Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 4 czerwca 2025 15:13
  • Data zakończenia: 4 czerwca 2025 15:52

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n−2)∙200g
B. [β] = Ak − Ap + n∙200g
C. [β] = (n+2)∙200g
D. [β] = Ap − Ak + n∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 2

Pomiar odległości wynoszącej 100,00 m zawiera błąd średni ±5 cm. Jaka jest wartość błędu względnego tej odległości?

A. 1/1000
B. 1/5000
C. 1/500
D. 1/2000
Błąd względny jest miarą niepewności pomiaru w stosunku do wartości zmierzonej i oblicza się go jako stosunek błędu absolutnego (w tym przypadku ±5 cm) do wartości zmierzonej (100,00 m). Aby obliczyć błąd względny, możemy skorzystać z wzoru: błąd względny = błąd absolutny / wartość zmierzona. Podstawiając nasze wartości, mamy: błąd względny = 0,05 m / 100 m = 0,0005. Przekształcając tę wartość do postaci ułamka, otrzymujemy 1/2000. W praktyce, obliczanie błędu względnego jest kluczowe w wielu dziedzinach, takich jak inżynieria, nauki przyrodnicze czy metrologia, gdzie precyzyjne pomiary są niezbędne. Standardy metrologiczne, takie jak ISO 5725, wskazują na znaczenie analizy niepewności pomiarowej, co pozwala na lepsze zrozumienie dokładności wyników oraz ich zastosowanie w praktyce. Właściwe określenie błędu względnego umożliwia również porównywanie wyników pomiarów z różnych źródeł oraz ocenę ich dokładności.

Pytanie 3

Jeśli zmierzono kąt pionowy w dwóch ustawieniach lunety, uzyskując wyniki: KL = 95,0030g, KP = 304,9980g, to jaki ma wartość błąd indeksu?

A. +5cc
B. +15cc
C. +20cc
D. +10cc
Aby obliczyć błąd indeksu lunety, należy wykorzystać różnicę kątów pomierzonych w dwóch położeniach. W tym przypadku mamy kąt pionowy KL równy 95,0030g oraz kąt pionowy KP równy 304,9980g. Obliczamy różnicę pomiędzy tymi kątami: 304,9980g - 95,0030g = 209,9950g. Teoretycznie, w idealnych warunkach kąt ten powinien wynosić 200g, ponieważ luneta powinna mierzyć pełny obrót. W związku z tym, błąd indeksu wynosi: 209,9950g - 200g = 9,9950g. Ten błąd jest bliski wartości 10cc, co sugeruje, że zmierzone kąty mogą być zniekształcone przez błąd w ustawieniu lunety. Przyjmuje się, że w praktycznych zastosowaniach geodezyjnych zaleca się staranne kalibracje instrumentów, aby zminimalizować takie błędy i zapewnić wysoką dokładność pomiarów.

Pytanie 4

Na szkicu osnowy pomiarowej nie są umieszczane

A. uśrednione długości linii pomiarowych
B. rzędne i odcięte w szczegółach sytuacyjnych
C. wyrównane wartości kątów poziomych
D. numery punktów osnowy
W szkicu pomiarowej osnowy sytuacyjnej nie powinno się umieszczać szczegółowych rzędnych ani odciętych, bo ten dokument ma zupełnie inny cel. Przede wszystkim chodzi o geodezyjne podstawy pomiarów i ułatwienie późniejszych obliczeń. Powinieneś skupić się tylko na najważniejszych informacjach, aby móc odtworzyć stanowiska pomiarowe oraz ich relacje. Mówiąc krótko, chodzi o wyrównane wartości kątów poziomych, numery punktów osnowy i średnie długości linii. Rzędne i inne specyfikacje techniczne są raczej do innych dokumentów, jak szkice sytuacyjne czy raporty pomiarowe. Na przykład, w mapach do celów urbanistycznych, rzędne mogą być ważne dla wysokości budynków czy ukształtowania terenu, ale nie powinny być mylone z głównymi danymi osnowy.

Pytanie 5

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Archiwum Geodezyjnego
B. Państwowego Zasobu Geodezyjnego i Kartograficznego
C. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
D. Banku Danych Lokalnych
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 6

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch pozycjach lunety?

A. Położenie zera
B. Kolidacja
C. Libella rurkowa
D. Inklinacja
W przypadku błędu instrumentalnego związanego z miejscem zera, kolimacją oraz inklinacją, pomiar kątów w dwóch położeniach lunety może skutecznie zredukować te błędy. Miejsce zera odnosi się do punktu, w którym teodolit wskazuje zero na skali — jeśli miejsce to jest źle ustawione, można to skorygować przez zmianę ustawienia lunety. Przykładem może być dostosowanie poziomu instrumentu, aby wskazania były zgodne z rzeczywistością. Kolimacja dotyczy poprawności ustawienia osi optycznej lunety w kierunku obiektu. Pomiar kątów z dwóch różnych pozycji pozwala na zniwelowanie błędów związanych z niewłaściwą kolimacją poprzez porównanie wyników z dwóch pomiarów. Inklinacja, czyli kąt nachylenia teodolitu, również może być korygowana przez wykonanie dwóch pomiarów w różnych położeniach, co pozwala na zidentyfikowanie i skorygowanie ewentualnych odchyleń. Powszechnym błędem jest założenie, że wszystkie błędy teodolitu można wyeliminować poprzez pomiar w dwóch położeniach lunety, co prowadzi do nieprawidłowych wniosków. W praktyce, aby uzyskać dokładne wyniki, konieczne jest kompleksowe podejście do kalibracji i regularne sprawdzanie wszystkich aspektów instrumentalnych teodolitu przed wykonaniem pomiarów.

Pytanie 7

Jakie jest pole powierzchni działki o wymiarach 20,00 m x 40,00 m na mapie zasadniczej wykonanej w skali 1:500?

A. 0,32 cm2
B. 3,20 cm2
C. 320,00 cm2
D. 32,00 cm2
Wybór błędnych odpowiedzi wynika głównie z nieprawidłowej interpretacji skali oraz prostej omyłki w obliczeniach. Na przykład, odpowiedź 3,20 cm² sugeruje znacząco zaniżoną wartość wyniku, co może wynikać z niepoprawnego przeliczenia wymiarów działki z jednostek metrycznych na centymetrowe jednostki mapy. Działka o wymiarach 20,00 m x 40,00 m ma pole 800,00 m² w rzeczywistości, co w skali 1:500 przelicza się na 32,00 cm². Odpowiedzi takie jak 0,32 cm² są także wynikiem błędów w przeliczeniach, gdzie dwukrotnie pominięto proces przeliczenia długości działania na mapie, co prowadzi do znacznie zaniżonej wartości wyniku. Niezrozumienie zasad skali może prowadzić do błędnych oszacowań, które są krytyczne w projektach budowlanych i urbanistycznych. Ponadto, odpowiedzi takie jak 320,00 cm² mogą powstać w wyniku pomyłki przy mnożeniu, co jest typowym błędem w obliczeniach geometrycznych. Dlatego istotne jest, aby zrozumieć podstawy konwersji jednostek oraz właściwe przeliczanie wymiarów działki na mapie, aby uniknąć takich pomyłek w praktycznych zastosowaniach zawodowych.

Pytanie 8

Jakim południkiem osiowym posługuje się odwzorowanie Gaussa-Krügera w systemie współrzędnych PL-2000?

A. 20º
B. 21º
C. 19º
D. 22º
Odpowiedź 21º jest poprawna, ponieważ w układzie współrzędnych PL-2000 południkom osiowym odwzorowania Gaussa-Krügera przypisane są specyficzne wartości, które odpowiadają określonym strefom. Południk 21º jest kluczowy dla strefy 3 tego odwzorowania, która obejmuje centralną część Polski. W praktyce, wiedza o południkach osiowych jest niezbędna przy tworzeniu map oraz w systemach informacji geograficznej (GIS), gdzie precyzyjne określenie lokalizacji jest kluczowe. Standardy kartograficzne, takie jak PN-EN ISO 19111, podkreślają znaczenie dokładnych odwzorowań i stosownych współrzędnych w procesie mapowania, co sprawia, że umiejętność ich wykorzystania jest niezbędna w pracy geodetów i kartografów. Ponadto, w kontekście planowania przestrzennego i analizy danych geograficznych, znajomość stref odwzorowania pozwala na lepsze zrozumienie i analizę zjawisk przestrzennych.

Pytanie 9

Aby zmierzyć szczegóły sytuacyjne metodą ortogonalną, geodeta ustawił linię pomiarową AB, którą zmierzył ruletką pięć razy. Jeśli otrzymał następujące wyniki: 160,10 m; 160,12 m; 180,12 m; 160,11 m; 160,13 m, to długość boku AB jest obarczona błędem

A. grubym
B. pozornym
C. systematycznym
D. przypadkowym
Pomiar długości boku AB obarczony jest błędem grubym, ponieważ w dostarczonych wynikach pomiarów zauważalna jest jedna wartość znacznie odbiegająca od pozostałych. Wynik 180,12 m jest doskonale widocznym wyjątkiem, co sugeruje, że mógł być wynikiem pomyłki, na przykład błędnego odczytu, błędnego ustawienia ruletki, czy też nieprawidłowego pomiaru. W praktyce geodezyjnej, błędy grubym są najczęściej eliminowane przez powtarzanie pomiaru i porównywanie wyników, co może podnieść jakość danych. W takich przypadkach stosuje się również średnią arytmetyczną pozostałych pomiarów, aby uzyskać bardziej wiarygodny wynik. Ważne jest, by geodeci byli świadomi takich anomalii, ponieważ mogą one znacząco wpłynąć na późniejsze analizy geodezyjne i projektowe. Dobrą praktyką jest również stosowanie metod statystycznych do identyfikacji i eliminacji błędów grubych, co jest zgodne z normami ISO 17123 dotyczącymi pomiarów geodezyjnych.

Pytanie 10

Jakie oznaczenie literowe powinno znaleźć się na szkicu inwentaryzacji powykonawczej budynku, który ma być przekształcony w bibliotekę?

A. f
B. k
C. b
D. e
Znamy oznaczenie 'k', które jest super ważne, jeśli chodzi o inwentaryzację budynków, zwłaszcza takich miejsc jak biblioteki. Kiedy robimy inwentaryzację po zakończeniu budowy, musimy oznaczyć każde pomieszczenie i to, do czego ono służy, według ustalonych zasad. Oznaczenie 'k' odnosi się do miejsc, gdzie mamy do czynienia z książkami i innymi materiałami bibliotecznymi, więc jest kluczowe w dokumentacji projektowej. Dzięki tym oznaczeniom nie tylko lepiej organizujemy przestrzeń, ale też komunikacja między zespołami projektowymi staje się łatwiejsza. Na przykład, kiedy przeprowadzamy przeglądy techniczne, to znajomość tych oznaczeń pomaga szybko rozpoznać, jakie funkcje mają różne pomieszczenia i przyspiesza podejmowanie decyzji, związanych z zarządzaniem budynkiem.

Pytanie 11

W niwelacji powierzchniowej przy użyciu punktów rozproszonych dystans mierzonych pikiet względem stanowiska pomiarowego oblicza się według wzoru: D = kl + c. Mając odczyty z łaty niwelacyjnej, wykonane kreską górną oraz dolną siatki dalmierczej instrumentu, wartość l należy obliczyć wg wzoru:

A. l = g + d
B. l = g - d
C. l = g/d
D. l = g · d
Odpowiedź l = g - d jest poprawna, ponieważ w kontekście niwelacji powierzchniowej, 'g' odnosi się do odczytu z łaty niwelacyjnej, a 'd' to różnica wysokości pomiędzy górną a dolną kreską siatki dalmierczej. W obliczeniach niwelacyjnych, kluczowym celem jest określenie odległości l, która reprezentuje rzeczywistą odległość mierzonych pikiet od stanowiska pomiarowego. Poprawne zastosowanie wzoru D = kl + c oraz zrozumienie jego składników jest istotne dla osiągnięcia precyzyjnych wyników. Przykładowo, jeśli na łacie odczytano wartość g = 2.5 m, a różnica między kreskami wynosi d = 0.3 m, to obliczenie l daje 2.5 m - 0.3 m = 2.2 m. Taki sposób obliczeń jest zgodny z praktykami branżowymi, które zalecają dokładne pomiary oraz analizowanie różnic wysokości w kontekście punktów referencyjnych. Dbałość o detale w takiej procedurze może znacząco wpłynąć na jakość projektu budowlanego czy inżynieryjnego, dlatego ważne jest, aby stosować sprawdzone metody i wzory.

Pytanie 12

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta poziomego i odległości poziomej
B. kąta pionowego i odległości poziomej
C. kąta pionowego i odległości skośnej
D. kąta poziomego i odległości skośnej
Pojęcia związane z pomiarami geodezyjnymi są złożone i często mylone, co prowadzi do nieprawidłowych wniosków. Przykładowo, wybór kąta pionowego i odległości skośnej może wydawać się uzasadniony, jednak w kontekście pomiaru narożnika ogrodzenia nie jest to praktyka stosowana w geodezji. Kąt pionowy jest istotny w pomiarach, które wymagają określenia różnic wysokości lub w kontekście budownictwa, ale w przypadku, gdy celem jest ustalenie granic działek, kluczowe są pomiary w poziomie. Ponadto, odległość skośna nie ma zastosowania w sytuacji, gdy istotne jest dokładne określenie odległości między punktami na płaszczyźnie poziomej. Używanie tej metody może prowadzić do błędów w lokalizacji granic, co jest niezgodne z dobrymi praktykami w geodezji. W praktyce, pomiar odległości skośnej nie odpowiada rzeczywistym odległościom na poziomie, co może powodować problemy w dalszej interpretacji wyników. Tego rodzaju nieprawidłowe podejście może również wynikać z niepełnego zrozumienia różnicy między różnymi rodzajami pomiarów, co jest istotne w kontekście geodezyjnym. Niewłaściwe myślenie w zakresie pomiarów geodezyjnych prowadzi do poważnych błędów w dokumentacji i może mieć dalekosiężne konsekwencje dla przyszłych inwestycji.

Pytanie 13

Działanie, mające na celu zwiększenie dokładności kartometrycznej mapy poprzez eliminację deformacji z analogowego podkładu oraz błędów podczas skanowania, określamy jako

A. kalibracją
B. transformacją
C. wektoryzacją
D. digitalizacją
Kalibracja to proces, który ma kluczowe znaczenie w kontekście poprawy kartometryczności map, zwłaszcza tych, które zostały utworzone na podstawie podkładów analogowych lub skanowanych obrazów. Celem kalibracji jest eliminacja deformacji, które mogą pojawić się w wyniku błędów skanowania oraz różnic w skalach i perspektywie. Dzięki kalibracji można uzyskać precyzyjne odwzorowanie rzeczywistych współrzędnych geograficznych, co jest niezbędne w aplikacjach takich jak GIS (Geographic Information System) czy w kartografii. Przykładem zastosowania kalibracji jest proces georeferencji, w którym odnosi się punkty na mapie do znanych współrzędnych geograficznych. W praktyce kalibracja może obejmować użycie znanych punktów kontrolnych, które są wprowadzane do oprogramowania GIS, aby dostosować i poprawić błędy mapy. Standardy takie jak ISO 19130 definiują metody pomiaru i oceny dokładności danych przestrzennych, co jest istotne przy przeprowadzaniu kalibracji.

Pytanie 14

Który południk jest osiowym w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-2000?

A. 23°
B. 24°
C. 22°
D. 25°
Poprawna odpowiedź to 24°, który jest południkiem osiowym odwzorowania Gaussa-Krugera w układzie współrzędnych PL-2000. W tym systemie geodezyjnym stosuje się odwzorowanie, które jest oparte na koncepcji południków osiowych. Południk 24° jest szczególnie istotny dla obszarów geograficznych w Polsce, ponieważ zapewnia poprawne odwzorowanie dla większości terytorium kraju, co jest niezbędne w geodezji i kartografii. Dzięki temu odwzorowaniu możemy dokładnie określić położenie punktów w przestrzeni geograficznej, co jest kluczowe w zastosowaniach takich jak inżynieria lądowa, planowanie urbanistyczne oraz analiza przestrzenna. Odwzorowanie Gaussa-Krugera jest szeroko stosowane w praktyce, ponieważ umożliwia przekształcenie współrzędnych geograficznych (szerokości i długości geograficznej) na współrzędne prostokątne, co ułatwia obliczenia i analizę danych. Dodatkowo, dzięki zastosowaniu lokalnych układów odniesienia, uzyskuje się większą dokładność w pomiarach, co jest istotne dla profesjonalnych prac geodezyjnych.

Pytanie 15

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. przeniesienia
B. kierunkowe
C. podcentra
D. poboczniki
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 16

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 – α + 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az1-2 + α - 200g
D. Az2-3 = Az2-1 + α - 200g
Wybór niewłaściwego wzoru do obliczeń azymutu kolejnego boku może wynikać z błędnego zrozumienia relacji między azymutami a pomierzonymi kątami. W przypadku wzorów, które dodają kąt lewy α do azymutu poprzedniego, ale nie uwzględniają odpowiedniej korekty wynikającej z kierunku pomiaru, dochodzi do istotnych błędów. Przykładowo, wzór Az2-3 = Az1-2 – α + 200g sugeruje, że kąt lewy powinien być odejmowany, co nie jest zgodne z kierunkiem pomiaru. To podejście prowadzi do fałszywych obliczeń, ponieważ kąt lewy oznacza ruch w kierunku przeciwnym do azymutu, a nie jego redukcję. Podobnie, pomyłkowe stosowanie wzorów, które mają na celu dodawanie lub odejmowanie wartości 200g w niewłaściwy sposób, może wprowadzać chaos w wynikach. Typowym błędem myślowym jest założenie, że każdy kąt lewy powinien być traktowany w ten sam sposób, niezależnie od kontekstu pomiarowego. Ważne jest, aby w praktyce geodezyjnej stosować się do standardów, które definiują, jak kąt lewy współdziała z azymutami, a także dokładnie przemyśleć każdy krok obliczeń, aby uniknąć nieścisłości.

Pytanie 17

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 197,96 m
B. HP = 200,26 m
C. HP = 201,06 m
D. HP = 203,36 m
Wszystkie niepoprawne odpowiedzi wynikają z błędów w interpretacji przepisów dotyczących obliczania wysokości punktu pomiarowego. Często spotykanym błędem jest pomijanie konwersji jednostek lub nieprawidłowe uwzględnianie wartości w wzorze. Na przykład, niektóre osoby mogą zignorować fakt, że odczyt kreski środkowej na łacie s powinien być przeliczony na metry, co prowadzi do błędnych obliczeń. W przypadku takiego pytania, kluczowe jest, aby pamiętać, że odczyt na łacie jest wartością, którą należy odjąć od sumy wysokości instrumentu i wysokości stanowiska. Ponadto, wiele osób myli wysokość instrumentu z wysokością punktu pomiarowego, co prowadzi do obliczeń, które nie mają sensu w kontekście geodezji. Często, w procesie nauczania, pojawiają się upraszczające założenia, które mogą wprowadzać w błąd. W rzeczywistości, każdy z tych elementów jest istotny dla uzyskania dokładności pomiarów, co jest kluczowe w zastosowaniach geodezyjnych, takich jak skanowanie terenu czy projektowanie infrastruktury. Dlatego, aby skutecznie przeprowadzić obliczenia, należy przestrzegać standardów metodycznych oraz praktyk obowiązujących w branży, co pozwala na uniknięcie typowych pułapek podczas realizacji pomiarów.

Pytanie 18

W niwelacji geometrycznej podczas pomiarów przyjmuje się, że wagi są

A. wprost proporcjonalne do różnic wysokości ciągów
B. odwrotnie proporcjonalne do długości ciągów
C. wprost proporcjonalne do długości ciągów
D. odwrotnie proporcjonalne do różnic wysokości ciągów
Wagi stosowane w niwelacji geometrycznej nie są wprost proporcjonalne do różnic wysokości ciągów ani długości ciągów. Założenie, że wagi powinny być wprost proporcjonalne do różnic wysokości, prowadzi do nieporozumienia w kontekście pomiarów geodezyjnych. W rzeczywistości różnice wysokości są jedynie jednym z czynników wpływających na dokładność pomiaru, a ich wpływ nie jest bezpośrednio proporcjonalny do długości ciągu. Dłuższe ciągi mogą generować większe błędy systematyczne z powodu wpływu warunków atmosferycznych oraz nierówności terenu, co sprawia, że ich waga musi być mniejsza, aby zrekompensować potencjalne błędy. Ponadto, waga wprost proporcjonalna do długości ciągów wprowadzałaby niepotrzebne złożoności w obliczeniach, co mogłoby prowadzić do błędnych wyników. Należy pamiętać, że zasady stosowane w niwelacji geometrycznej mają na celu zapewnienie wysokiej precyzji i dokładności pomiarów, co jest kluczowe w praktyce inżynieryjnej i geodezyjnej. Kluczowe jest, aby stosować odpowiednie metody i normy branżowe, które uwzględniają wszystkie istotne czynniki, a nie tylko różnice wysokości czy długości ciągów, co pozwala na precyzyjne i wiarygodne wyniki.

Pytanie 19

Jakie jest zwiększenie współrzędnej ∆y1-2, jeśli zmierzona długość d1-2 = 100,00 m, a sinA1-2 = 0,8910 oraz cosA1-2 = 0,4540?

A. 8,91 m
B. 89,10 m
C. 4,54 m
D. 45,40 m
Poprawna odpowiedź to 89,10 m, co wynika z zastosowania podstawowych zasad trygonometrii w kontekście obliczeń inżynieryjnych. Przyrost współrzędnej ∆y1-2 można obliczyć, stosując wzór: ∆y = d1-2 * sin(A1-2), gdzie d1-2 to długość między dwoma punktami, a A1-2 to kąt, pod jakim ta długość jest zmierzona. W tym przypadku, mając d1-2 równą 100,00 m oraz sinA1-2 wynoszący 0,8910, obliczenie przyrostu współrzędnej wygląda następująco: ∆y = 100,00 m * 0,8910 = 89,10 m. W praktyce, taka metodologia obliczeń jest kluczowa w geodezji oraz budownictwie, gdzie precyzyjne pomiary i obliczenia są fundamentem dla prawidłowego prowadzenia prac budowlanych czy projektowych. Zrozumienie, jak wykorzystać funkcje trygonometryczne do obliczeń w przestrzeni, ma również zastosowanie w systemach nawigacyjnych oraz w analizie danych przestrzennych, co czyni tę wiedzę niezwykle przydatną w wielu branżach.

Pytanie 20

Jakiej wartości pomiaru w przód z łaty niwelacyjnej należy się spodziewać, jeśli poszukiwany punkt znajduje się w odległości 60,00 m od punktu wyjściowego niwelety drogi o nachyleniu i = -3%, a odczyt w tył z łaty ustawionej na początku niwelety wyniósł w = 1500 mm?

A. p = 3300 mm
B. p = 3390 mm
C. p = 1800 mm
D. p = 3000 mm
Odpowiedź p = 3300 mm jest prawidłowa, ponieważ przy obliczaniu wartości odczytu w przód na podstawie odczytu wstecz oraz pochylenia niwelety należy uwzględnić zarówno odległość, jak i kąt nachylenia. W przypadku, gdy odczyt wstecz wynosi 1500 mm i mamy do czynienia z pochyleniem -3%, obliczenia wykonujemy w następujący sposób: obliczamy spadek, który wynosi 3% z 60 m, co daje 1.8 m lub 1800 mm. Następnie dodajemy to do odczytu wstecz, co daje 1500 mm + 1800 mm = 3300 mm. Przykładem zastosowania tej wiedzy jest projektowanie infrastruktury drogowej, gdzie precyzyjne pomiary wysokościowe są kluczowe dla zapewnienia odpowiedniego odwodnienia i bezpieczeństwa. W praktyce inżynierskiej stosuje się standardy takie jak PN-EN ISO 17123-1 do pomiarów, które zapewniają dokładność i rzetelność w realizacji tego typu obliczeń.

Pytanie 21

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Ortogonalna
B. Domiarów prostokątnych
C. Wcięć kątowych
D. Biegunowa
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 22

Jaki zapis, używany na mapie zasadniczej, odnosi się do przewodu kanalizacyjnego sanitarnego o średnicy 20 cm, zmierzonego na osnowę?

A. ks20
B. ksB20
C. ks200
D. ksP200
Odpowiedź ks200 jest jak najbardziej trafna. Tutaj literka 'k' oznacza, że mówimy o przewodach kanalizacyjnych, a 's' wskazuje na ich rodzaj, czyli sanitarny. Liczba '200' to nic innego jak średnica przewodu podana w milimetrach, co oznacza, że mamy do czynienia z przewodem o średnicy 20 cm. Moim zdaniem, takie oznaczenia są super ważne, bo inżynierowie muszą mieć jasność, jak rozróżnić różne rodzaje przewodów w kanalizacji. Dzięki temu możemy lepiej zaprojektować i zrealizować instalacje. Odpowiednie oznaczenie przewodów jest kluczowe, żeby wszystko działało jak należy i było zgodne z normami budowlanymi. Fajnie, że mamy ustalone konwencje, bo to podnosi jakość projektów i ułatwia późniejszą konserwację.

Pytanie 23

Jakie jest przyrost współrzędnej ∆x1-2, przy pomiarze długości d1-2 = 100,00 m oraz sinAz1-2 = 0,7604 i cosAz1-2 = 0,6494?

A. 76,04 m
B. 7,60 m
C. 6,49 m
D. 64,94 m
Aby obliczyć przyrost współrzędnej ∆x1-2, możemy wykorzystać równania z zakresu trygonometrii. Długość d1-2 = 100,00 m jest długością odcinka pomierzonego, a współrzędne ∆x1-2 są związane z kierunkiem, w którym ten odcinek jest zorientowany. W tym przypadku sinAz1-2 i cosAz1-2 reprezentują odpowiednio sinus i cosinus azymutu odcinka. Przyrost współrzędnej ∆x1-2 oblicza się przy pomocy wzoru: ∆x1-2 = d1-2 * cosAz1-2. Podstawiając wartości: ∆x1-2 = 100,00 m * 0,6494 = 64,94 m. W praktyce, takie obliczenia są niezwykle istotne w geodezji, inżynierii lądowej czy w kartografii, gdzie precyzyjne pomiary i obliczenia współrzędnych mają kluczowe znaczenie dla realizacji projektów. Stosowanie standardów, takich jak normy ISO w dziedzinie pomiarów, zapewnia dokładność i rzetelność uzyskiwanych wyników.

Pytanie 24

W jakiej Bazie Danych są przechowywane dane dotyczące wysokości studzienek kanalizacyjnych?

A. Ewidencji Gruntów i Budynków
B. Obiektów Topograficznych
C. Szczegółowych Osnów Geodezyjnych
D. Geodezyjnej Ewidencji Sieci Uzbrojenia Terenu
Ewidencja Gruntów i Budynków (EGB) to inny typ bazy danych, która gromadzi informacje dotyczące własności gruntów oraz obiektów budowlanych, ale nie zawiera szczegółowych danych na temat infrastruktury technicznej, takiej jak studzienki kanalizacyjne. Głównym celem EGB jest zapewnienie przejrzystości w zakresie własności nieruchomości oraz umożliwienie dokonywania transakcji związanych z nieruchomościami. Z tego powodu, korzystanie z EGB w kontekście rzędnych studzienek kanalizacyjnych może prowadzić do nieporozumień, ponieważ nie zawiera informacji o ich lokalizacji, a tym bardziej o ich rzędnych, co jest kluczowe dla inżynierów i projektantów. Obiekty Topograficzne również nie są odpowiednie do tego celu, ponieważ koncentrują się głównie na przedstawianiu ukształtowania terenu, a nie na infrastrukturze uzbrojenia terenu. Z kolei Szczegółowe Osnowy Geodezyjne dotyczą precyzyjnych pomiarów geodezyjnych, które są używane do tworzenia map i pomiarów terenowych, ale nie zawierają informacji o elementach infrastruktury, takich jak studzienki kanalizacyjne. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to utożsamianie różnych baz danych z podobnymi funkcjami, co prowadzi do mylenia ich zastosowań. Kluczowe jest zrozumienie, że każda z tych baz ma swoje specyficzne przeznaczenie i nie należy ich stosować zamiennie.

Pytanie 25

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. kopia zawodowych uprawnień geodety
B. faktura za zrealizowane zlecenie
C. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
D. sprawozdanie techniczne
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 26

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Zamkniętym
B. Otwarty
C. Zawieszonym
D. Obliczeniowym
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.

Pytanie 27

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno być ustawione lustro lub łata
B. powinien znajdować się obserwator
C. powinien być pomiarowy
D. powinno znajdować się stanowisko instrumentu
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 28

Na mapach naturalne formy rzeźby terenu zaznacza się kolorem

A. żółtym
B. szarym
C. czarnym
D. brązowym
Wybór kolorów czarnego, szarego czy żółtego do przedstawiania naturalnych form rzeźby terenu nie jest zgodny z przyjętymi standardami kartograficznymi. Czarne barwy na mapie są zazwyczaj zarezerwowane dla elementów sztucznych, takich jak drogi, budynki czy granice administracyjne. Użycie czerni do reprezentacji rzeźby terenu może prowadzić do nieporozumień w interpretacji mapy, gdyż może sugerować znacznie bardziej płaskie lub zabudowane obszary. Podobnie, kolor szary, choć czasem stosowany do przedstawiania cieni lub obiektów nieczytelnych, nie nadaje się do rzeźby terenu, gdyż może wprowadzać w błąd, sugerując, że dany teren jest mniej istotny lub nieaktywny geologicznie. Żółty kolor z kolei jest często używany do oznaczania obszarów rolniczych lub pustynnych, co również nie jest odpowiednie dla przedstawienia form rzeźby terenu. Błędne przypisanie kolorów do form terenu na mapach może prowadzić do poważnych konsekwencji w analizach geograficznych czy przy planowaniu przestrzennym, dlatego ważne jest, aby stosować odpowiednią kolorystykę zgodną z uznanymi konwencjami i praktykami w kartografii.

Pytanie 29

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz kierunkowe przemieszczenia poziome dla punktu nr 32.

Nr
punktu
Pomiar pierwotnyPomiar wtórny
X₀ [m]Y₀ [m]Xw [m]Yw [m]
3178,462634,25678,482634,212
32142,058582,235142,124582,218
33169,151613,968169,142613,967

A. ΔX = -66 cm; ΔY = 44 cm
B. ΔX = 66 cm; ΔY = -44 cm
C. ΔX = 0,066 m; ΔY = -0,017 m
D. ΔX = -0,066 m; ΔY = 0,017 m
Nieprawidłowe odpowiedzi wskazują na różne typowe błędy myślowe związane z obliczeniami przemieszczeń w układach współrzędnych. Często pojawiającym się problemem jest mylenie jednostek miary, co prowadzi do niepoprawnych wyników. Przykładowo, przeliczenie centymetrów na metry bez uwzględnienia odpowiedniej konwersji skutkuje błędnymi wartościami, jak w przypadku ΔX = -66 cm, które gdyby przeliczyć na metry, stałoby się -0,66 m, co jest zdecydowanie większą różnicą niż ta uzyskana w poprawnej odpowiedzi. Dodatkowo, błąd w znaku przemieszczenia Y może wynikać z niedopatrzenia przy odejmowaniu wartości początkowej od końcowej, co prowadzi do przekroczenia granic właściwych wartości. Ważne jest, aby podczas obliczeń zawsze sprawdzać podstawowe operacje matematyczne oraz dbać o odpowiednie użycie znaków. W geodezji, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji, dlatego kluczowe jest przestrzeganie standardów pomiarowych i dobrych praktyk, takich jak upewnienie się, że wartości są dokładnie odnotowywane i porównywane. W przyszłych obliczeniach, warto również korzystać z narzędzi do analizy danych, które mogą zminimalizować ryzyko błędów ludzkich.

Pytanie 30

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. tyczenia
B. pomiarowy
C. polowy
D. dokumentacyjny
Wybór odpowiedzi tyczenia, polowy czy pomiarowy wskazuje na pewne nieporozumienia w zakresie terminologii geodezyjnej. Tyczenie odnosi się do procesu przenoszenia punktów geodezyjnych na teren budowy, co ma miejsce po zakończeniu opracowania dokumentacji. Tyczenie jest zatem czynnością wykonywaną na podstawie wcześniej przygotowanych dokumentów, a nie ich bezpośrednim wynikiem. Odpowiedź polowy sugeruje, że wyniki pomiarów są jeszcze na etapie pracy w terenie, co jest nieprawidłowe, ponieważ po zebraniu danych geodezyjnych ich analiza oraz opracowanie odbywa się już w biurze, a nie na polu. Z kolei pomiarowy może kojarzyć się z etapem zbierania danych, jednak nie jest on odpowiedni w kontekście dokumentacji projektowej. Dlatego można zauważyć, że wybór tych terminów często wynika z mylenia różnych etapów pracy geodezyjnej. Właściwe zrozumienie, kiedy i jakie dokumenty są potrzebne w procesie inwestycyjnym, jest kluczowe dla każdej osoby zaangażowanej w planowanie i realizację projektów budowlanych.

Pytanie 31

Osnowę wysokościową określa się przy użyciu metody niwelacji

A. siatkowej
B. hydrostatycznej
C. punktów rozproszonych
D. trygonometrycznej
Pomiarowa osnowa wysokościowa wyznaczana metodą niwelacji trygonometrycznej to kluczowy element w geodezji, który pozwala na precyzyjne określenie różnic wysokości pomiędzy punktami w terenie. Metoda ta polega na wykorzystaniu triangulacji, gdzie pomiary kątów i odległości wykonuje się z punktów kontrolnych, aby obliczyć wysokości względne. Przykładem zastosowania tej metody jest budowa infrastruktury, gdzie niezbędne jest zapewnienie odpowiednich różnic wysokości dla dróg, mostów czy budynków. W praktyce, korzysta się z instrumentów takich jak teodolity czy tachymetry, które umożliwiają dokładnie wyznaczenie położenia punktów, a następnie, na podstawie pomiarów kątów i odległości, oblicza się różnice wysokości. Zastosowanie niwelacji trygonometrycznej jest zgodne z normami Polskiego Towarzystwa Geodezyjnego oraz międzynarodowymi standardami, co gwarantuje jej wysoką jakość oraz dokładność.

Pytanie 32

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 5 mm
B. p = 9 mm
C. p = 3 mm
D. p = 10 mm
Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.

Pytanie 33

Nie można użyć do trwałego oznaczania punktów osnowy poziomej

A. bolców.
B. trzpieni.
C. palików drewnianych.
D. znaków z kamienia.
Paliki drewniane, mimo że są popularnym materiałem w budownictwie oraz w transporcie geodezyjnym, nie są zalecane do trwałego zaznaczania punktów osnowy poziomej z powodu ich niskiej odporności na warunki atmosferyczne oraz degradację. W praktyce, takie paliki mogą ulegać rozkładowi, co prowadzi do zniekształcenia lub zniknięcia punktów pomiarowych. Z tego powodu, w geodezji, preferuje się stosowanie bardziej trwałych materiałów, takich jak trzpienie, znaki z kamienia czy bolce, które wykazują znacznie większą odporność na czynniki zewnętrzne. Trzpienie, na przykład, są osadzane na stałe w gruncie, a ich metalowa konstrukcja zapewnia długotrwałość i stabilność. Z kolei znaki z kamienia stanowią naturalne punkty odniesienia, które mogą przetrwać wiele lat, przy minimalnym ryzyku uszkodzenia. Zastosowanie odpowiednich materiałów do trwałego zaznaczania punktów osnowy poziomej jest kluczowe dla zapewnienia precyzji i wiarygodności pomiarów geodezyjnych, co jest zgodne z obowiązującymi normami w tej dziedzinie.

Pytanie 34

Jakie jest wartość azymutu odcinka AB, jeśli współrzędne punktów A i B to: YA = 100,00; XA = 100,00; YB = 150,00; XB = 50,00?

A. 225°
B. 315°
C. 135°
D. 45°
W przypadku błędnych odpowiedzi często pojawiają się mylne interpretacje dotyczące kierunków, które mogą prowadzić do nieprawidłowych obliczeń azymutu. Na przykład, wartości 45°, 315° i 225° mogą być wynikiem błędnych obliczeń lub niepoprawnej interpretacji kierunków. Azymut 45° oznaczałby kierunek północno-wschodni, co nie odpowiada rzeczywistemu położeniu punktu B w stosunku do punktu A, ponieważ punkt B leży na południowym zachodzie względem punktu A. Z kolei azymut 225° wskazuje kierunek południowo-zachodni, co również jest niezgodne z danymi współrzędnymi, gdzie B jest w rzeczywistości wyżej w osi Y, ale dalej w osi X. Azymut 315° z kolei sugeruje kierunek północno-zachodni, co jest błędne, gdyż nie uwzględnia faktu, że z punktu A do punktu B należy poruszać się w dół i w lewo. Kluczowym błędem myślowym jest niepoprawne rozumienie różnicy między azymutem a kierunkiem, co może prowadzić do pomyłek w obliczeniach. Ważne jest, aby przed przystąpieniem do obliczeń dokładnie zrozumieć, jak współrzędne wpływają na wyznaczane kierunki oraz aby stosować poprawne metody obliczania, które uwzględniają zarówno wartości X, jak i Y. W geodezji i kartografii, gdzie precyzja i poprawność kierunków są kluczowe, takie błędy mogą prowadzić do poważnych konsekwencji w analizach przestrzennych.

Pytanie 35

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność prowadzenia szkicu polowego
B. poprawność prowadzenia dziennika pomiarowego
C. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
D. poprawność przy kartowaniu pikiet na mapę
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 36

Jakiej z poniższych czynności nie przeprowadza się podczas wywiadu terenowego?

A. Rozpoznania w terenie punktów osnowy geodezyjnej
B. Uzyskania informacji o terenie, który ma być poddany pomiarom
C. Stabilizacji znaków punktów osnowy geodezyjnej
D. Zestawienia treści materiałów PZG i K ze stanem rzeczywistym
Odpowiedź 'Stabilizacji znaków punktów osnowy geodezyjnej' jest prawidłowa, ponieważ stabilizacja znaków odbywa się w ramach prac geodezyjnych, które są realizowane po przeprowadzeniu wywiadu terenowego. Wywiad terenowy ma na celu zebranie niezbędnych informacji o terenie, a nie bezpośrednią stabilizację punktów. Stabilizacja znaków polega na ich odpowiednim umiejscowieniu oraz zapewnieniu długotrwałej, niezmiennej lokalizacji, co jest kluczowe dla późniejszych pomiarów i obliczeń. Przykładem zastosowania tej wiedzy jest sytuacja, gdy na obszarze planowanej budowy konieczne jest ustalenie punktów osnowy geodezyjnej, aby zapewnić dokładne pomiary i dokumentację geodezyjną. Takie działania są zgodne z normami i standardami, które określają procedury związane z geodezyjnym pozyskiwaniem danych i ich weryfikacją w terenie. W praktyce, po przeprowadzeniu wywiadu, geodeci mogą planować stabilizację punktów, co pozwala na długoterminowe i precyzyjne monitorowanie zmian w terenie.

Pytanie 37

Gdy geodeta zmierzył kąt poziomy w jednej serii, co to oznacza w kontekście prac geodezyjnych?

A. wykonał średnią arytmetyczną z dwóch pomiarów.
B. wykonał średnią arytmetyczną z dwóch odczytów.
C. zmierzył kąt w dwóch ustawieniach lunety.
D. zmierzył kąt w jednym ustawieniu lunety.
Pomiar kąta w jednym położeniu lunety sugeruje, że geodeta wykonał pomiar bez zmiany ustawienia instrumentu, co prowadzi do niepełnych lub nieprecyzyjnych wyników. Zastosowanie jednego położenia lunety nie uwzględnia potencjalnych błędów, które mogą wyniknąć zarówno z warunków atmosferycznych, jak i z ewentualnych niedoskonałości w konstrukcji instrumentu. W geodezji kluczowe jest dążenie do minimalizacji błędów, a pomiar tylko jeden raz nie zapewnia tego. Ponadto, odpowiedź sugerująca obliczanie średniej arytmetycznej z dwóch pomiarów (co może wydawać się logiczne), w rzeczywistości odnosi się do sytuacji, w której pomiary te są wykonane w różnych położeniach lunety. Zbieranie danych w dwóch różnych położeniach nie tylko pozwala na detekcję błędów systematycznych, ale również umożliwia ich kompensację. Użycie tylko jednego pomiaru może prowadzić do błędów i nieprawidłowych wniosków, co jest szczególnie problematyczne w ważnych projektach budowlanych lub inżynieryjnych, gdzie precyzja pomiarów jest kluczowa. Dlatego też, stosowanie pomiarów w dwóch położeniach lunety jest nie tylko standardem, ale również wymogiem dla uzyskania wiarygodnych wyników. Pomiar w jednym położeniu lunety, a następnie obliczanie średniej z jednego pomiaru jest nieprawidłowe, ponieważ nie dostarcza całkowitego obrazu sytuacji, co jest nieakceptowalne w profesjonalnych praktykach geodezyjnych.

Pytanie 38

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Reiteracyjna
B. Kierunkowa
C. Repetycyjna
D. Sektorowa
Metoda kierunkowa jest najbardziej korzystna w przypadku, gdy obserwacji podlega pięć celowych, ponieważ pozwala na precyzyjne pomiary kątów poziomych z zachowaniem dużej efektywności. Ta technika polega na pomiarze kąta w odniesieniu do wybranego kierunku, co minimalizuje błędy pomiarowe, które mogą wystąpić przy wielokrotnych pomiarach. W praktyce, metoda kierunkowa umożliwia szybkie i dokładne zbieranie danych, co jest kluczowe w geodezji i inżynierii lądowej. W sytuacji, gdy mamy do czynienia z wieloma celami, jak w tym przypadku, podejście kierunkowe przyczynia się do optymalizacji procesu pomiarowego poprzez ograniczenie liczby pomiarów niezbędnych do uzyskania wymaganej precyzji. Warto również zaznaczyć, że ta metoda jest zgodna z normami lokacyjnymi oraz standardami pomiarów geodezyjnych, co stanowi dodatkowy atut w kontekście profesjonalnych aplikacji inżynieryjnych i budowlanych. Stosując metodę kierunkową, praktycy mogą skutecznie zarządzać czasem i zasobami, co jest szczególnie ważne w projektach o ograniczonym budżecie i czasie realizacji.

Pytanie 39

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Do II i III grupy
B. Tylko do I grupy
C. Tylko do II grupy
D. Do I i II grupy
Wybór odpowiedzi, która ogranicza pomiary tylko do jednej z grup, na przykład stwierdzenie, że szczegóły terenowe należą tylko do I grupy, nie uwzględnia złożoności pomiarów geodezyjnych. Grupa I jest zarezerwowana dla pomiarów o wyjątkowo wysokiej precyzji, które są typowe dla skomplikowanych projektów wymagających dokładności na poziomie milimetra, co w kontekście terenowym i praktycznym nie zawsze jest konieczne. Z kolei skupienie się jedynie na II grupie pomija fakt, że w niektórych sytuacjach, szczegóły terenowe mogą również wypełniać kryteria III grupy, która obejmuje pomiary o niższej precyzji, co jest powszechnie akceptowane w praktyce geodezyjnej. Osoby odpowiadające w ten sposób mogą mylić się w kwestii hierarchii dokładności pomiarów oraz nie rozumieć, że w rzeczywistych warunkach pracy terenowej często stosuje się różne metody pomiarowe, które są dostosowane do specyfiki zadania. Ignorowanie różnych grup dokładnościowych prowadzi do uproszczeń, które mogą skutkować błędnymi wnioskami i nieefektywnym wykorzystaniem narzędzi pomiarowych, co jest sprzeczne z praktykami określonymi w normach geodezyjnych. Dobrą praktyką jest zrozumienie, że pomiary terenowe mogą być zróżnicowane, a ich klasyfikacja powinna uwzględniać nie tylko techniczne aspekty, ale również kontekst projektu i jego wymagania.

Pytanie 40

Jakie czynniki wpływają na gęstość oraz rozmieszczenie pikiet w pomiarze wysokościowym obszaru?

A. Liczba osób przeprowadzających pomiar
B. Typ używanego sprzętu pomiarowego
C. Planowana skala mapy
D. Metoda realizacji rysunku polowego
Wybór rodzaju sprzętu do pomiaru, liczby osób wykonujących pomiar oraz sposobu wykonania szkicu polowego nie ma bezpośredniego wpływu na gęstość i rozmieszczenie pikiet w kontekście pomiarów wysokościowych. Właściwy sprzęt jest oczywiście istotny dla uzyskania dokładnych wyników, jednak to nie on decyduje o tym, jak wiele pikiet należy umieścić w terenie. W zależności od wybranej metody pomiarowej, technologia może znacznie różnić się, ale każda z nich powinna być dostosowana do specyfiki mapy, a nie odwrotnie. Liczba osób wykonujących pomiar ma znaczenie w kontekście wydajności i tempa pracy, ale nie wpływa na rozmieszczenie pikiet. Zbyt mała lub zbyt duża liczba pracowników może prowadzić do nieefektywnego wykorzystania zasobów, ale sama koncepcja pomiaru nie zmienia się. Sposób wykonania szkicu polowego również jest ważny, ale to jego wykonanie zależy od wcześniej ustalonej gęstości pikiet, więc nie wpływa na nią bezpośrednio. Często pojawia się mylne przekonanie, że różne aspekty organizacyjne pomiarów mogą zdefiniować techniczne parametry, co prowadzi do nieporozumień w planowaniu pomiarów w terenie. W rzeczywistości, kluczowym czynnikiem determinującym gęstość pikiet pozostaje zamierzona skala mapy oraz szczegółowość informacji, które chcemy przekazać w końcowym produkcie.