Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 15 kwietnia 2025 21:52
  • Data zakończenia: 15 kwietnia 2025 22:06

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kamień wapienny przed umieszczeniem w piecu szybowym podczas wypalania wapieni w procesie wytwarzania sody metodą Solvaya powinien

A. wymieszać z krzemionką.
B. wstępnie rozdrobnić.
C. zwilżyć.
D. podgrzać.
Wstępne rozdrobnienie kamienia wapiennego jest istotnym etapem w procesie produkcji sody metodą Solvaya. Kamień wapienny, składający się głównie z węglanu wapnia (CaCO3), musi być odpowiednio przygotowany przed umieszczeniem w piecu szybowym, aby zapewnić efektywność reakcji chemicznych zachodzących podczas wypalania. Podczas tego procesu, węglan wapnia zostaje przekształcony w tlenek wapnia (CaO) oraz dwutlenek węgla (CO2). Wstępne rozdrobienie kamienia poprawia powierzchnię kontaktu materiału z powietrzem, co sprzyja lepszemu przewodnictwu cieplnemu i efektywniejszemu procesowi wypalania. Przykładowo, w przemyśle chemicznym stosuje się młyny kulowe do osiągnięcia odpowiedniej granulacji, co jest zgodne z najlepszymi praktykami w zakresie optymalizacji procesów technologicznych. Na etapie tym ważne jest również monitorowanie wielkości cząstek, aby zapewnić ich jednorodność, co wpływa na wydajność reaktora. Wiedza ta jest kluczowa dla inżynierów zajmujących się procesami chemicznymi, aby mogli optymalizować koszty i jakość produkcji.

Pytanie 2

W procesie flotacji nadzór sprawuje się poprzez pobieranie do analizy ruchowej między innymi

A. koncentrat po flotacji za pomocą zlewki
B. powietrze z aeratora przy pomocy aspiratora
C. materiał do flotacji przy użyciu świdra
D. odczynniki flotacyjne za pomocą sondy
Odpowiedź 'koncentrat po flotacji za pomocą zlewki' jest poprawna, ponieważ monitorowanie procesu flotacji polega na analizie uzyskanego koncentratu, który jest kluczowym wskaźnikiem efektywności tego procesu. Flotacja jest techniką separacji, w której różne składniki mineralne są oddzielane na podstawie ich zdolności do przylegania do pęcherzyków powietrza. Po zakończeniu procesu, próbki koncentratu są pobierane do analizy, aby ocenić jakość i ilość odzyskanego materiału. W praktyce, pobranie próbki za pomocą zlewki pozwala na dokładne i kontrolowane zbadanie właściwości fizykochemicznych koncentratu. To pozwala na dostosowanie parametrów procesu flotacji, takich jak dawki reagentów czy czas kontaktu, w celu optymalizacji wydajności. Standardy branżowe zalecają regularne pobieranie i analizowanie próbek, aby zapewnić, że proces flotacji działa zgodnie z oczekiwaniami i że uzyskiwane wyniki są zgodne z wymaganiami jakościowymi.

Pytanie 3

Po włączeniu mieszadła śmigłowego przyciskiem ON, urządzenie nie rozpoczęło pracy. Jakie czynności należy wykonać w pierwszej kolejności?

A. termin ostatniego serwisu
B. sprawdzenie poziomu urządzenia
C. połączenie urządzenia z gniazdkiem sieciowym
D. ocena stanu urządzenia pod kątem korozji
Kiedy próbujesz uruchomić mieszadło śmigłowe i nic się nie dzieje po naciśnięciu przycisku ON, pierwsze co powinieneś sprawdzić, to czy maszyna jest podpięta do gniazdka. To dosyć podstawowa sprawa, ale naprawdę ważna. Zanim zaczniesz grzebać w bardziej skomplikowanych rzeczach, jak sprawdzanie stanu technicznego czy poziomowania, upewnij się, że urządzenie ma prąd. Jeśli nie jest podłączone, to nie ruszy, a wtedy zaczynasz myśleć o poważniejszych problemach, które wcale nie muszą istnieć. Z mojego doświadczenia, zawsze najlepiej zacząć od najprostszych rzeczy, bo to często one są przyczyną problemu. No i nie zapomnij o regularnych przeglądach instalacji elektrycznej – to naprawdę pomoże uniknąć kłopotów. Zgodnie z normami IEC 60204-1, bezpieczne podłączenie do prądu to absolutna podstawa przed używaniem jakiejkolwiek maszyny.

Pytanie 4

Proces koksowania węgla, który odbywa się w koksowniach i trwa nieprzerwanie od momentu załadunku przez trzy dni, zalicza się do procesów

A. podciśnieniowych
B. okresowych
C. ciągłych
D. niskotemperaturowych
Koksowanie węgla to proces, w którym węgiel jest poddawany wysokotemperaturowemu działaniu w warunkach beztlenowych, co prowadzi do jego przekształcenia w koks. Cały proces trwa od załadunku surowca do zakończenia jego obróbki przez około trzy dni. W tym kontekście koksowanie węgla jest uznawane za proces okresowy, ponieważ realizowane jest w cyklach, gdzie do komory koksowniczej załadowywany jest węgiel, a następnie po zakończeniu procesu koksowania, powstały koks jest usuwany, a cykl zaczyna się od nowa. Praktyczne zastosowanie tego procesu można zaobserwować w przemysłowych koksowniach, gdzie koks stanowi kluczowy surowiec w produkcji stali, mając istotny wpływ na jakość i właściwości finalnych produktów stalowych. Standardy przemysłowe, takie jak ISO 9001, podkreślają znaczenie procesów okresowych w zapewnieniu stałej jakości produktów, co w przypadku koksowania ma istotne znaczenie dla uzyskiwania wysokiej jakości koksu, który jest kluczowy dla przemysłu metalurgicznego. Dodatkowo, znajomość szczegółowych parametrów koksowania i jego cyklicznej natury pozwala na optymalizację procesów i redukcję kosztów operacyjnych.

Pytanie 5

Grafit stosuje się jako materiał konstrukcyjny w przemyśle chemicznym z powodu

A. odporności na wysokie temperatury, małego przewodnictwa elektrycznego oraz dobrego przewodnictwa cieplnego i właściwości barierowych dla gazów utleniających
B. niskiej reaktywności i odporności na większość substancji chemicznych, wysokiej odporności termicznej oraz dobrego przewodnictwa cieplnego
C. niskiej reaktywności i odporności na większość substancji chemicznych, hydrofilowości oraz małego przewodnictwa elektrycznego
D. odporności na wysokie temperatury oraz dużej reaktywności, znacznej wytrzymałości mechanicznej i podatności na odkształcenia plastyczne
Grafit jest niezwykle wartościowym materiałem w przemyśle chemicznym, co wynika z jego niskiej reaktywności oraz odporności na większość czynników chemicznych. Dzięki tym właściwościom grafit znajduje zastosowanie w produkcji sprzętu chemicznego, który musi wytrzymywać trudne warunki pracy, takie jak kontakt z agresywnymi substancjami. Ponadto, wysoka odporność termiczna grafitu sprawia, że jest on idealnym materiałem do użycia w urządzeniach pracujących w ekstremalnych temperaturach, na przykład w piecach przemysłowych. Dobre przewodnictwo cieplne grafitu pozwala na jego zastosowanie w aplikacjach, gdzie efektywne odprowadzanie ciepła jest kluczowe, takich jak elementy grzewcze czy radiatory. W kontekście standardów branżowych, materiały te często podlegają rygorystycznym testom, aby zapewnić ich bezpieczeństwo i efektywność w zastosowaniach przemysłowych, co dodatkowo podkreśla znaczenie grafitu w nowoczesnych technologiach przemysłowych.

Pytanie 6

W 20-tonowej mieszaninie trójskładnikowej znajduje się 5 ton składnika A, 12 ton składnika B oraz reszta to składnik C. Jaka jest procentowa zawartość (m/m) składnika C w tej mieszaninie?

A. 3%
B. 6%
C. 30%
D. 15%
Aby obliczyć zawartość procentową składnika C w mieszance, musimy najpierw ustalić, ile ton tego składnika znajduje się w 20-tonowej mieszance. Mamy 5 ton składnika A i 12 ton składnika B, co razem daje 17 ton. Składnik C zatem ma masę 20 ton - 17 ton = 3 tony. Zawartość procentowa obliczana jest według wzoru: (masa składnika / masa całej mieszaniny) x 100%. W tym przypadku: (3 tony / 20 ton) x 100% = 15%. Zrozumienie tej metody jest kluczowe w wielu dziedzinach przemysłu, takich jak chemia, farmacja czy produkcja, gdzie precyzyjne obliczenia składników mają kluczowe znaczenie dla jakości i bezpieczeństwa produktów. W praktyce, obliczenie procentowego udziału składników pozwala na optymalizację procesów produkcyjnych oraz kontrolę jakości, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 7

Wskaż, w którym miejscu należy odczytać temperaturę podczas kontroli działania pompy wirowej?

A. Rurociąg ssący
B. Rurociąg tłoczny
C. Łożyska pompy
D. Obudowa pompy
Odczyt temperatury w łożyskach pompy wirowej jest kluczowy dla monitorowania jej stanu operacyjnego. Łożyska są odpowiedzialne za podtrzymywanie wirnika i przenoszenie obciążeń, a ich temperatura może wskazywać na poprawność działania całego systemu. Wzrost temperatury w łożyskach często sygnalizuje nadmierne tarcie, co może prowadzić do uszkodzenia łożysk, a w konsekwencji do awarii pompy. Dobre praktyki branżowe zalecają regularne monitorowanie temperatury łożysk w celu wczesnego wykrywania anomalii. Na przykład, stosowanie czujników temperatury, takich jak termopary lub czujniki RTD, umożliwia ciągłe śledzenie temperatury, co pozwala na szybkie podejmowanie działań w celu zapobiegania poważniejszym uszkodzeniom. Zgodnie z normami ISO, monitorowanie temperatury łożysk powinno być częścią programu konserwacji prewencyjnej, co jest nie tylko praktyką zalecaną, ale także oczekiwaną w nowoczesnych zakładach przemysłowych.

Pytanie 8

Reakcja absorpcji tlenku azotu(IV) w wodzie została przedstawiona równaniem
3NO2 + H2O ↔ 2HNO3 + NO ΔH < 0 Zgodnie z zasadą Le Chateliera - Brauna efektywność reakcji wzrośnie, jeśli

A. zwiększy się temperatura i zwiększy się ciśnienie
B. zmniejszy się temperatura i zmniejszy się ciśnienie
C. zmniejszy się temperatura i zwiększy się ciśnienie
D. zwiększy się temperatura i zmniejszy się ciśnienie
Obniżenie temperatury w przypadku reakcji egzotermicznych, takich jak ta opisana równaniem 3NO2 + H2O ↔ 2HNO3 + NO, prowadzi do przesunięcia równowagi reakcji w stronę produktów, co zwiększa jej wydajność. Zgodnie z zasadą Le Chateliera, system dąży do zminimalizowania skutków zmian warunków. Ponadto, podwyższenie ciśnienia w reakcjach gazowych, w których liczba moli gazów w produktach jest mniejsza niż w reagentach, również sprzyja zwiększeniu wydajności reakcji. W przypadku omawianej reakcji, po lewej stronie równania mamy 3 mole NO2, a po prawej stronie 1 mol NO plus 2 mole HNO3, co w sumie daje 3 mole gazu. Zwiększenie ciśnienia sprzyja zatem powstawaniu produktów. Praktycznie, zastosowanie tej zasady jest widoczne w procesach przemysłowych, takich jak produkcja kwasu azotowego, gdzie kontrola temperatury i ciśnienia jest kluczowa dla zwiększenia wydajności procesu i optymalizacji kosztów operacyjnych.

Pytanie 9

W jaki sposób należy pakować techniczny wodorotlenek sodu?

A. w szczelne certyfikowane puszki aluminiowe wyłożone papierem woskowanym
B. w certyfikowane opakowania typu big-bag z zewnętrznym workiem polipropylenowym i wewnętrzną wkładką papierową
C. w szczelne certyfikowane beczki drewniane wyłożone folią aluminiową
D. w certyfikowane opakowania typu big-bag z zewnętrznym workiem polipropylenowym i wewnętrzną wkładką polietylenową
Techniczny wodorotlenek sodu, znany również jako soda kaustyczna, jest substancją chemiczną o silnych właściwościach żrących. Kluczowe jest jego odpowiednie pakowanie, aby zapewnić bezpieczeństwo transportu i przechowywania. Odpowiednie opakowania typu big-bag, czyli duże worki, są idealne do przechowywania takich substancji, gdyż zapewniają odpowiednią odporność na działanie chemikaliów oraz minimalizują ryzyko ich uwolnienia do środowiska. Zewnętrzny worek polipropylenowy jest odporny na działanie wielu substancji chemicznych, a wewnętrzna wkładka polietylenowa dodatkowo chroni produkt przed wilgocią, co jest szczególnie istotne w przypadku wodorotlenku sodu, który może przyciągać wodę. Opakowania te są zgodne z normami ISO oraz regulacjami dotyczącymi przewozu substancji niebezpiecznych, co potwierdza ich certyfikacja. Przykłady zastosowania obejmują przemysł chemiczny, gdzie wodorotlenek sodu jest wykorzystywany do produkcji mydeł, detergentów oraz w procesach neutralizacji. Przestrzeganie standardów pakowania zapewnia nie tylko bezpieczeństwo pracowników, ale i minimalizuje wpływ na środowisko.

Pytanie 10

Osoba obsługująca nastawny termometr kontaktowy powinna między innymi

A. ustawić oczekiwaną temperaturę na górnej podzielni
B. ustawić maksymalną dozwoloną temperaturę na górnej podzielni, a minimalną na dolnej
C. ustawić minimalną temperaturę na dolnej podzielni
D. ustawić maksymalną dozwoloną temperaturę na dolnej podzielni, a minimalną na górnej
Ustawienie oczekiwanej temperatury na górnej podzielni termometru kontaktowego jest kluczowym działaniem, które zapewnia precyzyjne i efektywne monitorowanie procesów technologicznych. W praktyce oznacza to, że operator powinien dokładnie zdefiniować temperaturę, która ma być osiągnięta podczas danego procesu, co pozwala na bieżąco kontrolować i regulować parametry. Dobrą praktyką jest stosowanie się do norm, takich jak ISO 9001, które zalecają ustalanie i monitorowanie krytycznych parametrów w celu zapewnienia jakości produktu. Na przykład, w procesie produkcji chemikaliów, ustawienie oczekiwanej temperatury na górnej podzielni pozwala operatorom na szybkie wykrywanie odchyleń od normy oraz podejmowanie odpowiednich działań korygujących, co minimalizuje ryzyko awarii i poprawia efektywność operacyjną. Wiedza na temat odpowiedniego ustawienia termometrów kontaktowych jest zatem niezbędna dla każdego operatora, by zapewnić prawidłowe działanie sprzętu oraz bezpieczeństwo w miejscu pracy.

Pytanie 11

Na czym polega między innymi proces przygotowania pieca koksowniczego do remontu?

A. Na opróżnieniu komór z pozostałości poprodukcyjnych i ochłodzeniu do temperatury otoczenia
B. Na wypaleniu resztek poprodukcyjnych w komorach oraz umyciu ich wodą pod ciśnieniem
C. Na przedmuchiwaniu komór sprężonym azotem do momentu osiągnięcia temperatury otoczenia
D. Na usunięciu pozostałości poprodukcyjnych z komór oraz ich zalaniu emulsją olejowo-wodną
Przygotowanie pieca koksowniczego do remontu polega na zapewnieniu, że komory pieca są całkowicie opróżnione z pozostałości poprodukcyjnych, co jest niezbędne do przeprowadzenia skutecznych prac konserwacyjnych. Opróżnienie komór to kluczowy krok, ponieważ resztki węgla, smoły i innych materiałów mogą prowadzić do nieefektywnego działania pieca oraz mogą powodować dalsze komplikacje w trakcie prac remontowych. Po opróżnieniu komór ważne jest ich schłodzenie do temperatury otoczenia, co umożliwia bezpieczną pracę zespołów remontowych. Proces ten jest zgodny z najlepszymi praktykami w branży, które zalecają utrzymanie odpowiednich warunków bezpieczeństwa i higieny pracy. Przykładowo, w przypadku prac na piecu, który nie został odpowiednio schłodzony, istnieje ryzyko poparzeń czy uszkodzeń sprzętu przez wysokie temperatury. Przestrzeganie procedur chłodzenia i przygotowania komór pieca nie tylko zwiększa bezpieczeństwo, ale także efektywność prowadzonych prac, co przekłada się na dłuższą żywotność pieca oraz zmniejszenie kosztów eksploatacji.

Pytanie 12

Aby potwierdzić obecność jonów Cl¯ w wodzie z sieci wodociągowej, powinno się zastosować

A. odczynnika Fehlinga
B. roztworu NH4SCN
C. odczynnika Tollensa
D. roztworu AgNO3
Roztwór AgNO3 (azotan srebra) jest najczęściej stosowanym odczynnikiem do wykrywania jonów Cl¯ w wodzie, ponieważ reaguje z nimi, tworząc nierozpuszczalny osad AgCl (chlorek srebra). Ta reakcja jest dobrze znana w chemii analitycznej i stanowi podstawę metody miareczkowania. W praktyce, test polega na dodaniu kilku kropli roztworu AgNO3 do próbki wody. Jeśli jony Cl¯ są obecne, pojawi się biały osad, co potwierdza ich obecność. Tego typu analiza jest zgodna z normami jakości wody, które wymagają regularnego monitorowania zawartości chlorków w wodzie pitnej. Roztwór AgNO3 jest również wykorzystywany w laboratoriach do analizy jakości wody, w badaniach środowiskowych oraz w przemyśle, gdzie kontrola zawartości jonów chlorkowych jest istotna. Ponadto, znajomość reakcji AgNO3 z jonami Cl¯ jest fundamentalna dla chemii analitycznej i wykorzystywana w różnych metodach analizy, takich jak miareczkowanie i spektroskopia.

Pytanie 13

Który z wymienionych metali, użyty jako dodatek do stali, poprawi odporność tego stopu na działanie kwasów?

A. Aluminium
B. Nikiel
C. Cynk
D. Magnez
Nikiel jest metalem, który wykazuje doskonałe właściwości antykorozyjne, co czyni go idealnym dodatkiem do stopów żelaza w zastosowaniach, gdzie odporność na działanie kwasów i różnych mediów chemicznych jest kluczowa. Dzięki swojej zdolności do tworzenia pasywnej warstwy ochronnej, nikiel zapobiega dalszej korozji żelaza, co zwiększa trwałość oraz żywotność takich materiałów. Przykładem zastosowania niklu w stopach żelaza jest stal nierdzewna, która zawiera zazwyczaj od 8% do 12% niklu. Stal nierdzewna, dzięki swoim właściwościom, znajduje szerokie zastosowanie w przemyśle spożywczym, chemicznym oraz budowlanym, gdzie narażona jest na kontakt z agresywnymi substancjami. Stosowanie niklu w stopach żelaza zgodne jest z branżowymi standardami, takimi jak ASTM A240, które określają wymogi dotyczące stali nierdzewnej. Warto również zaznaczyć, że nikiel pomaga w poprawie właściwości mechanicznych stali, co w połączeniu z jego odpornością na korozję czyni go niezwykle ważnym składnikiem w nowoczesnym inżynierii materiałowej.

Pytanie 14

Wsad do pieców koksowniczych stanowi węgiel o średnicy ziaren mniejszej niż 3 mm. Jaką zasadą technologiczną uzasadnione jest osiągnięcie takiego rozdrobnienia wsadu?

A. Zasadą maksymalnego wykorzystania produktów ubocznych
B. Zasadą jak najlepszego rozwinięcia powierzchni reagenta
C. Zasadą regeneracji surowców
D. Zasadą przeciwprądu materiałowego
Zasada jak najlepszego rozwinięcia powierzchni reagenta odnosi się do efektywności reakcji chemicznych, które zachodzą w piecu koksowniczym. W przypadku wsadu z węgla o średnicy ziaren mniejszej niż 3 mm, zwiększenie powierzchni kontaktu między reagentami a gazem i innymi substancjami reakcyjnymi jest kluczowe dla optymalizacji procesu koksowania. Dzięki drobniejszym ziarnom, większa ilość cząsteczek węgla może bezpośrednio współdziałać z substancjami chemicznymi, co prowadzi do szybszego i efektywniejszego przekształcenia węgla w koks. Praktyczne zastosowanie tej zasady można zauważyć w procesach przemysłowych, gdzie odpowiednie rozdrobnienie surowców wpływa na jakość produktu końcowego oraz na wydajność energetyczną całego procesu. Optymalizacja rozdrobnienia materiałów stałych jest standardem branżowym, który wpływa na koszty produkcji i minimalizację odpadów, co jest zgodne z zasadami zrównoważonego rozwoju.

Pytanie 15

Jakie działania należy podjąć, aby zapewnić prawidłowe funkcjonowanie przenośnika taśmowego?

A. Na regularnym nawadnianiu taśmy transportowej
B. Na wprowadzeniu strumienia suchego powietrza
C. Na ustawieniu maszyny pod kątem
D. Na utrzymywaniu właściwego napięcia taśmy
Dobre napięcie taśmy w przenośniku to naprawdę kluczowa sprawa, żeby wszystko działało jak należy. Jak taśma jest za luźna, to może się ślizgać, a to oznacza, że materiały nie będą transportowane odpowiednio. W skrajnych przypadkach może nawet dojść do uszkodzenia taśmy czy innych części. Z drugiej strony, zbyt mocne napięcie to też nie jest najlepszy pomysł, bo może zajechać napęd i obciążyć silnik, co skróci jego żywotność. Moim zdaniem, warto regularnie zaglądać pod pokrywę i sprawdzać stan taśmy oraz mechanizmy naciągu, takie jak rolki. Z tego co się orientuję, są normy, na przykład ANSI/ASME, które mówią, że dobrze mieć systemy do monitorowania napięcia taśmy. Dzięki temu można lepiej dostosować, jak taśmy pracują. Generalnie, dbanie o napięcie taśmy powinno być częścią rutyny, bo to nie tylko poprawia wydajność, ale też zwiększa bezpieczeństwo.

Pytanie 16

Gdzie należy rejestrować wyniki analiz poszczególnych partii surowców dostarczanych do przerobu w zakładzie chemicznym?

A. W dzienniku uwzględniającym przychód i rozchód
B. W dokumentacji głównego technologa zakładu
C. W notesie analityka wykonującego oznaczenia
D. W dokumentacji głównego energetyka
Dokumentowanie wyników analiz partii surowców w dzienniku uwzględniającym przychód i rozchód jest kluczowym elementem zarządzania procesami produkcyjnymi w zakładzie chemicznym. Taki dziennik pozwala na bieżące monitorowanie jakości surowców, co jest niezbędne dla zapewnienia ciągłości produkcji oraz utrzymania wysokiej jakości finalnych produktów. Przykładem może być stosowanie systemów zarządzania jakością, takich jak ISO 9001, które wymagają od firm ścisłego rejestrowania wszystkich etapów produkcji oraz analiz. Dziennik ten nie tylko ułatwia śledzenie partii surowców, ale również w przypadku audytów pozwala na szybkie odnalezienie informacji dotyczących użytych materiałów i ich jakości. Ponadto, w sytuacjach reklamacyjnych lub kontrolnych, posiadanie dokładnych zapisów w dzienniku pozwala na efektywne ustalanie przyczyn problemów i wprowadzenie odpowiednich działań naprawczych, co jest niezbędne dla utrzymania standardów branżowych i reputacji zakładu.

Pytanie 17

Do krystalizatora wieżowego jest wtryskiwany przez dysze

A. od góry roztwór nasycony w temperaturze otoczenia
B. od dołu roztwór nasycony w temperaturze otoczenia
C. od dołu gorący roztwór nasycony
D. od góry gorący roztwór nasycony
Odpowiedź "od góry gorący roztwór nasycony" jest prawidłowa, ponieważ w procesie krystalizacji wieżowej kluczowe jest, aby roztwór był wprowadzany w odpowiedniej formie, co zapewnia efektywność procesu krystalizacji. Wtryskiwanie gorącego roztworu nasyconego od góry umożliwia utrzymanie wyższej temperatury, co sprzyja rozpuszczeniu większej ilości substancji i ogranicza ryzyko przedwczesnego krystalizowania. Taki sposób podawania roztworu minimalizuje również turbulencje wewnątrz krystalizatora, co jest kluczowe dla uzyskania jednorodnych kryształów. W praktyce, ten proces jest stosowany w wielu aplikacjach przemysłowych, takich jak produkcja soli czy cukru, gdzie optymalizacja wydajności i jakości kryształów jest niezbędna. Ponadto, zgodnie z dobrymi praktykami inżynierii chemicznej, wykorzystanie gorącego roztworu nasyconego od góry poprawia transfer masy i umożliwia lepsze zarządzanie procesem chłodzenia, co jest istotne dla stabilności i jednolitości uzyskiwanych kryształów.

Pytanie 18

W skład niezbędnego wyposażenia reaktora do kontaktowej syntezy amoniaku, która zachodzi w temperaturze 700 K i pod ciśnieniem 10 MPa, powinny wchodzić

A. zawór bezpieczeństwa, manometr i termometr kontaktowy
B. zawór zwrotny, manometr i termometr oporowy
C. wakuometr, manometr i termometr oporowy
D. rotametr, barometr i termometr szklany
Zawór bezpieczeństwa, manometr i termometr kontaktowy to kluczowe elementy oprzyrządowania reaktora chemicznego, szczególnie w procesie syntezy amoniaku. Zawór bezpieczeństwa jest niezbędny, aby zapobiec niebezpiecznym wzrostom ciśnienia wewnątrz reaktora, co może prowadzić do awarii lub eksplozji. Zgodnie z normami bezpieczeństwa, każdy system pod ciśnieniem musi być wyposażony w odpowiednie mechanizmy ochronne. Manometr pozwala na bieżąco monitorować ciśnienie w reaktorze, co jest kluczowe dla utrzymania optymalnych warunków reakcji, zwłaszcza w przypadku syntezy amoniaku, gdzie działanie pod wysokim ciśnieniem zwiększa efektywność procesu. Termometr kontaktowy umożliwia precyzyjne pomiary temperatury we wnętrzu reaktora, co jest istotne dla kontroli parametrów reakcji oraz zapobiegania niepożądanym efektom, takim jak przegrzanie. Użycie tych komponentów jest zgodne z najlepszymi praktykami inżynieryjnymi, które skupiają się na bezpieczeństwie i efektywności procesów chemicznych.

Pytanie 19

Osoba obsługująca wyparkę Roberta w czasie jej działania powinna

A. monitorować temperatury czynnika grzewczego oraz wydobywających się oparów, a także poziom piany w komorze
B. regulować ilość skroplin kierowanych do skraplacza i częściowo je zwracać do procesu zatężania
C. dostosowywać ilość podawanej surówki oraz temperaturę uzyskanego kondensatu
D. sprawdzać temperatury skroplin, a także cieczy zatężonej oraz stężenie gazów w komorze
Prawidłowa odpowiedź dotyczy kluczowych aspektów monitorowania procesu pracy wyparkę. Kontrola temperatury czynnika grzewczego i odprowadzanych oparów jest istotna, ponieważ pozwala na optymalizację procesu zatężania, co wpływa na jakość produktu finalnego oraz efektywność energetyczną całego systemu. Utrzymanie właściwej temperatury czynnika grzewczego gwarantuje, że proces odparowania zachodzi w sposób ciągły i stabilny, co jest niezbędne dla uzyskania pożądanej wydajności. Dodatkowo, monitoring ilości piany w komorze wyparnej jest ważny, ponieważ nadmiar piany może prowadzić do obniżenia wydajności oraz zanieczyszczenia produktu. W praktyce, operatorzy powinni regularnie sprawdzać te parametry, aby uniknąć problemów, takich jak przegrzewanie lub niska jakość skroplin. Dobre praktyki branżowe zalecają stosowanie automatycznych systemów monitoringu, które mogą informować o nieprawidłowościach w czasie rzeczywistym, co zwiększa bezpieczeństwo i efektywność procesu.

Pytanie 20

Proces produkcji polietylenu w metodzie wysokociśnieniowej odbywa się w temperaturze 150--260°C oraz pod ciśnieniem
150-200 MPa. Wyniki monitorowania temperatury tego procesu, zapisane w dokumentacji, wyrażone w kelwinach, powinny znajdować się w zakresie

A. 423--473 K
B. 150--260 K
C. 273--423 K
D. 423--533 K
Produkcja polietylenu w wysokiej temperaturze rzeczywiście zachodzi w przedziale 150-260°C. Jak chcesz to przeliczyć na kelwiny, to wystarczy dodać 273,15 do stopni Celsjusza. Czyli, 150°C to 423,15 K, a 260°C to 533,15 K. Dlatego zgadza się, że przedział 423-533 K jest poprawny. W przemyśle to monitorowanie temperatury jest naprawdę kluczowe. Jeśli temperatura jest za niska lub za wysoka, to mogą być kłopoty z reakcją chemiczną i w efekcie jakością oraz wydajnością produkcji polietylenu. Trzymanie się odpowiednich temperatur to nie tylko zasady inżynierii chemicznej, ale również standardy, jak ISO 9001, które dbają o efektywność w produkcji. Poza tym, często korzysta się z systemów automatyki, które pomagają w monitorowaniu i optymalizacji warunków produkcji. To bardzo ważne w dużych zakładach, żeby wszystko szło sprawnie.

Pytanie 21

Jakie urządzenie można wykorzystać do pomiaru natężenia przepływu cieczy?

A. zwężka Venturiego
B. wiskozymetr Ubbelohdego
C. aparatura Orsata
D. urządzenie Abla-Pensky'ego
Zwężka Venturiego jest urządzeniem pomiarowym, które działa na zasadzie różnicy ciśnień w cieczy przepływającej przez zwężenie. Dzięki zjawisku Bernoulliego, gdy ciecz przepływa przez zwężkę, jej prędkość wzrasta, a ciśnienie maleje. To zjawisko pozwala na dokładne obliczenie natężenia przepływu na podstawie różnicy ciśnień, co jest zgodne z równaniem Bernoulliego. W praktyce zwężki Venturiego są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, hydraulika czy systemy nawadniające. Zgodnie z normami ISO dotyczących pomiaru przepływu, zwężki Venturiego są uznawane za jedno z najdokładniejszych narzędzi w tej kategorii, co czyni je preferowanym wyborem w zastosowaniach wymagających wysokiej precyzji. Dodatkowo, ich konstrukcja jest prosta i niezawodna, co ułatwia ich integrację w różnych systemach rurociągowych, zapewniając minimalne opory przepływu, co jest kluczowe w wielu zastosowaniach inżynieryjnych.

Pytanie 22

Zbiornik przeznaczony do magazynowania oleju opałowego ma pojemność 400 m3. Jaki czas zajmie napełnienie go do 80% pojemności, jeśli objętościowe natężenie przepływu oleju wynosi 8 m3/h?

A. 40 godzin
B. 4 godziny
C. 50 godzin
D. 5 godzin
Aby obliczyć czas napełniania zbiornika oleju opałowego o objętości 400 m³ do 80% jego pojemności, najpierw musimy określić, jaka to objętość. 80% z 400 m³ wynosi 320 m³. Następnie, mając natężenie przepływu oleju wynoszące 8 m³/h, możemy obliczyć czas potrzebny do napełnienia tej objętości, dzieląc 320 m³ przez 8 m³/h. Otrzymujemy 40 godzin. Takie obliczenia są kluczowe w praktycznych zastosowaniach inżynieryjnych, np. w zarządzaniu zbiornikami paliw, co wymaga znajomości przepływów oraz czasu napełnienia dla zapewnienia efektywności operacyjnej. W kontekście standardów, przepływomierze i systemy monitorowania są często wykorzystywane do dokładnych pomiarów, co pozwala na optymalizację procesów związanych z przechowywaniem i transportem płynów. Wiedza na temat obliczeń objętości i czasu jest niezbędna w branżach zajmujących się energetyką i transportem paliw, gdzie precyzja ma kluczowe znaczenie dla bezpieczeństwa i efektywności operacji.

Pytanie 23

Nadzór nad funkcjonowaniem instalacji zasilającej piec rurowo cylindryczny (flaszkowy) opiera się na ciągłej obserwacji

A. twardości wody dostarczanej do pieca
B. natężenia przepływu oraz temperatury ropy naftowej
C. natężenia przepływu oraz temperatury wody
D. składu oraz odczynu podawanej ropy naftowej
Monitorowanie działania instalacji zasilającej piec rurowo cylindryczny, szczególnie w kontekście przemysłu naftowego, wymaga stałej kontroli natężenia przepływu i temperatury ropy naftowej. Ropa, jako surowiec energetyczny, musi być dostarczana do pieca w odpowiednich warunkach, aby zapewnić efektywność procesu spalania oraz stabilność jego pracy. Odpowiednie natężenie przepływu zapewnia optymalne warunki reakcji chemicznych zachodzących w piecu, co wpływa na jego wydajność oraz bezpieczeństwo operacyjne. Zastosowanie nowoczesnych technologii monitoringu, takich jak sensory temperatury i przepływu, zgadza się z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie nieprawidłowości w działaniu instalacji. Na przykład, nagłe zmiany w natężeniu przepływu mogą wskazywać na zatykanie rurociągów lub problemy z pompami. Właściwe zarządzanie tymi parametrami jest kluczowe dla minimalizacji ryzyka awarii oraz zwiększenia efektywności energetycznej. W praktyce, firmy stosujące takie systemy monitorowania często osiągają lepsze wyniki operacyjne oraz oszczędności kosztów eksploatacyjnych.

Pytanie 24

Jak powinno się postępować z sitami używanymi w koksowniach do przesiewania węgla po zakończeniu ich użytkowania?

A. Zabezpieczyć olejowym środkiem ochrony czasowej
B. Przetrzeć wilgotną szmatą
C. Przedmuchać sprężonym powietrzem
D. Umyć gorącą wodą z detergentem
Przedmuchiwanie sit sprężonym powietrzem jest najlepszym sposobem na usunięcie zanieczyszczeń, pyłu i resztek węgla, które mogą gromadzić się na powierzchni sit w trakcie ich eksploatacji. Dzięki temu procesowi można nie tylko przywrócić sitom ich pierwotną wydajność, ale także wydłużyć ich żywotność. Standardowe procedury konserwacyjne w zakładach koksowniczych wskazują, że stosowanie sprężonego powietrza jest preferowane, ponieważ skutecznie penetruje wszelkie zakamarki konstrukcji sit, co jest trudne do osiągnięcia przy użyciu wody lub innych środków czyszczących. Przykładowo, w przypadku sit o drobnych oczkach, czyszczenie sprężonym powietrzem minimalizuje ryzyko zatykania się otworów, co mogłoby prowadzić do obniżenia efektywności procesu przesiewania. Dodatkowo, sprężone powietrze jest metodą szybką i efektywną, co ogranicza przestoje w procesie produkcji. Warto również zaznaczyć, że zgodnie z wytycznymi BHP, przed przystąpieniem do czyszczenia sit sprężonym powietrzem, należy stosować odpowiednie środki ochrony osobistej, aby zabezpieczyć pracowników przed ewentualnym działaniem pyłów.

Pytanie 25

Wykonaj pomiar temperatury, której przewidywana wartość wynosi około 348 K. Jakie powinno być zakres pomiarowy termometru zastosowanego w tym przypadku?

A. -20-+250°C
B. 50-100°C
C. 70-90°C
D. 0-+150°C
Wybór zakresu 50-100°C jest jak najbardziej na miejscu, bo temperatura, której potrzebujemy, to około 348 K, co przekłada się na 75°C. Wybierając termometr z takim zakresem, mamy pewność, że pomiar będzie dokładny i bezpieczny. Gdybyśmy zdecydowali się na termometr z zakresu -20 do 250°C, mogłoby to prowadzić do nieprecyzyjnych wyników, zwłaszcza w niższych temperaturach. Z tego, co wiem, termometry najlepiej działają w swoich optymalnych zakresach. Jak to często bywa, sprzęt wykorzystywany w laboratoriach lub przemyśle musi być dobrze dobrany do warunków, żeby wyniki były rzetelne. Dobrą praktyką jest również zostawić sobie margines bezpieczeństwa w zakresie pomiarowym, dlatego wybór 50-100°C jest sensowny. Dzięki temu możemy uniknąć uszkodzeń urządzenia, gdyby temperatura podeszła zbyt blisko granicy jego działania.

Pytanie 26

Jaką ilość czerni eriochromowej należy odważyć, aby uzyskać 50,25 g jej mieszanki z NaCl, przy przygotowywaniu alkoholowego roztworu czerni eriochromowej, który powstaje z połączenia czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl oraz odpowiednią ilością etanolu?

A. 0,05 g
B. 0,25 g
C. 50,20 g
D. 50,0 g
Aby otrzymać 50,25 g mieszaniny czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl, należy obliczyć, ile czerni eriochromowej jest potrzebne. W tej proporcji oznacza to, że na 200 g NaCl przypada 1 g czerni. Całkowita masa mieszaniny wynosi 50,25 g, zatem masa NaCl będzie wynosić 50,25 g - masa czerni. Stosując proporcję, możemy ustalić, że 200 g NaCl odpowiada 1 g czerni, co prowadzi do równania 50,25 g = 200 g NaCl + 0,25 g czerni. Z tego wynika, że masa czerni eriochromowej wynosi 0,25 g. Taki sposób obliczeń jest ważny w praktyce laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskiwania rzetelnych i powtarzalnych wyników analitycznych. Dobre praktyki w laboratoriach analitycznych obejmują dokładne odważanie reagentów oraz stosowanie odpowiednich proporcji, co jest niezbędne w analizach chemicznych oraz w przygotowywaniu wskaźników, takich jak czerń eriochromowa, wykorzystywana w titracji.

Pytanie 27

Możliwość przeprowadzenia jednorazowej analizy stężenia tlenku węgla w gazach spalinowych uzyskuje się dzięki

A. refraktometrowi Abbego
B. aparatu Orsata
C. urządzeniu Marcussona
D. kalorymetrowi Junkersa
Aparat Orsata jest urządzeniem używanym do pomiaru zawartości tlenku węgla (CO) w gazach spalinowych, co jest kluczowe w analizie emisji oraz w ocenie efektywności procesów spalania. Zasada działania aparatu opiera się na reakcji chemicznej, w której tlenek węgla reaguje z reagentem, co skutkuje powstaniem zmiany barwy, umożliwiającej ilościowe określenie stężenia CO. W praktyce, aparat Orsata znajduje zastosowanie w branży energetycznej, motoryzacyjnej oraz w przemysłowych instalacjach grzewczych, gdzie regularne monitorowanie emisji gazów jest wymagane przez przepisy ochrony środowiska. Stosowanie tego urządzenia pozwala na szybką i precyzyjną analizę, co jest niezbędne dla oceny wpływu na jakość powietrza oraz dla zapewnienia zgodności z normami emisji. W przypadku wykrycia wysokiego stężenia tlenku węgla, operatorzy mogą podjąć odpowiednie działania korygujące, co przekłada się na zmniejszenie negatywnego wpływu na zdrowie ludzi i środowisko.

Pytanie 28

W kolumnie próżniowej w procesie destylacji rurowo-wieżowej zyskuje się frakcje olejowe o temperaturach wrzenia 220÷380 °C. Co pół godziny powinno się zanotować w dzienniku monitoringu?

A. tylko temperatury
B. ciśnienia i temperatury
C. objętości zebranych frakcji
D. tylko ciśnienia
Prawidłowa odpowiedź to wpisywanie zarówno ciśnienia, jak i temperatury, ponieważ obie te wartości są kluczowe w procesie monitorowania destylacji rurowo-wieżowej. Wartości te pozwalają na ocenę efektywności procesu separacji frakcji olejowych. Ciśnienie wpływa na temperaturę wrzenia substancji, a zmiany w zarówno ciśnieniu, jak i temperaturze mogą wskazywać na odchylenia od normy. Przykładowo, w procesie destylacji, zwiększenie ciśnienia może prowadzić do podwyższenia temperatury wrzenia, co może zmodyfikować charakterystykę odbieranych frakcji. W praktyce, monitorowanie tych parametrów jest zgodne z zasadami dobrej praktyki inżynieryjnej, a regularne zapisywanie ich wartości co pół godziny pozwala na szybką reakcję w przypadku wystąpienia anomalii, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności produkcji. W przypadku systemów automatycznego monitorowania, dane te mogą być również wykorzystywane do analizy wydajności procesu oraz optymalizacji warunków operacyjnych.

Pytanie 29

W magnetycie zawartość żelaza wynosi 70% masy. Jaką ilość żelaza teoretycznie można uzyskać z 500 kg rudy magnetytowej, która zawiera magnetyt oraz 20% masowych zanieczyszczeń?

A. 280 kg
B. 100 kg
C. 350 kg
D. 400 kg
Zawartość żelaza w magnetycie, wynosząca 70%, to fajna sprawa, bo oznacza, że z 500 kg rudy teoretycznie moglibyśmy uzyskać aż 350 kg czystego żelaza. Ale zanim na to przejdziemy, musimy wziąć pod uwagę, że zanieczyszczenia stanowią 20% masy. Więc najpierw liczymy: 20% z 500 kg to 100 kg, no i mamy, że rzeczywiście mamy 400 kg magnetytu. A teraz, jak to przeliczymy na żelazo? Robimy to tak: 70% z 400 kg to 280 kg. To całkiem ważne, żeby rozumieć, jak te procenty działają w przemyśle, bo czystość surowców ma spore znaczenie w ich dalszym przetwarzaniu. Wiedza o tym wszystkim jest kluczowa, by ogarniać zarządzanie zasobami w metalurgii i przy wydobyciu surowców naturalnych.

Pytanie 30

Który z wymienionych materiałów budowlanych posiada cechy umożliwiające jego wykorzystanie do produkcji chłodnic w przemysłowej instalacji syntezy metanolu?

A. Stopy cyny
B. Winidur
C. Stopy glinu
D. Polistyren
Stopy glinu są szeroko stosowane w przemyśle ze względu na swoje korzystne właściwości mechaniczne i termiczne. Charakteryzują się one dobrą odpornością na korozję, co czyni je idealnym materiałem do zastosowań w instalacjach, gdzie występuje kontakt z substancjami chemicznymi, takimi jak metanol. Dodatkowo, stopy glinu mają niską gęstość, co pozwala na zmniejszenie masy konstrukcji chłodnic, a także doskonałe przewodnictwo cieplne, co jest kluczowe w aplikacjach związanych z wymianą ciepła. Przykładem zastosowania stopów glinu w przemyśle może być produkcja wymienników ciepła, które są kluczowymi komponentami w procesach chemicznych, w tym w syntezie metanolu. W kontekście dobrych praktyk, standardy takie jak ASTM B221 regulują wymagania dla tych materiałów, co zapewnia ich jakość i odpowiednią wydajność w trudnych warunkach przemysłowych.

Pytanie 31

Jaką metodę elektrolizy solanki należy wykorzystać, aby usunąć zanieczyszczenia środowiskowe związane z azbestem i rtęcią?

A. Diafragmową
B. Bezprzeponową
C. Membranową
D. Przeponową
Metoda elektrolizy membranowej jest kluczowym rozwiązaniem w procesach oczyszczania środowiska, szczególnie w kontekście usuwania zanieczyszczeń takich jak azbest i rtęć. Elektroliza membranowa wyróżnia się wysoką selektywnością oraz efektywnością, co umożliwia precyzyjne oddzielanie niepożądanych substancji. W procesie tym zastosowanie odpowiedniej membrany pozwala na zachowanie wysokiej jakości produktów elektrolizy, ponieważ membrana działa jako bariera, przez którą przepuszczane są jedynie jony o odpowiednim ładunku. Dzięki temu można minimalizować ryzyko wydostania się toksycznych substancji do środowiska. Przykładowo, w przemysłowych instalacjach do produkcji chloru oraz sody kalcynowanej, metoda ta jest preferowana, ponieważ nie tylko pozwala na uzyskanie wysokiej czystości produktów, ale także ogranicza emisję substancji szkodliwych. Stosowanie technologii membranowej jest zgodne z najlepszymi praktykami branżowymi i regulacjami ochrony środowiska, co czyni ją idealnym wyborem w kontekście walki z kontaminacją środowiska.

Pytanie 32

Pobieranie próbek gazu najpierw do aspiratora lub pipety gazowej, skąd następnie pozyskuje się gaz do analizy, stanowi metodę

A. wyrywkową
B. ciągłą
C. bezpośrednią
D. pośrednią
Odpowiedź 'pośrednia' jest poprawna, ponieważ pobieranie próbek gazu najpierw do aspiratora lub pipety gazowej, a następnie do analizy, jest procesem, który nie pozwala na bezpośredni pomiar parametrów gazu w miejscu jego występowania. Metoda pośrednia polega na tym, że próbka jest transportowana z miejsca pomiaru do urządzenia analitycznego, co jest zgodne z praktykami stosowanymi w laboratoriach analitycznych. Przykładem zastosowania tej metody może być pobieranie próbek gazów atmosferycznych do analizy ich składu chemicznego czy stężenia zanieczyszczeń. Standardy takie jak ISO 17025 podkreślają znaczenie odpowiedniego pobierania próbek, aby uzyskać wiarygodne wyniki analizy. Dlatego też w laboratoriach stosuje się różne techniki, aby zapewnić, że próbki są reprezentatywne dla całego źródła, a ich analiza dostarcza użytecznych informacji o badanym medium. Wykorzystanie aspiratorów czy pipet gazowych jest również zgodne z dobrymi praktykami, które pomagają zminimalizować straty oraz kontaminację próbek, co jest kluczowe dla zachowania integralności analizy.

Pytanie 33

Jakie funkcje pełnią odstojniki?

A. Przechowywanie nadwyżki produktów
B. Przechowywanie nadwyżki surowców
C. Odśrodkowe oddzielanie ciał stałych od gazów
D. Grawitacyjne oddzielanie ciał stałych od cieczy
Odstojniki są urządzeniami wykorzystywanymi w różnych procesach przemysłowych do grawitacyjnego oddzielania fazy stałej od ciekłej. Główną zaletą tego procesu jest to, że pozwala on na skuteczne usunięcie osadów i zanieczyszczeń, co jest kluczowe w wielu branżach, takich jak przemysł chemiczny czy petrochemiczny. W zastosowaniach przemysłowych, po wprowadzeniu mieszanki do odstojnika, cieczy o mniejszej gęstości uniesie się ku górze, podczas gdy faza stała opadnie na dno. Dzięki grawitacyjnemu działaniu, proces ten jest znacznie bardziej ekonomiczny i wymaga mniej energii w porównaniu do metod mechanicznych. Przykładem może być proces oczyszczania wód odpadowych, gdzie odstojniki są kluczowe dla separacji osadów, co zwiększa efektywność dalszych procesów oczyszczania. Standardy branżowe, takie jak normy ISO dotyczące jakości wód, wskazują na konieczność stosowania takich systemów separacyjnych w procesach industrialnych, co świadczy o ich istotnym znaczeniu i zastosowaniu.

Pytanie 34

Jakie zbiorniki powinny być użyte do przechowywania cieczy łatwopalnych oraz wybuchowych?

A. Naziemne
B. Membranowe
C. Kriogeniczne
D. Podziemne
Zbiorniki podziemne są najczęściej wybierane do magazynowania cieczy łatwopalnych i wybuchowych z kilku powodów. Przede wszystkim, ich lokalizacja poniżej poziomu terenu minimalizuje ryzyko przypadkowego zapłonu, co jest kluczowe w przypadku substancji niebezpiecznych. Dodatkowo, zbiorniki te często są projektowane z wykorzystaniem materiałów odpornych na korozję i deformacje, co zwiększa ich bezpieczeństwo i trwałość. Przykłady zastosowania podziemnych zbiorników obejmują magazynowanie paliw w stacjach benzynowych, gdzie zbiorniki są umieszczone pod ziemią, aby zminimalizować ryzyko wybuchu i zanieczyszczenia środowiska. Standardy takie jak NFPA 30 (National Fire Protection Association) jasno określają zasady dotyczące przechowywania cieczy łatwopalnych, podkreślając znaczenie odpowiedniej lokalizacji zbiorników. Ponadto, zastosowanie technologii monitorowania i systemów zabezpieczeń w zbiornikach podziemnych znacznie zwiększa bezpieczeństwo operacji oraz chroni przed nieautoryzowanym dostępem i wyciekami.

Pytanie 35

Mieszanina nitrująca składa się z HNO3 w stężeniu oraz H2SO4 w stężeniu. Waga kwasu azotowego(V) w tej mieszance wynosi 46%. Jakie ilości tych kwasów trzeba zmieszać, aby uzyskać 200 kg tej mieszanki?

A. 92 kg HNO3 i 108 kg H2SO4
B. 108 kg HNO3 i 92 kg H2SO4
C. 105 kg HNO3 i 95 kg H2SO4
D. 95 kg HNO3 i 105 kg H2SO4
Odpowiedź 92 kg HNO3 i 108 kg H2SO4 jest prawidłowa, ponieważ dokładnie spełnia wymagania dotyczące składu mieszaniny nitrującej. Mieszanina ta powinna zawierać 46% kwasu azotowego(V), co oznacza, że w 200 kg mieszaniny musi być 92 kg HNO3 (46% z 200 kg). Pozostała masa, czyli 108 kg, stanowi kwas siarkowy(VI). Takie proporcje są zgodne z praktycznymi zastosowaniami w przemyśle chemicznym, gdzie precyzyjne określenie składników jest kluczowe dla jakości procesu. Dodatkowo, mieszanie tych kwasów zgodnie z tymi zasadami jest istotne, ponieważ pozwala na uzyskanie odpowiednich właściwości reaktantów, które są wykorzystywane w syntezach chemicznych, w tym produkcji azotanów. Zgodność z tymi wartościami jest również zgodna z dobrymi praktykami laboratoryjnymi, które wymagają dokładności w przygotowywaniu reagentów chemicznych.

Pytanie 36

Z jakiego typu materiału produkowana jest wewnętrzna warstwa urządzeń do wchłaniania chlorowodoru w wodzie?

A. Z żeliwa
B. Z grafitu
C. Ze staliwa
D. Z aluminium
Grafit jest materiałem o wysokiej odporności chemicznej, co czyni go idealnym wyborem do zastosowań związanych z absorpcją chlorowodoru w wodzie. Chlorowodorek jest gazem, który w kontakcie z wodą tworzy kwas solny, a jego neutralizacja wymaga materiałów odpornych na korozję oraz wysokotemperaturowe warunki. Grafit wykazuje doskonałą wytrzymałość na działanie kwasów, co pozwala na bezpieczne i efektywne usuwanie tego gazu z obiegu. W praktyce, urządzenia do absorpcji chlorowodoru zbudowane z grafitu są wykorzystywane w różnych gałęziach przemysłu, w tym w chemicznym, petrochemicznym oraz w procesach oczyszczania ścieków. Dodatkowo, grafit jest materiałem o dobrych właściwościach termicznych, co czyni go bardziej wydajnym w procesach, w których temperatura może wzrosnąć podczas reakcji chemicznych. W związku z tym, w standardach przemysłowych, takich jak ISO 14001 dotyczących zarządzania środowiskowego, grafit jest często rekomendowany jako materiał wyboru w systemach usuwania zanieczyszczeń gazowych.

Pytanie 37

Jaką substancję należy dodać do roztworu solanki, używanego w procesie uzyskiwania sody metodą Solvaya, aby zapobiec powstawaniu niepożądanych osadów w rurociągach i urządzeniach?

A. CaCO3
B. Ca(OH)2
C. Mg(OH)2
D. Mg(HCO3)2
Odpowiedź Ca(OH)2, czyli wodorotlenek wapnia, jest prawidłowa, ponieważ jego zastosowanie w procesie Solvaya ma kluczowe znaczenie dla kontroli pH w solance. Wprowadzenie Ca(OH)2 do roztworu pomoże utrzymać pH na odpowiednim poziomie, co minimalizuje ryzyko wytrącania się osadów niepożądanych, takich jak węglan wapnia (CaCO3) w rurociągach i aparaturze. W praktyce, zarządzanie pH jest istotne, aby uniknąć korozji urządzeń oraz zapewnić efektywność procesów chemicznych. Zastosowanie wodorotlenku wapnia jest zgodne z dobrymi praktykami przemysłowymi, które zalecają kontrolę chemiczną w systemach produkcyjnych. Na przykład, w branży chemicznej, gdzie procesy są wrażliwe na zmiany pH, regularne monitorowanie i regulacja za pomocą środków, takich jak Ca(OH)2, jest niezbędne dla zapewnienia stabilności procesów oraz jakości produktów końcowych.

Pytanie 38

Energia uwalniająca się w wyniku reakcji chemicznych jest zazwyczaj stosowana do wstępnego podgrzewania surowców wprowadzanych do reaktorów lub do wytwarzania pary wodnej w dedykowanych kotłach utylizacyjnych. Jaką zasadą technologiczną uzasadnia się takie podejście?

A. Optymalnego wykorzystania różnic potencjałów
B. Optymalnego wykorzystania energii
C. Optymalnego wykorzystania surowców
D. Optymalnego wykorzystania aparatury
Poprawna odpowiedź "Najlepszego wykorzystania energii" odnosi się do zasadności wykorzystania ciepła generowanego w procesach chemicznych do efektywnego zarządzania energią w instalacjach przemysłowych. W procesach reakcyjnych, ciepło to może być odzyskiwane i używane do wstępnego ogrzewania surowców, co zmniejsza zapotrzebowanie na dodatkowe źródła energii, takie jak paliwa kopalne. Przykładem takiego zastosowania jest przemysł petrochemiczny, gdzie ciepło z reakcji krakingu jest wykorzystywane do podgrzewania surowców przed dalszymi procesami. Wykorzystanie energii w sposób efektywny nie tylko obniża koszty operacyjne, ale również przyczynia się do zmniejszenia emisji gazów cieplarnianych, co jest zgodne z najlepszymi praktykami zrównoważonego rozwoju. Utrzymanie wysokiej efektywności energetycznej jest kluczowe w kontekście globalnych dążeń do ograniczenia zużycia energii oraz zminimalizowania wpływu na środowisko. Ponadto, standardy ISO 50001 dotyczące zarządzania energią podkreślają znaczenie monitorowania i optymalizacji procesów energetycznych, co jest zgodne z omawianą zasadą.

Pytanie 39

W którym z urządzeń pomiarowych wilgotności używane jest zjawisko zmiany rozmiaru elementu sensora w zależności od poziomu wilgotności?

A. W higrometrze bimetalicznym
B. W psychrometrze Assmanna
C. W higrometrze kondensacyjnym
D. W wilgotnościomierzu pojemnościowym
Higrometr bimetaliczny wykorzystuje zjawisko rozszerzania i kurczenia się dwóch różnych metali połączonych w formie bimetalu. W zależności od zmieniającej się wilgotności powietrza, różne metale w bimetalu reagują odmiennie, co prowadzi do zginania się elementu detekcyjnego. To zjawisko jest kluczowe w praktycznych zastosowaniach, ponieważ umożliwia dokładny pomiar wilgotności w różnych warunkach atmosferycznych. Higrometry bimetaliczne są często stosowane w klimatyzatorach, nawilżaczach powietrza oraz w laboratoriach, gdzie precyzyjna kontrola wilgotności jest niezbędna. Warto również zauważyć, że zgodnie z normami branżowymi, urządzenia pomiarowe powinny być regularnie kalibrowane, aby zapewnić ich dokładność, a higrometry bimetaliczne są jednym z najstarszych, ale wciąż efektywnych narzędzi w tej dziedzinie. Ich prostota oraz niezawodność sprawiają, że są szeroko stosowane w różnych aplikacjach, co czyni je ważnym elementem w zarządzaniu środowiskiem. Podsumowując, wybór higrometru bimetalicznego do pomiaru wilgotności oparty jest na jego zdolności do wykorzystania fizycznych właściwości metali, co jest fundamentalne dla dokładnych pomiarów.

Pytanie 40

Jakie elementy należy przede wszystkim zweryfikować, przygotowując butle do składowania gazów technicznych pod ciśnieniem do 15 MPa?

A. Stan powłoki malarskiej butli
B. Wagę butli
C. Ilość rozpuszczalnika w butli
D. Aktualność legalizacji butli
Aktualność legalizacji butli jest kluczowym aspektem przy przygotowywaniu butli do magazynowania gazów technicznych pod ciśnieniem. Zgodnie z normami oraz przepisami prawa, każdy zbiornik ciśnieniowy, w tym butle, musi być regularnie poddawany kontroli technicznej oraz legalizacji, aby zapewnić ich bezpieczeństwo i efektywność użytkowania. W Polsce na przykład, zgodnie z Rozporządzeniem Ministra Gospodarki, butle muszą być legalizowane co 10 lat. Kontrola legalizacji obejmuje ocenę stanu technicznego butli, a także potwierdzenie, że spełnia ona odpowiednie normy i standardy jakości. Przykładem zastosowania jest kontrola butli w zakładach przemysłowych, gdzie gazy techniczne są niezbędne do procesów produkcyjnych. Regularna legalizacja pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu czy eksplozjami, co czyni ten proces kluczowym dla bezpieczeństwa wszystkich pracowników oraz otoczenia.