitorowanie temperatury w obiegu solarnym. Kiedy czujnik nie działa prawidłowo, może przekazywać błędne informacje do regulatora, co z kolei prowadzi do nieprawidłowego załączania pompy obiegowej. W przypadku wysokiej temperatury na powrocie z kolektora, system powinien automatycznie włączyć pompę, aby zredukować ryzyko przegrzania. Jeżeli czujnik jest uszkodzony, pompa może nie działać zgodnie z oczekiwaniami, co może prowadzić do strat energii oraz uszkodzenia samego systemu. Praktycznym przykładem jest regulacja systemu grzewczego, który musi być zgodny z normami DIN EN 12976, co zapewnia efektywność i bezpieczeństwo. Regularne sprawdzanie i konserwacja czujników temperatury powinny być integralną częścią planu utrzymania systemu, aby uniknąć takich problemów w przyszłości.

Pytanie 34

Inwerter to urządzenie wykorzystywane w systemie

A. pompy ciepła
B. fotowoltaicznej
C. biogazowni
D. słonecznej grzewczej
Inwerter, znany również jako przetwornica, odgrywa kluczową rolę w instalacjach fotowoltaicznych, gdzie jego głównym zadaniem jest przekształcanie prądu stałego (DC), generowanego przez panele solarne, na prąd zmienny (AC). Prąd zmienny jest niezbędny, aby zasilać urządzenia w gospodarstwie domowym lub wprowadzać energię do sieci elektrycznej. W praktyce, inwertery są nie tylko odpowiedzialne za konwersję energii, ale również za monitorowanie pracy systemu, co zapewnia optymalne działanie i bezpieczeństwo instalacji. Wysokiej jakości inwertery często wyposażone są w dodatkowe funkcje, takie jak optymalizacja wydajności, co pozwala na maksymalne wykorzystanie dostępnej energii słonecznej. Warto również zaznaczyć, że zgodnie z normami branżowymi, inwertery powinny spełniać określone standardy efektywności energetycznej, aby zapewnić ich niezawodność i długoletnią eksploatację. Prawidłowe dobranie inwertera do specyfiki instalacji fotowoltaicznej jest kluczowe dla uzyskania wysokiej wydajności energetycznej i ekonomicznej.

Pytanie 35

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 65°
B. 30°
C. 70°
D. 45°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 36

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. nypla
B. redukcji
C. mufy
D. odpowietrznika
Mufa jest kluczowym elementem stosowanym do łączenia stalowych rur o tej samej średnicy z gwintem zewnętrznym. Działa jako połączenie, które zapewnia ścisłość i bezpieczeństwo w systemach rurnych. Mufy są dostępne w różnych materiałach, ale stalowe mufy są powszechnie stosowane w instalacjach przemysłowych i budowlanych, gdzie wymagana jest wysoka odporność na ciśnienie i korozję. W praktyce, podczas instalacji, dwa końce rur z gwintem zewnętrznym są wkręcane w mufe, co tworzy solidne połączenie. Warto zauważyć, że użycie mufy jest zgodne z normami, takimi jak PN-EN 10241, które określają wymagania dotyczące materiałów i metod połączeń w instalacjach rurowych. Odpowiednie dobieranie mufy do średnicy rur oraz ich gwintu jest kluczowe dla zapewnienia długotrwałej i szczelnej instalacji, co jest istotne w kontekście bezpieczeństwa i efektywności systemów transportujących różne media.

Pytanie 37

Do przeglądu technicznego instalacji solarnej nie wlicza się

A. napełniania instalacji cieczą solarną
B. kontroli zabezpieczeń antykorozyjnych
C. odczytu oraz oceny wydajności solarnej
D. weryfikacji ochrony przed zamarzaniem
Napełnianie instalacji cieczą solarną nie jest częścią przeglądu technicznego instalacji solarnej, ponieważ ten proces odbywa się zazwyczaj w momencie uruchamiania systemu. Ciecz solarna, która jest stosowana w systemach solarnych, ma za zadanie transportować ciepło z kolektorów do zasobnika. W trakcie przeglądów technicznych koncentrujemy się na ocenie funkcjonalności i efektywności systemu, a nie na procesach, które mają miejsce na początku jego eksploatacji. Przegląd techniczny powinien obejmować takie elementy jak kontrola ochrony antykorozyjnej, co jest istotne dla długowieczności komponentów, a także odczyt oraz ocenę uzysku solarnego, co pozwala na ocenę wydajności całego systemu. Dodatkowo, kontrola ochrony przed zamarzaniem jest kluczowa w kraju takim jak Polska, gdzie zimowe temperatury mogą wpływać na działanie instalacji. Te działania są zgodne z normami branżowymi i praktykami, które mają na celu zapewnienie niezawodności i efektywności systemów solarnych w dłuższej perspektywie czasowej.

Pytanie 38

W czasie zimowym można wykorzystać odwrócony cykl cieczy roboczej w systemie solarnym do eliminacji śniegu oraz rozmrażania lodu na powierzchni kolektorów słonecznych?

A. płaskich próżniowych
B. próżniowo-rurowych
C. płaskich cieczowych
D. rurowych heat-pipe
Odpowiedź "płaskich cieczowych" jest prawidłowa, ponieważ kolektory płaskie wykorzystują ciecz roboczą, zazwyczaj wodę lub mieszanki wodne, do absorpcji ciepła ze słońca. W okresie zimowym, gdy na powierzchni kolektorów gromadzi się śnieg lub lód, zastosowanie obiegu cieczy roboczej pozwala na zwiększenie temperatury w układzie, co prowadzi do efektywnego usunięcia zanieczyszczeń. Proces ten zachodzi dzięki podgrzewaniu cieczy w kolektorze, co umożliwia jej cyrkulację i transport ciepła w celu poprawy efektywności systemu słonecznego. Dobre praktyki w branży zalecają regularne monitorowanie i konserwację instalacji, aby zapewnić ich prawidłowe działanie w trudnych warunkach atmosferycznych. Oprócz tego, zastosowanie płaskich kolektorów cieczowych jest zgodne z normami efektywności energetycznej, co przyczynia się do optymalizacji kosztów eksploatacyjnych i zwiększenia trwałości systemu.

Pytanie 39

Po zakończeniu robót, które są zakrywane, przeprowadza się odbiór

A. ostateczny
B. częściowy
C. końcowy
D. wstępny
Odpowiedź 'częściowy' jest prawidłowa, ponieważ zgodnie z praktyką budowlaną, po zakończeniu robót ulegających zakryciu należy przeprowadzić odbiór częściowy. Działanie to ma na celu zapewnienie, że poszczególne etapy prac zostały wykonane zgodnie z projektem oraz obowiązującymi normami. Odbiór częściowy umożliwia identyfikację ewentualnych błędów przed zakryciem, co jest kluczowe dla dalszych etapów budowy. Na przykład, w przypadku instalacji elektrycznych, dokonanie odbioru częściowego przed zamknięciem ścian pozwala na sprawdzenie poprawności podłączeń oraz zgodności z normami PN-IEC, co może zapobiec poważnym problemom w przyszłości. Zgodnie z definicją zawartą w przepisach prawa budowlanego, odbiór częściowy potwierdza, że dane prace są zakończone, a ich jakość jest zgodna z wymaganiami, co ma kluczowe znaczenie dla bezpieczeństwa i trwałości całej inwestycji.

Pytanie 40

Gdzie powinien być umiejscowiony odpowietrznik w instalacji grzewczej zasilanej energią słoneczną?

A. w najwyższym punkcie instalacji
B. za zaworem bezpieczeństwa
C. w najniższym punkcie instalacji
D. bezpośrednio za pompą
Odpowietrznik w słonecznej instalacji grzewczej powinien być umieszczony w najwyższym punkcie instalacji, co jest zgodne z ogólnymi zasadami projektowania systemów grzewczych. Umieszczenie odpowietrznika w najwyższym miejscu umożliwia skuteczne usuwanie powietrza z systemu, które gromadzi się na skutek nagrzewania wody oraz zmieniających się ciśnień. W praktyce, powietrze w instalacji może prowadzić do zakłóceń w obiegu wody, co z kolei może obniżać efektywność systemu grzewczego oraz powodować hałasy. Dlatego w dobrych praktykach branżowych wskazuje się na konieczność umieszczania odpowietrzników w punktach, gdzie gromadzi się powietrze, co najczęściej jest właśnie najwyższy punkt instalacji. Zgodnie z normami, takie rozwiązanie nie tylko zwiększa wydajność, ale również wydłuża żywotność całego systemu. Przykładem mogą być instalacje, w których zastosowano automatyczne odpowietrzniki, które w sposób samoczynny usuwają nadmiar powietrza, co jest korzystne zwłaszcza w większych układach.