Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 31 maja 2025 14:35
  • Data zakończenia: 31 maja 2025 14:42

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości pionowej i kąta poziomego
B. odległości poziomej i kąta poziomego
C. odległości pionowej i kąta pionowego
D. odległości poziomej i kąta pionowego
Niwelacja trygonometryczna polega na wyznaczaniu różnic wysokości wybranych punktów na podstawie obserwacji odległości poziomej i kąta pionowego. W praktyce, metoda ta wykorzystuje triangulację, gdzie pomiar kąta pionowego, a także odległości między punktami, pozwala na obliczenie różnic wysokości. Zastosowanie tej metody jest szerokie w inżynierii lądowej, geodezji oraz budownictwie. Na przykład, w przypadku budowy dróg czy mostów, niezbędne jest precyzyjne ustalenie różnic wysokości, aby zapewnić odpowiednią infrastrukturę i bezpieczeństwo. W kontekście standardów branżowych, zgodnie z normami ISO 17123-1:2001, pomiary niwelacji trygonometrycznej muszą być wykonywane z zachowaniem odpowiedniej staranności, co minimalizuje błędy pomiarowe i zwiększa dokładność wyników. Warto również zauważyć, że umiejętność wykonywania niwelacji trygonometrycznej jest kluczowa dla geodetów, którzy muszą podejmować decyzje na podstawie dokładnych danych o wysokościach.

Pytanie 2

Jakich instrumentów oraz narzędzi geodezyjnych należy użyć do pomiaru terenu metodą niwelacji w przypadku punktów rozproszonych?

A. Tachimetr, statyw, pion sznurkowy, taśma geodezyjna
B. Niwelator, statyw, węgielnica, szpilki geodezyjne
C. Tachimetr, statyw, żabki geodezyjne, ruletka geodezyjna
D. Niwelator, statyw, łaty niwelacyjne, pion sznurkowy
W analizie dostępnych odpowiedzi na pytanie dotyczące pomiaru terenu metodą niwelacji, istnieje kilka nieprawidłowych koncepcji. Odpowiedzi odwołujące się do tachimetrów nie są adekwatne w kontekście niwelacji, ponieważ tachimetr służy do pomiarów kątów i odległości w trójwymiarowej przestrzeni, a nie do precyzyjnego określania różnic wysokości w sposób, który jest wymagany w niwelacji. W przypadkach, gdzie podano użycie statywu, węgielnicy czy szpilek geodezyjnych, należy zaznaczyć, że węgielnica jest narzędziem wykorzystywanym głównie do określenia kąta prostego, a nie do pomiarów wysokości, co czyni ją nieodpowiednią dla metody niwelacji. Szpilki geodezyjne mogą być używane do oznaczania punktów, ale nie są kluczowe w samym procesie niwelacji. Odpowiedzi te sugerują, że projektant pomiarów nie dostrzega różnicy pomiędzy różnymi technikami i narzędziami geodezyjnymi, co może prowadzić do nieprecyzyjnych wyników oraz zafałszowania danych. Zastosowanie niewłaściwych narzędzi do określania wysokości skutkuje nieefektywnymi pomiarami, co w konsekwencji wpływa na jakość całego projektu budowlanego. Dlatego kluczowe jest, aby posiadać odpowiednią wiedzę na temat zastosowania konkretnych narzędzi w określonych metodach pomiarowych oraz być świadomym standardów branżowych, które kierują tymi wyborami.

Pytanie 3

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Kiedy stracą wartość użytkową
B. Kiedy nie były używane przez pięć lat
C. Po upływie dwóch lat od dodania do zasobu
D. Kiedy zostaną zniszczone
Materiały z państwowego zasobu geodezyjnego i kartograficznego podlegają wyłączeniu z tego zasobu w momencie, gdy utracą swoją przydatność użytkową. Przydatność użytkowa materiałów geodezyjnych i kartograficznych oznacza ich zdolność do spełniania wymagań użytkowników, w tym instytucji, które się nimi posługują. Przykładem może być aktualizacja map topograficznych, które muszą odzwierciedlać rzeczywisty stan terenu, aby były użyteczne dla planowania przestrzennego czy działań związanych z ochroną środowiska. Gdy materiały przestają odpowiadać rzeczywistemu stanowi, ich wartość w kontekście zastosowań praktycznych spada, co może prowadzić do decyzji o ich wyłączeniu z zasobu. W kontekście dobrych praktyk w zarządzaniu informacjami geodezyjnymi, regularna weryfikacja i aktualizacja zasobów jest kluczowa dla zapewnienia ich aktualności oraz zgodności z obowiązującymi normami, co przyczynia się do poprawy efektywności działań w zakresie planowania i zarządzania przestrzenią.

Pytanie 4

Jakich informacji nie powinno się zamieszczać w opisie obiektu podczas aktualizacji mapy zasadniczej?

A. Numeru porządkowego obiektu
B. Oznaczenia literowego funkcji obiektu
C. Oznaczenia literowego źródła danych o lokalizacji
D. Liczby kondygnacji nadziemnych
Oznaczenie literowe źródła danych o położeniu to informacja, która nie jest istotna dla opisu budynku w kontekście aktualizacji mapy zasadniczej. W praktyce, aktualizacja ta powinna skupiać się na danych, które są kluczowe dla identyfikacji i charakterystyki obiektów budowlanych. Numer porządkowy budynku oraz oznaczenie literowe funkcji budynku są istotne dla klasyfikacji i lokalizacji obiektów, co jest zgodne z obowiązującymi normami w zakresie ewidencji budynków. Liczba kondygnacji nadziemnych również ma znaczenie, ponieważ wpływa na klasyfikację obiektów oraz ich przeznaczenie. Oznaczenie źródła danych jest natomiast informacją techniczną, która dotyczy pochodzenia danych, a nie samego budynku. W dobrych praktykach kartograficznych i urbanistycznych koncentrujemy się na danych, które mają bezpośredni wpływ na planowanie przestrzenne oraz podejmowanie decyzji inwestycyjnych.

Pytanie 5

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 10,0 cm2
C. 1,0 cm2
D. 100,0 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 6

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/50
B. 1/5000
C. 1/100
D. 1/500
Błąd względny to stosunek błędu pomiarowego do wartości rzeczywistej pomiaru, wyrażony najczęściej w procentach lub w postaci ułamka. W tym przypadku mamy pomiar odcinka o długości 250,00 m z błędem średnim ±5 cm. Aby obliczyć błąd względny, najpierw musimy przeliczyć błąd na metry: 5 cm to 0,05 m. Następnie stosujemy wzór na błąd względny: Błąd względny = (błąd pomiaru / wartość rzeczywista) = (0,05 m / 250 m). Po wykonaniu obliczeń otrzymujemy błąd względny równy 0,0002, co po przekształceniu daje 1/5000. Ta wiedza jest niezwykle przydatna w praktyce, zwłaszcza w inżynierii i naukach ścisłych, gdzie precyzyjne pomiary są kluczowe. Zrozumienie błędów pomiarowych pozwala na lepsze projektowanie eksperymentów oraz stosowanie odpowiednich narzędzi do ich analizy. Współczesne standardy w zakresie metrologii zalecają regularne kalibracje urządzeń pomiarowych, aby zminimalizować błędy, co potwierdza znaczenie tego zagadnienia w praktyce.

Pytanie 7

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [α] = AK + AP - n × 200g
B. [β] = AP – AK + n × 200g
C. [α] = AK – AP + n × 200g
D. [β] = AP + AK - n × 200g
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 8

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = -6cc
B. Vkt = +5cc
C. Vkt = -5cc
D. Vkt = +6cc
Odpowiedź Vkt = -6cc jest poprawna, ponieważ poprawka kątowa do jednego kąta w ciągu poligonowym zamkniętym oblicza się, biorąc pod uwagę całkowitą odchyłkę kątową oraz liczbę kątów. W przypadku ciągu zamkniętego, suma wszystkich kątów powinna wynosić 360 stopni. W tym przypadku mamy 5 kątów i odchyłkę kątową fα równą +30cc. Wartość poprawki kątowej Vkt obliczamy według wzoru Vkt = fα / n, gdzie n to liczba kątów. Stąd Vkt = +30cc / 5 = +6cc. Jednakże, aby zamknąć poligon, musimy uwzględnić, że na skutek pomyłek i niewłaściwych pomiarów dochodzi do ujemnych poprawek kątowych w przypadku odchyłek dodatnich, co w końcowym rozrachunku prowadzi do ujemnej wartości poprawki. Tak więc, w tej sytuacji poprawka kątowa wynosi Vkt = -6cc. Zastosowanie tej koncepcji jest kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne zamykanie ciągów poligonowych ma istotne znaczenie dla dokładności pomiarów i skuteczności planowania.

Pytanie 9

Jakiego dokumentu wymaga geodeta, aby powiadomić ODGiK o wykonanych pracach geodezyjnych?

A. Wniosek o uzgodnienie dokumentacji i projektowej
B. Podanie o dostęp do danych ewidencyjnych
C. Zgłoszenie pracy geodezyjnej
D. Raport techniczny
Zgłoszenie pracy geodezyjnej jest kluczowym dokumentem, który geodeta musi sporządzić i złożyć w organie odpowiedzialnym za geodezję, czyli w Ośrodku Dokumentacji Geodezyjnej i Kartograficznej (ODGiK). Dokument ten informuje ODGiK o rozpoczęciu prac geodezyjnych, które mają na celu zbieranie danych dotyczących terenu, pomiarów oraz innych działań geodezyjnych. Przykładowo, gdy geodeta przystępuje do przeprowadzenia pomiarów granicznych, musi złożyć takie zgłoszenie, aby organy mogły monitorować realizację prac oraz zapewnić zgodność z obowiązującymi przepisami i standardami. W ramach praktyki, zgłoszenie to musi zawierać szczegóły dotyczące lokalizacji, rodzaju prac oraz planowanego terminu ich zakończenia. Taki proces jest zgodny z ustawą Prawo geodezyjne i kartograficzne, która nakłada obowiązek informacyjny na wykonawców takich prac. Zgłoszenie pracy geodezyjnej przyczynia się do transparentności działań geodezyjnych i umożliwia lepszą koordynację między różnymi podmiotami zaangażowanymi w proces geodezyjny.

Pytanie 10

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. komunikacyjnego
B. teleinformatycznego
C. ewidencyjnego
D. informacyjnego
System teleinformatyczny jest kluczowym narzędziem w procesie pozyskiwania, ewidencjonowania, przechowywania, udostępniania oraz zabezpieczania materiałów z państwowego zasobu geodezyjnego i kartograficznego. Dzięki zastosowaniu nowoczesnych technologii informacyjnych, możliwe jest zautomatyzowanie wielu procesów, co przyspiesza i upraszcza pracę. Przykładem może być wykorzystanie systemów GIS (Geographic Information Systems), które umożliwiają analizowanie i wizualizowanie danych przestrzennych. W praktyce, instytucje takie jak ośrodki dokumentacji geodezyjnej i kartograficznej korzystają z teleinformatycznych systemów zarządzania danymi, co zapewnia ich aktualność, integralność oraz bezpieczeństwo. Zgodnie z normami ISO/IEC 27001, należy wdrażać odpowiednie środki ochrony danych, co jest realizowane poprzez technologie szyfrowania oraz systemy kontroli dostępu. Poprawne wdrożenie systemu teleinformatycznego znacząco podnosi jakość usług świadczonych przez administrację publiczną w zakresie geodezji i kartografii.

Pytanie 11

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to pole powierzchni tego kwadratu na mapie w skali 1:1000 wynosi

A. 10,0 cm2
B. 1,0 cm2
C. 0,1 cm2
D. 100,0 cm2
W wielu przypadkach błędne odpowiedzi mogą wynikać z nieprawidłowego zrozumienia pojęcia skali oraz związanych z tym przeliczeń. Na przykład, odpowiedzi 0,1 cm² oraz 10,0 cm² mogą sugerować, że respondent nie zrozumiał, jak skala wpływa na przeliczenie jednostek. W skali 1:1000, każdy 1 metr w terenie odpowiada 1 centymetrowi na mapie, co oznacza, że pole powierzchni musi być obliczone w kontekście długości boków w centymetrach. Użytkownik, który wybrał 0,1 cm², mógł zaniżyć pole przez zastosowanie niewłaściwej konwersji lub błędnego wzoru, myląc przeliczenia jednostek. Odpowiedź 10,0 cm² może wskazywać na nieprawidłowe zrozumienie proporcji, gdzie respondent mógł obliczyć pole w centymetrach, ale nie wziął pod uwagę konieczności przekształcenia wyniku z jednostek obszaru w kontekście mapy. W praktyce geodezyjnej i kartograficznej kluczowe jest zrozumienie, że skala wpływa na każdy wymiar, a nie tylko na długości. Dlatego też, aby uniknąć błędów, należy zawsze upewnić się, że w obliczeniach stosuje się jednostki zgodne z przyjętą skalą mapy. Właściwe podejście do obliczeń powierzchni w kontekście skali oraz zrozumienie, jak przeliczać te wartości, jest niezbędne do prawidłowego interpretowania map i ich danych.

Pytanie 12

Która z metod nie jest przeznaczona do realizacji geodezyjnych sytuacyjnych pomiarów w terenie?

A. Wcięć kątowych
B. Biegunowa
C. Punktów rozproszonych
D. Domiarów prostokątnych
Wybór metod wcięć kątowych, biegunowej oraz domiarów prostokątnych może być mylący, ponieważ każda z tych technik ma swoje unikalne zastosowanie w geodezji, jednak w kontekście pomiarów sytuacyjnych przyczyniają się do precyzyjnego zbierania danych o terenie. Metoda wcięć kątowych polega na pomiarze kątów i odległości z jednego punktu do wielu innych punktów, co jest szczególne przy tworzeniu planów sytuacyjnych. Pozwala to na dokładne odwzorowanie układów przestrzennych, co jest kluczowe w geodezyjnych analizach. Z kolei metoda biegunowa, poprzez pomiary kątów i długości, może być wykorzystana do tworzenia rysunków sytuacyjnych w różnych typach terenu, a domiary prostokątne są używane do uzyskania współrzędnych punktów w układzie prostokątnym, co jest niezwykle pomocne w obszarach o regularnej zabudowie. W kontekście tych metod, nieprawidłowe odczytywanie ich zastosowania w geodezji może prowadzić do niewłaściwych wniosków na temat ich funkcjonalności. Kluczowym błędem jest mylenie zakresu zastosowań poszczególnych metod oraz ich skuteczności w kontekście geodezyjnych pomiarów sytuacyjnych. Dlatego ważne jest zrozumienie, że każda z wymienionych metod ma swoje miejsce i zastosowanie w geodezji, ale tylko w przypadku geodezyjnych pomiarów sytuacyjnych techniki takie jak wcięcia kątowe, biegunowa i domiary prostokątne faktycznie odgrywają istotną rolę.

Pytanie 13

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
B. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
C. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
D. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 14

Zasięg terenowy sieci osnowy geodezyjnej w danym powiecie był niesymetryczny. W związku z tym geodeta otrzymał zadanie utworzenia nowej sieci szczegółowej osnowy geodezyjnej. Kto powinien zatwierdzić projekt tej osnowy?

A. Marszałek Województwa
B. Geodeta Powiatowy
C. Geodeta uprawniony
D. Starosta
Zatwierdzenie projektu sieci szczegółowej osnowy geodezyjnej przez starostę jest zgodne z przepisami prawa geodezyjnego i kartograficznego. Starosta, jako przedstawiciel lokalnych władz, ma odpowiedzialność za zagospodarowanie przestrzenne oraz planowanie w swoim powiecie. Proces zatwierdzania projektu osnowy geodezyjnej jest kluczowy, ponieważ wpływa na jakość danych geodezyjnych, które będą wykorzystywane w różnych zastosowaniach, takich jak planowanie inwestycji czy ochrona środowiska. W praktyce, po przygotowaniu projektu przez geodetę, dokumentacja zostaje przedstawiona staroście, który ocenia jego zgodność z obowiązującymi normami oraz celami rozwoju powiatu. Na przykład, w przypadku przewidywanej budowy infrastruktury, starosta może zlecić dodatkowe analizy dotyczące wpływu nowej osnowy na istniejące zasoby geodezyjne. Dobrą praktyką jest również współpraca starosty z geodetami uprawnionymi, aby zapewnić, że projekt jest zgodny z lokalnymi regulacjami i standardami branżowymi.

Pytanie 15

Przybliżone wartości azymutu dla punktu węzłowego W to: 54,2333g, 54,2331g, 54,2329g. Jakia jest najbardziej prawdopodobna wartość azymutu punktu węzłowego W, zakładając, że w każdym z ciągów poligonowych wykonano tę samą liczbę pomiarów kątów, a punkt węzłowy jest ostatnim punktem w każdym z trzech ciągów?

A. 162,6993g
B. 54,2329g
C. 108,4664g
D. 54,2331g
Tak, odpowiedź 54,2331g jest tą, której szukaliśmy! To jest wartość, która najlepiej pasuje do średnich wyników pomiarów azymutu punktu węzłowego W. Jak wiadomo, przy obliczaniu azymutu w geodezji, ważne jest, by mieć na uwadze błędy pomiarowe. Chodzi o to, żeby uzyskać jak najdokładniejszy wynik. Mamy tutaj trzy różne pomiary: 54,2333g, 54,2331g i 54,2329g. Z tych pomiarów środkowa wartość, czyli 54,2331g, jest najbardziej prawdopodobna, bo jest najbliżej średniej arytmetycznej. W geodezji staramy się tak robić, bo to pomaga zredukować wpływ przypadkowych błędów. Tego typu podejście znajduje zastosowanie w różnych dziedzinach, jak np. inżynieria lądowa czy kartografia, gdzie precyzyjne ustalenie kierunków jest mega istotne w projektowaniu i realizacji prac geodezyjnych.

Pytanie 16

Wykonanie geodezyjnego pomiaru sytuacyjnego włazu studzienki kanalizacyjnej powinno umożliwiać określenie lokalizacji tego elementu terenowego w odniesieniu do punktów poziomej osnowy geodezyjnej z precyzją nie mniejszą niż

A. 0,30 m
B. 0,50 m
C. 0,10 m
D. 0,20 m
Ocena położenia włazu studzienki kanalizacyjnej z dokładnością nie mniejszą niż 0,10 m jest zgodna z obowiązującymi standardami geodezyjnymi. Tego rodzaju pomiary są kluczowe w kontekście projektowania oraz utrzymania infrastruktury wodno-kanalizacyjnej. W praktyce oznacza to, że pomiar powinien być realizowany z wykorzystaniem precyzyjnych narzędzi geodezyjnych, takich jak tachimetry czy systemy GPS, które umożliwiają osiągnięcie odpowiedniej dokładności. Na przykład, w przypadku budowy nowych sieci kanalizacyjnych, precyzyjne umiejscowienie włazów pozwala na późniejsze łatwiejsze przeprowadzanie prac konserwacyjnych oraz inspekcji. Dodatkowo, warto zauważyć, że w praktyce inżynieryjnej dąży się do minimalizowania błędów pomiarowych, co w konsekwencji przekłada się na większą efektywność i bezpieczeństwo eksploatacji infrastruktury.

Pytanie 17

Geodeta powinien wyznaczyć położenie punktów określających osie konstrukcyjne budynku jednorodzinnego na ławach ciesielskich z dokładnością do

A. 0,1 m
B. 1 m
C. 0,001 m
D. 0,01 m
Odpowiedź 0,001 m jest prawidłowa, ponieważ dokładność wyznaczania osi konstrukcyjnych budynku jednorodzinnego wymaga precyzyjnych pomiarów, które są kluczowe dla zapewnienia właściwej geometria obiektu. Taka precyzja jest istotna nie tylko dla estetyki budynku, ale również dla jego funkcjonalności i trwałości. W praktyce, geodeci stosują instrumenty pomiarowe, takie jak tachimetry i niwelatory, które umożliwiają osiągnięcie dokładności na poziomie milimetra. Przykładowo, podczas budowy fundamentów, minimalne odchylenie od wyznaczonych osi może prowadzić do problemów w późniejszych etapach, takich jak nierówności w ścianach czy dachu. Standardy branżowe, takie jak PN-EN 1991, podkreślają znaczenie precyzyjnego pomiaru w kontekście obliczeń statycznych oraz analizy obciążeń budowlanych. Osiągnięcie takiej dokładności może również wymagać zastosowania nowoczesnych technologii, takich jak pomiar GPS o wysokiej dokładności, co stanowi praktykę rekomendowaną w profesjonalnym geodezyjnym pomiarze budowlanym.

Pytanie 18

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. klasy
B. kategorie
C. rodzaje
D. grupy
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 19

Na podstawie zamieszczonych w tabeli współrzędnych punktów kontrolowanych, wyznaczonych w wyniku pomiarów, oblicz liniowe przemieszczenie punktu nr 21.

Nr punktuPomiar pierwotnyPomiar wtórny
Xp [m]Yp [m]Xw [m]Yw [m]
20130,220242,256130,225242,255
21125,212258,236125,220258,240
22134,515234,515134,510234,510
23138,310230,025138,313230,026

A. p = 10 mm
B. p = 3 mm
C. p = 9 mm
D. p = 5 mm
Poprawna odpowiedź to p = 9 mm. Aby obliczyć liniowe przemieszczenie punktu nr 21, kluczowe jest zrozumienie, jak różnice w współrzędnych X i Y wpływają na obliczenie przemieszczenia. Najpierw musimy znaleźć różnice pomiędzy współrzędnymi pierwotnymi a wtórnymi. Po ich obliczeniu, korzystamy ze wzoru na odległość między dwoma punktami w układzie kartezjańskim, który oparty jest na twierdzeniu Pitagorasa. Zastosowanie tego podejścia nie tylko pozwala na precyzyjne wyznaczenie przemieszczenia, ale także jest zgodne z międzynarodowymi standardami pomiarów geodezyjnych. W praktyce, takie obliczenia są niezbędne w wielu aplikacjach inżynieryjnych, takich jak monitorowanie deformacji budynków, infrastruktury czy w analizach związanych ze zmianami środowiskowymi. Regularne stosowanie tej metody zapewnia wysoką jakość pomiarów oraz ich wiarygodność.

Pytanie 20

Jeśli długość odcinka na mapie w skali 1:500 wynosi 20 cm, to jaka jest rzeczywista długość tego odcinka w terenie?

A. 100 m
B. 1000m
C. 500 m
D. 50 m
Odpowiedź 100 m jest poprawna, ponieważ w skali 1:500 każdy 1 cm na mapie reprezentuje 500 cm w rzeczywistości, co odpowiada 5 m. Aby obliczyć rzeczywistą długość odcinka, należy pomnożyć długość odcinka na mapie przez wartość skali. W tym przypadku: 20 cm (długość na mapie) x 500 cm (w rzeczywistości na 1 cm) = 10000 cm, co przelicza się na 100 m. Przykład zastosowania tej wiedzy można znaleźć w geodezji i kartografii, gdzie precyzyjne pomiary są niezbędne do tworzenia map i planów. Stosowanie skal w praktyce umożliwia inżynierom, architektom oraz planistom przestrzennym dokładne odwzorowywanie rzeczywistych odległości i powierzchni, co jest kluczowe dla efektywnego projektowania i realizacji inwestycji budowlanych oraz zarządzania przestrzenią. Wiedza ta jest również przydatna w czasie wędrówek czy nawigacji, gdzie umiejętność odczytywania map i przeliczania skal jest niezbędna dla bezpieczeństwa i orientacji w terenie.

Pytanie 21

Przy dokonywaniu pomiarów trzeba uwzględnić błąd miejsca zera?

A. kątów poziomych
B. kątów pionowych
C. rozstawów, przy użyciu dalmierza elektromagnetycznego
D. rozstawów, stosując taśmę stalową
Błąd miejsca zera jest szczególnie istotny przy pomiarach kątów pionowych, ponieważ może znacząco wpłynąć na dokładność pomiarów wysokości i spadków. W przypadku używania instrumentów pomiarowych, takich jak teodolity czy niwelatory optyczne, ważne jest, aby precyzyjnie ustawić zero, aby uniknąć błędnych odczytów. Przykładem zastosowania jest pomiar wysokości budynków lub obiektów terenowych, gdzie nawet niewielki błąd w ustawieniu miejsca zera może prowadzić do błędnych wyliczeń różnicy wysokości. W praktyce, aby zminimalizować ten błąd, stosuje się kalibrację instrumentów, regularne sprawdzanie ich dokładności oraz wykonywanie pomiarów z różnych punktów referencyjnych. W branży budowlanej oraz geodezyjnej przestrzeganie standardów takich jak ISO 17123 jest kluczowe dla zapewnienia rzetelności danych pomiarowych, co w konsekwencji wpływa na bezpieczeństwo i jakość realizowanych inwestycji.

Pytanie 22

W jakiej skali sporządza się mapy zasadnicze dla niewielkich miejscowości, obszarów metropolitalnych i stref przemysłowych?

A. 1 : 500
B. 1 : 5000
C. 1 : 2000
D. 1 : 1000
Odpowiedź 1 : 1000 jest poprawna, ponieważ mapy zasadnicze małych miast, aglomeracji miejskich i obszarów przemysłowych sporządzane są w skali 1 : 1000, co oznacza, że 1 jednostka na mapie odpowiada 1000 jednostkom w rzeczywistości. Przykładowo, jeśli na mapie widoczna jest odległość 1 cm, w rzeczywistości jest to 1000 cm, czyli 10 m. Taka skala pozwala na szczegółowe odwzorowanie urbanistycznych i przestrzennych aspektów obszarów miejskich, co jest niezwykle istotne w planowaniu przestrzennym oraz zarządzaniu infrastrukturą. Przykłady zastosowania obejmują analizy gęstości zabudowy, lokalizację nowych inwestycji, a także ochronę środowiska. Zgodnie z obowiązującymi standardami, mapy zasadnicze powinny być aktualizowane regularnie, aby odzwierciedlały zmiany w zagospodarowaniu przestrzennym, co zwiększa ich użyteczność w praktyce.

Pytanie 23

Który z podanych rodzajów pomiarów powinien być użyty do określenia lokalizacji punktów kolejowej osnowy poziomej podstawowej, korzystając z globalnych systemów nawigacji satelitarnej (GNSS)?

A. Pomiary w czasie rzeczywistym DGPS
B. RTK GPS
C. Statyczny pomiar GPS
D. "Stop-and-go"
Statyczny pomiar GPS jest uważany za najlepszą metodę wyznaczania położenia punktów kolejowej osnowy poziomej podstawowej przy użyciu globalnych systemów nawigacji satelitarnej (GNSS). W tym podejściu odbiorniki GPS są pozostawione w jednym miejscu przez dłuższy czas, co pozwala na zebranie danych z satelitów przez wiele epok pomiarowych. Dzięki temu można uzyskać bardzo wysoką precyzję pomiaru, rzędu kilku centymetrów lub nawet milimetrów. Taki styl pomiaru jest szczególnie stosowany w geodezji i inżynierii lądowej, gdzie wymagana jest dokładność danych na potrzeby projektowania, budowy i utrzymania infrastruktury. Przykładem zastosowania statycznych pomiarów GPS jest wyznaczanie punktów osnowy geodezyjnej, co jest kluczowe dla prawidłowego lokalizowania obiektów budowlanych oraz dla prowadzenia dalszych pomiarów i analiz. Ponadto, metody statyczne są zgodne z międzynarodowymi standardami, takimi jak te ustanowione przez Międzynarodową Unię Geodezyjną (FIG), co podkreśla ich uznanie w branży.

Pytanie 24

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. skali przygotowania opisu
B. miar umożliwiających lokalizację znaku
C. nazwiska geodety, który sporządził opis
D. numeru punktu osnowy, który jest opisywany
Kiedy piszesz opis topograficzny punktu osnowy, warto skupić się na najważniejszych informacjach. Nie ma sensu trzymać się jakiejś skali opracowania. Owszem, skala jest ważna w przypadku map czy planów, ale przy punktach osnowy liczą się inne dane. Musisz podać numer punktu, żeby można go było zlokalizować w terenie. No i dobrze jest dodać, kto ten punkt opracował - nazwisko geodety. Użycie skali w tym przypadku nie jest standardem, bo pomiar powinien opierać się na dokładnych współrzędnych, które są przecież dużo bardziej przydatne. Jak się spojrzy na standardy geodezyjne, to widać, że kładą nacisk na precyzję lokalizacji, a nie na opis przez pryzmat skali. Także, pomijając tę skalę w opisie punktu, robisz dobrze.

Pytanie 25

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 100÷200g
B. 0÷100g
C. 300÷400g
D. 200÷300g
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔXAB < 0 oraz ΔYAB < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 26

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. w bezpośredniej bliskości analizowanego obiektu
B. jak najbliżej punktów odniesienia dotyczących badanego obiektu
C. bezpośrednio na analizowanym obiekcie
D. jak najdalej od analizowanego obiektu
Umieszczanie punktów kontrolnych bezpośrednio na badanym obiekcie budowlanym jest kluczowym aspektem precyzyjnych pomiarów przemieszczeń. Tylko w ten sposób można uzyskać dokładne i wiarygodne wyniki, ponieważ punkty te są bezpośrednio związane z deformacjami obiektu. Przykładem zastosowania tej metody jest monitoring mostów, gdzie punkty kontrolne są instalowane na elementach konstrukcyjnych, co pozwala na bieżące śledzenie ich stanu oraz identyfikację ewentualnych zagrożeń. Stanowisko pomiarowe powinno być zgodne z odpowiednimi normami, takimi jak PN-EN 1992-1-1, które określają wymagania dotyczące projektowania i wykonania konstrukcji. Dzięki umiejscowieniu punktów kontrolnych na obiekcie, możliwe jest również zastosowanie nowoczesnych technologii, takich jak skanowanie laserowe, które pozwala na uzyskanie danych o przemieszczeniach w skali nano. To podejście zwiększa nie tylko dokładność pomiarów, ale także umożliwia przeprowadzanie analizy trendów, co jest niezbędne w zarządzaniu cyklem życia budynków i infrastruktury.

Pytanie 27

Jaki dokument geodezyjny jest kluczowy do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Dziennik pomiaru boków osnowy
B. Opis topograficzny punktu
C. Dziennik pomiaru kątów osnowy
D. Szkic przeglądowy
Opis topograficzny punktu jest kluczowym dokumentem geodezyjnym, który zawiera wszelkie istotne informacje o lokalizacji punktu osnowy geodezyjnej. Dokument ten zazwyczaj zawiera szczegółowy opis otoczenia punktu, w tym jego położenie w terenie, charakterystykę sąsiednich obiektów oraz wskazówki dotyczące dotarcia do punktu. Dzięki tym informacjom geodeta może precyzyjnie zlokalizować punkt osnowy, co jest niezbędne do przeprowadzania dalszych pomiarów i prac geodezyjnych. W praktyce, opis topograficzny jest często stosowany w projektach, gdzie precyzyjne pomiary są kluczowe, jak w inżynierii lądowej czy planowaniu przestrzennym. Standardy geodezyjne, takie jak normy ISO oraz krajowe przepisy dotyczące geodezji, wskazują na konieczność sporządzania takich opisów, co podkreśla ich znaczenie w branży. Dobrą praktyką jest także sporządzanie aktualizacji opisu topograficznego, zwłaszcza w rejonach intensywnie rozwijających się, aby zapewnić, że informacje pozostają aktualne.

Pytanie 28

Pomiar kątów za pomocą tachimetru elektronicznego w dwóch pozycjach lunety nie usuwa błędu

A. indeksu
B. inklinacji
C. centrowania
D. kolimacji
Pomimo różnych podejść do pomiaru kątów, błędy związane z inklinacją, kolimacją i indeksem są często mylone z błędem centrowania. Inklinacja odnosi się do nachylenia instrumentu względem płaszczyzny poziomej, co może prowadzić do niewłaściwych pomiarów, jeśli nie zostanie skorygowane. Błąd kolimacji z kolei dotyczy różnicy między kierunkiem, w którym wskazuje luneta, a rzeczywistym kierunkiem obiektu. W przypadku pomiarów kątów, kolimacja musi być regularnie sprawdzana, aby zapewnić dokładność wyników. Błąd indeksu, związany z różnicą w odczytach kątów przy różnych położeniach lunety, również nie jest bezpośrednio związany z centrowaniem, ale z właściwościami samego instrumentu. Często wynika z tolerancji produkcyjnych i może być skorygowany poprzez kalibrację. Typowe błędy myślowe prowadzące do zamiany tych pojęć pojawiają się, gdy pomiar kątów traktowany jest jako jednoznaczny proces, bez uwzględnienia, że każde z tych pojęć odnosi się do różnych aspektów precyzji pomiaru. Zrozumienie różnic między tymi błędami jest kluczowe dla skutecznej geodezyjnej praktyki, gdyż każdy z nich wymaga zastosowania innego podejścia do eliminacji błędów pomiarowych.

Pytanie 29

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 40,0 cm2
B. 4,0 cm2
C. 400,0 cm2
D. 0,4 cm2
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 30

Do oznaczania lokalizacji punktów sytuacyjnej osnowy geodezyjnej na twardych nawierzchniach dróg i chodników należy użyć

A. słup granitowy
B. słup betonowy
C. bolec żelazny
D. palik drewniany
Bolec żelazny jest właściwym rozwiązaniem do oznakowania położenia punktów sytuacyjnej osnowy pomiarowej na utwardzonych nawierzchniach jezdni i chodników z kilku istotnych powodów. Przede wszystkim, jego solidna konstrukcja zapewnia trwałość oraz stabilność, co jest kluczowe w kontekście długotrwałych pomiarów geodezyjnych. Dzięki swojej metalowej formie, bolec żelazny jest odporny na warunki atmosferyczne oraz uszkodzenia mechaniczne, co czyni go idealnym narzędziem w terenie. Przykładowo, w praktyce geodezyjnej, bolece żelazne są często stosowane do wyznaczania punktów kontrolnych, które są niezbędne podczas budowy dróg oraz innych obiektów infrastrukturalnych. Zgodnie z zasadami dobrych praktyk, zaleca się, aby punkty te były dobrze widoczne i łatwo dostępne, co w przypadku bolców żelaznych jest zapewnione poprzez ich odpowiednią wysokość i umiejscowienie. Dodatkowo, ich instalacja nie wymaga skomplikowanych procedur, co przyspiesza proces oznakowania i umożliwia szybkie przystąpienie do dalszych prac pomiarowych.

Pytanie 31

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 215,00 m
B. 217,00 m
C. 213,00 m
D. 211,00 m
Wybór 211,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu jest właściwą decyzją, gdyż jest to wartość, która pozwala na uzyskanie stabilnej bazy odniesienia dla analizy wysokości punktów. W pomiarach niwelacyjnych, istotne jest, aby wybrać poziom, który odzwierciedla najniższy z punktów w badanym obszarze. W tym przypadku, 211,00 m jest wartością poniżej wszystkich zarejestrowanych wysokości punktów, co umożliwia łatwe odczytywanie różnic wysokości. Przykładowo, jeśli będziemy porównywać wysokości punktów 1-6 w kontekście ich lokalizacji na profilu, odniesienie do 211,00 m będzie sprzyjać większej przejrzystości analiz i wizualizacji. W praktyce, wybór takiego poziomu porównawczego jest zgodny z zasadą, że wszelkie wymiary i różnice powinny być przedstawiane względem wspólnej, stabilnej bazy, co jest kluczowe w inżynierii lądowej i geodezji. Dodatkowo, zapewnia to zgodność z normami branżowymi dotyczącymi precyzyjnych pomiarów i analiz terenowych, co wpływa na efektywność dalszych prac projektowych.

Pytanie 32

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czerwonym, w nawiasie
B. Kolorem czarnym, kursywą
C. Kolorem czerwonym, kursywą
D. Kolorem czarnym, w nawiasie
Prawidłowa odpowiedź to 'Kolorem czarnym, w nawiasie', ponieważ zgodnie z przyjętymi standardami w dziedzinie geodezji i kartografii, wyniki pomiarów kontrolnych powinny być wpisywane w sposób czytelny i jednoznaczny. Użycie koloru czarnego zapewnia, że informacje te będą dobrze widoczne na szkicu, co jest kluczowe dla późniejszej interpretacji i analizy danych. Dodatkowo, wpisywanie wyników w nawiasach pozwala na ich wyraźne odróżnienie od innych informacji na szkicu, co minimalizuje ryzyko błędów w odczycie. Na przykład, podczas wykonywania tyczenia w terenie, geodeta może z łatwością zidentyfikować wyniki pomiarów kontrolnych, co przyspiesza proces weryfikacji i poprawy dokładności projektu. Dobre praktyki branżowe zalecają stosowanie jasno określonych konwencji zapisu, które są zgodne z normami, takimi jak PN-EN ISO 19115, co dodatkowo podkreśla rangę stosowania spójnych metod dokumentacji.

Pytanie 33

Jakie jest pole powierzchni działki o wymiarach 20,00 m x 40,00 m na mapie zasadniczej wykonanej w skali 1:500?

A. 0,32 cm2
B. 320,00 cm2
C. 32,00 cm2
D. 3,20 cm2
Pole powierzchni działki oblicza się, mnożąc długość przez szerokość. W tym przypadku, działka ma wymiary 20,00 m długości i 40,00 m szerokości, co daje pole 20,00 m x 40,00 m = 800,00 m². Jednakże w skali 1:500, musimy przeliczyć te wymiary na jednostki mapy. W tej skali 1 cm na mapie odpowiada 500 cm w rzeczywistości. Zatem długość 20,00 m to 20,00 m / 500 = 0,04 m (4,00 cm), a szerokość 40,00 m to 40,00 m / 500 = 0,08 m (8,00 cm). Obliczając pole na mapie, mamy 4,00 cm x 8,00 cm = 32,00 cm². Takie przeliczenia są standardową praktyką w geodezji i kartografii, ułatwiając przedstawienie rzeczywistych wymiarów na płaszczyźnie w wygodnej formie. Ważne jest, aby zawsze pamiętać o przeliczeniach przy pracy z mapami, co jest kluczowe dla precyzyjnego planowania przestrzennego oraz w pracach budowlanych, gdzie dokładność pomiarów ma kluczowe znaczenie.

Pytanie 34

Jeśli azymut A1-2 wynosi 327°12’35’’, to jaki jest azymut odwrotny A2-1?

A. 527°12’35’’
B. 507°12’35’’
C. 127°12’35’’
D. 147°12’35’’
Zadanie z azymutami to nie taka prosta sprawa! Żeby obliczyć azymut odwrotny, dodajemy 180°, a potem musimy sprawdzić, czy nie przekroczyliśmy 360°. W naszym przykładzie, mamy azymut A1-2 równy 327°12’35’’. Jak dodamy 180°, to wychodzi 507°12’35’’. No i tutaj właśnie pojawia się problem, bo ta wartość jest większa niż 360°, więc musimy odjąć 360°, żeby uzyskać azymut A2-1. I tak dostajemy 147°12’35’’. Takie obliczenia są ważne, nawigacja i geodezja to dziedziny, gdzie precyzja się liczy. Umiejętność obliczania azymutów jest naprawdę przydatna, zarówno w lotnictwie, jak i w mapowaniu. Pamiętaj, że azymuty mierzymy od północy zgodnie z ruchem wskazówek zegara. Jeśli to zrozumiesz, lepiej będziesz sobie radzić z mapami i GPS-em.

Pytanie 35

Jakiej metody nie należy używać do oceny pionowości komina przemysłowego?

A. wcięć kątowych
B. trygonometrycznej
C. stałej prostej
D. fotogrametrycznej
Odpowiedź wskazująca na metodę stałej prostej jako nieodpowiednią do badania pionowości komina przemysłowego jest poprawna, ponieważ ta technika nie jest w stanie precyzyjnie określić odchyleń od pionu. Metoda ta polega na wyznaczeniu linii prostych, które mogą być łatwo zakłócone przez zjawiska atmosferyczne, a także przez trudne warunki terenowe. W praktyce, do oceny pionowości kominów przemysłowych najczęściej wykorzystuje się metody takie jak wcięcia kątowe, trygonometryczne czy fotogrametryczne, które zapewniają większą dokładność i powtarzalność pomiarów. W przypadku pomiarów kominów, które mogą mieć znaczne wysokości, kluczowe jest zastosowanie technik, które uwzględniają zarówno perspektywiczne zniekształcenia, jak i ewentualne przesunięcia w poziomie, co czyni metody oparte na geodezji i fotogrametrii bardziej odpowiednimi. Przykłady zastosowania takich metod można znaleźć w dokumentacji projektowej budynków przemysłowych, gdzie dokładność pomiarów pionowości ma kluczowe znaczenie dla bezpieczeństwa konstrukcji.

Pytanie 36

Na jakiej nakładce tematycznej mapy zasadniczej powinien być zaznaczony włąz studzienki kanalizacyjnej?

A. Ewidencyjnej
B. Wysokościowej
C. Topograficznej
D. Sytuacyjnej
Właściwym miejscem do wykreślenia włązu studzienki kanalizacyjnej na mapie zasadniczej jest nakładka sytuacyjna. Nakładka ta ma za zadanie przedstawienie układu obiektów na danym terenie, w tym również infrastruktury technicznej, takiej jak sieci kanalizacyjne. W przypadku studzienek kanalizacyjnych, ich lokalizacja jest kluczowa, ponieważ wpływa na zarządzanie infrastrukturą miejską, w tym na prace konserwacyjne, inspekcję oraz ewentualne awarie. W praktyce, włązy studzienek powinny być oznaczone w sposób umożliwiający ich łatwe zlokalizowanie na mapach i w terenie, co jest zgodne z obowiązującymi normami, takimi jak PN-EN ISO 19110, dotycząca opisu obiektów geograficznych. Dzięki temu, pracownicy odpowiedzialni za obsługę sieci kanalizacyjnych będą mogli szybko reagować na potrzebne interwencje, co jest niezwykle istotne dla zapewnienia sprawności systemu odprowadzania ścieków i minimalizowania ryzyka związanego z ich awariami.

Pytanie 37

Jakie wartości przyjmują kąty zenitalne (z)?

A. 0° – 300°
B. 0° – 100°
C. 0° – 400°
D. 0° – 200°
Kąty zenitalne, oznaczane jako 'z', to miary kątów, które wskazują położenie obiektów w przestrzeni w stosunku do zenitu, czyli punktu na niebie znajdującego się bezpośrednio nad obserwatorem. Kąty te przyjmują wartości od 0° do 200°. Wartość 0° odpowiada bezpośredniemu położeniu obiektu w zenicie, natomiast 200° oznacza, że obiekt znajduje się na niebie w kierunku, który można określić jako 'pod' horyzontem, co jest konceptem bardziej teoretycznym, ponieważ w praktyce kąty nie mogą przekraczać 180°. W kontekście astronomii i geodezji, wiedza na temat kątów zenitalnych jest kluczowa przy obliczaniu pozycji ciał niebieskich, a także przy orientacji w terenie. Dzięki zastosowaniu kątów zenitalnych można precyzyjnie określić lokalizację obiektów w przestrzeni trójwymiarowej, co jest niezbędne w praktyce nawigacyjnej i w badaniach geograficznych. Standardy takie jak IAU (International Astronomical Union) oraz normy geodezyjne podkreślają wagę precyzyjnego pomiaru kątów zenitalnych w różnego rodzaju zastosowaniach, od mapowania po obserwacje astronomiczne.

Pytanie 38

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 55,50 m
B. 2,22 m
C. 22,20 m
D. 5,55 m
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 39

Jakie informacje nie są uwzględniane w szkicu polowym przy pomiarze szczegółów terenowych metodą ortogonalną?

A. Wysokości punktów terenu
B. Sytuacyjne szczegóły terenowe
C. Numery obiektów
D. Domiary prostokątne
Wysokości punktów terenu nie są zazwyczaj umieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten typ szkicu koncentruje się głównie na przedstawieniu układu przestrzennego obiektów oraz ich relacji do siebie. Metoda ortogonalna zazwyczaj wykorzystywana jest do pomiaru szczegółów sytuacyjnych i domiarów prostokątnych, które są kluczowe dla dokładnego odwzorowania terenu na mapie. Wysokości punktów terenu, mimo że są ważnym aspektem w geodezji, są zazwyczaj dokumentowane oddzielnie, na przykład w postaci profili wysokościowych lub na innych rodzajach dokumentów, które bardziej skupiają się na aspektach terenowych. W praktyce oznacza to, że inżynierowie i geodeci muszą być świadomi, jakie informacje są dla nich kluczowe na różnych etapach projektowania, aby odpowiednio dobierać metody pomiarowe i dokumentacyjne.

Pytanie 40

Błąd, który nie wpływa na kartometryczną precyzję mapy, to

A. przeniesienia punktów z materiału wyjściowego na oryginał mapy
B. materiału wyjściowego, na podstawie którego powstała mapa
C. deformacji papieru
D. wysokościowych pomiarów terenowych
Wybór odpowiedzi dotyczącej wysokościowych pomiarów terenowych jako elementu, który nie wpływa na kartometryczną dokładność mapy, jest trafny. Kartometryczna dokładność odnosi się do precyzji i dokładności odwzorowania rzeczywistych położenia obiektów na mapie, co jest determinowane przez wiele czynników, ale nie przez błędy pomiarów wysokościowych. Wysokościowe pomiary terenowe są istotne w kontekście modelowania powierzchni terenu i kształtowania trójwymiarowych przedstawień, lecz nie wpływają na dwuwymiarowe odwzorowanie przestrzenne, które jest kluczowe w kontekście kartometrycznej dokładności. Na przykład, w sytuacjach, gdy mapa jest używana do nawigacji na poziomie gruntu, to błędy w pomiarach wysokości nie mają wpływu na lokalizację punktów na mapie. Również w praktyce kartograficznej, przy zastosowaniu standardów takich jak ISO 19111 dotyczących geograficznych informacji przestrzennych, kluczowe są pomiary poziome, a nie wysokościowe. Zatem, w kontekście kartometrycznej dokładności, błędy w wysokościowych pomiarach terenowych są drugorzędne.