Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 30 maja 2025 17:10
  • Data zakończenia: 30 maja 2025 17:25

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 25%
B. 75%
C. 2,5%
D. 20%
Wiele osób, analizując problem stężenia roztworu, może popełnić typowe błędy w obliczeniach, które prowadzą do niewłaściwych wyników. Na przykład, wybierając odpowiedź 75%, można pomylić się w interpretacji proporcji masy jodku potasu do masy wody, nie uwzględniając całkowitej masy roztworu. Często zdarza się również zignorowanie faktu, że masa rozpuszczalnika (wody) i masa substancji rozpuszczonej (jodku potasu) muszą być sumowane, aby obliczyć całkowitą masę roztworu. Osoby, które wskazują na 25% stężenie, mogą błędnie obliczać stężenie, przyjmując masę jodku potasu za masę roztworu, co jest oczywistym błędem logicznym. W przypadku opcji 2,5% może wystąpić nieporozumienie związane z myleniem jednostek miary, gdzie mogą być stosowane niewłaściwe wartości masy przy obliczeniach. Ważne jest, aby uwzględnić wszystkie składniki roztworu, aby uzyskać prawidłowe wyniki. Przy obliczaniu stężenia procentowego, kluczowe jest zrozumienie definicji oraz umiejętność prawidłowego sumowania mas, co jest fundamentem chemii i niezbędne w laboratoriach. Użycie odpowiednich jednostek oraz precyzyjnych obliczeń jest kluczowe w naukach chemicznych, zwłaszcza w kontekście norm jakościowych i standardów branżowych.

Pytanie 2

Jaką objętość roztworu NaOH o stężeniu 1 mol/dm3 należy użyć, aby przygotować 50 cm3 roztworu NaOH o stężeniu 0,4 mol/dm3?

A. 20 cm3
B. 50 cm3
C. 10 cm3
D. 25 cm3
Aby obliczyć objętość roztworu NaOH o stężeniu 1 mol/dm3, potrzebnej do sporządzenia 50 cm3 roztworu o stężeniu 0,4 mol/dm3, należy zastosować zasadę zachowania moles. Obliczamy liczbę moli NaOH w docelowym roztworze: C1V1 = C2V2, gdzie C1 = 1 mol/dm3, V1 to objętość, C2 = 0,4 mol/dm3 i V2 = 50 cm3 = 0,05 dm3. Z równania mamy: 1 * V1 = 0,4 * 0,05. Obliczając V1, otrzymujemy V1 = 0,4 * 0,05 = 0,02 dm3 = 20 cm3. Takie podejście jest standardem w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników. Przykładem zastosowania może być przygotowanie roztworów do titracji, gdzie dokładność stężenia reagentu jest niezbędna dla prawidłowego przeprowadzenia analizy. Warto również zauważyć, że w praktyce często stosuje się wzory rozcieńczania, co zapewnia efektywność i bezpieczeństwo pracy w laboratorium chemicznym.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 5,60 g
B. 56,00 g
C. 0,56 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 7

Użycie płuczek jest konieczne w trakcie procesu

A. flotacji
B. krystalizacji
C. oczyszczania gazów
D. destylacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 8

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, statyw, bagietka
B. Zlewka, lejek, trójnóg, tygiel
C. Zlewka, lejek, waga, bagietka
D. Zlewka, waga, tryskawka, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zjawisko fizyczne, które polega na rozkładaniu struktury krystalicznej substancji stałej oraz przenikaniu jej cząsteczek lub jonów do cieczy, nosi nazwę

A. stapianiem
B. sublimacją
C. rozpuszczaniem
D. roztwarzaniem
Stapianie to proces zmiany stanu skupienia substancji z fazy stałej na ciecz, który zachodzi w wyniku podgrzewania materiału do jego temperatury topnienia. W tym przypadku, struktura krystaliczna nie jest niszczona w sposób, w jaki ma to miejsce podczas rozpuszczania. Z kolei sublimacja odnosi się do bezpośredniej przemiany substancji z fazy stałej w gazową, omijając fazę ciekłą. Ten proces również nie dotyczy rozpuszczania, które wymaga obecności rozpuszczalnika, aby cząsteczki solutu mogły się rozproszyć. Roztwarzanie jest terminem często mylonym z rozpuszczaniem, jednak w kontekście chemicznym może odnosić się do różnych procesów, które zachodzą podczas mieszania substancji, a niekoniecznie do samego procesu rozpuszczania, gdzie zachodzi interakcja pomiędzy cząsteczkami solutu a cząsteczkami rozpuszczalnika. Typowe błędy myślowe w tej kwestii obejmują nieuzasadnione utożsamianie procesów fizycznych oraz brak zrozumienia mechanizmów, które za nimi stoją. Wiedza o tych różnicach jest kluczowa w naukach przyrodniczych, ponieważ może wpływać na interpretacje wyników eksperymentów oraz na projektowanie procesów przemysłowych związanych z rozpuszczaniem i jego zastosowaniami.

Pytanie 11

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.

A. sublimację.
B. destylację.
C. krystalizację.
D. ekstrakcję.
Destylacja, ekstrakcja, sublimacja i krystalizacja to różne techniki separacji substancji, które często są mylone ze względu na ich podobieństwa, ale zasadniczo różnią się mechanizmem działania. Destylacja polega na wykorzystaniu różnicy temperatur wrzenia substancji, co pozwala na oddzielenie cieczy o różnych punktach wrzenia. W kontekście oczyszczania substancji, destylacja jest skuteczna, kiedy substancje mają znacznie różniące się temperatury wrzenia, co nie jest celem procesu opisanego w pytaniu. Ekstrakcja z kolei opiera się na rozpuszczalności różnych substancji w różnych rozpuszczalnikach, ale nie prowadzi do uzyskania czystych kryształów, jak w przypadku krystalizacji. Sublimacja, czyli przejście substancji ze stanu stałego w gazowy, a następnie z powrotem w stały, również nie jest odpowiednia w tym kontekście, ponieważ dotyczy tylko substancji, które mogą sublimować, a nie wszystkich substancji chemicznych. Typowym błędem myślowym jest założenie, że wszystkie procesy oczyszczania prowadzą do uzyskania czystych substancji w formie stałej, co nie jest prawdą. Znajomość różnic pomiędzy tymi procesami jest kluczowa dla skutecznego stosowania technik oczyszczania w laboratoriach i przemyśle chemicznym. Dlatego ważne jest, aby rozróżniać te metody i stosować je w odpowiednich sytuacjach.

Pytanie 12

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 16,0 g
B. 8,0 g
C. 9,6 g
D. 1,6 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 13

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. w pobliżu otwartego ognia.
B. z dala od źródeł ciepła i promieni słonecznych.
C. pod sprawnie działającym wyciągiem.
D. w butelce z ciemnego szkła.
Roztwór amoniaku o stężeniu 25% jest substancją chemiczną, która może być niebezpieczna, zwłaszcza w przypadku kontaktu z wysoką temperaturą lub otwartym ogniem. Amoniak ma niską temperaturę zapłonu i może łatwo ulegać zapłonowi w obecności źródeł ciepła, co prowadzi do ryzyka pożaru czy nawet wybuchu. Dlatego przechowywanie go w pobliżu otwartego ognia jest wysoce niewłaściwe i niezgodne z zasadami BHP. W laboratoriach, w których stosuje się substancje chemiczne, istotne jest przestrzeganie norm bezpieczeństwa, takich jak OSHA (Occupational Safety and Health Administration) czy EU REACH, które podkreślają konieczność przechowywania substancji chemicznych w odpowiednich warunkach, z dala od niebezpiecznych źródeł. Przykładowo, amoniak powinien być przechowywany w chłodnym, dobrze wentylowanym pomieszczeniu, w szczelnych pojemnikach, a nie w miejscach, gdzie mogą występować źródła zapłonu. Zrozumienie i przestrzeganie tych zasad nie tylko zwiększa bezpieczeństwo w laboratorium, ale także przyczynia się do ochrony zdrowia pracowników oraz środowiska.

Pytanie 14

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 KMnO4 → K2MnO4 + MnO2 + O2
B. CaCO3 → CaO + CO2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 to klasyczny przykład reakcji redoks, w której dochodzi do zmiany stopni utlenienia atomów. W tej reakcji mangan (Mn) w KMnO4 przechodzi z najwyższego stopnia utlenienia +7 do stopnia +6 w K2MnO4 oraz +4 w MnO2, a także wydziela się tlen (O2). Reakcje redoks są fundamentalnym procesem w chemii, wykorzystywanym w wielu zastosowaniach, od produkcji energii w ogniwach paliwowych po procesy elektrochemiczne w akumulatorach. Zrozumienie tych reakcji ma zastosowanie w praktyce, na przykład w analizie chemicznej, gdzie stosuje się reakcje redoks do oznaczania stężenia różnych substancji. Kluczowe w praktyce jest umiejętne rozpoznawanie reakcji utleniania i redukcji, co jest istotne w wielu gałęziach przemysłu, w tym w przemyśle farmaceutycznym i materiałowym, gdzie kontrola procesów redoks ma kluczowe znaczenie dla jakości produktów.

Pytanie 15

Metoda oczyszczania substancji, która opiera się na różnicy w rozpuszczalności substancji docelowej oraz zanieczyszczeń w zastosowanym rozpuszczalniku, nosi nazwę

A. ekstrakcją
B. dekantacją
C. sublimacją
D. krystalizacją
W przypadku sublimacji, proces ten polega na przejściu substancji ze stanu stałego bezpośrednio w stan gazowy. Ta metoda oczyszczania nie bazuje na różnicy rozpuszczalności, lecz na różnicach ciśnienia i temperatury, co sprawia, że nie jest odpowiednia w kontekście podanego pytania. Ekstrakcja z kolei to proces, w którym jedna substancja jest wydobywana z roztworu do innego medium, najczęściej przy użyciu rozpuszczalnika, który selektywnie rozpuszcza jedne składniki, ale nie inne. Chociaż ekstrakcja może być stosowana do oczyszczania, nie opiera się bezpośrednio na różnicy rozpuszczalności, co czyni ją mniej odpowiednią odpowiedzią w tym kontekście. Dekantacja natomiast to technika oddzielania cieczy od osadu poprzez powolne wlewanie cieczy do innego naczynia, co również nie wykorzystuje różnicy rozpuszczalności, a raczej różnice gęstości. Zrozumienie tych procesów jest kluczowe dla analizy chemicznej oraz praktyk laboratoryjnych, a błędne przypisanie metodologii do opisanych zjawisk może prowadzić do nieprawidłowych wyników i ocen w laboratoriach badawczych.

Pytanie 16

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
B. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
C. spłukaniu miejsc z kwasem gorącą wodą
D. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 175 °C - 179 °C
B. 178 °C - 182 °C
C. 185 °C - 190 °C
D. 181 °C - 185 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 20

Sód metaliczny powinien być przechowywany w laboratorium

A. w butelkach plastikowych
B. w szklanych pojemnikach wypełnionych naftą
C. w butlach metalowych z wodą destylowaną
D. w szklanych naczyniach
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 21

Podczas przygotowywania roztworu mianowanego kwasu solnego o określonym stężeniu należy:

A. najpierw rozcieńczyć kwas wodą w przybliżeniu, a dopiero potem odmierzyć potrzebną ilość roztworu
B. zmieszać dowolną ilość kwasu z wodą i sprawdzić pH, aby uzyskać potrzebne stężenie
C. połączyć stężony kwas solny z przypadkowym innym roztworem, by osiągnąć wymagane stężenie
D. dokładnie odmierzyć odpowiednią objętość stężonego kwasu solnego i rozcieńczyć ją wodą destylowaną do pożądanej objętości końcowej, zachowując zasady bezpieczeństwa
Przygotowanie roztworu mianowanego kwasu solnego o określonym stężeniu wymaga bardzo precyzyjnego działania, zgodnego z dobrą praktyką laboratoryjną i zasadami bezpieczeństwa chemicznego. Wszystko zaczyna się od dokładnego obliczenia ilości stężonego kwasu, którą trzeba pobrać, by po rozcieńczeniu uzyskać żądane stężenie roztworu. Takie działanie opiera się na wzorze C1V1 = C2V2, gdzie C1 i V1 to stężenie i objętość stężonego kwasu, a C2 i V2 – stężenie i objętość roztworu końcowego. Należy używać szkła miarowego (np. kolby miarowej, pipety), by zapewnić odpowiednią dokładność, a rozcieńczanie zawsze przeprowadza się poprzez powolne dodawanie kwasu do wody (nigdy odwrotnie!), co minimalizuje ryzyko gwałtownej reakcji i rozprysków. Ostateczna objętość powinna być uzupełniona wodą destylowaną do kreski na kolbie miarowej. Tak przygotowany roztwór może być dalej mianowany, czyli dokładnie określa się jego stężenie przez miareczkowanie z użyciem wzorca. Ta procedura gwarantuje powtarzalność i bezpieczeństwo oraz zgodność z wymaganiami CHM.03. W praktyce technik analityk bardzo często przygotowuje takie roztwory, np. do analiz miareczkowych czy kalibracji aparatury. To podstawa pracy w laboratorium chemicznym.

Pytanie 22

Z przedstawionego opisu wynika, że kluczową właściwością próbki analitycznej jest jej

Próbka analityczna to fragment materiału stworzony z myślą o przeprowadzeniu badania lub obserwacji. Powinna odzwierciedlać przeciętny skład i cechy materiału, który jest badany.

A. jednorodność
B. roztwarzalność
C. rozpuszczalność
D. reprezentatywność
Podejścia związane z rozpuszczalnością, roztwarzalnością oraz jednorodnością próbki analitycznej są często mylone z kluczowym pojęciem reprezentatywności, co prowadzi do poważnych błędów w praktyce analitycznej. Rozpuszczalność odnosi się do zdolności substancji do rozpuszczania się w rozpuszczalniku, co nie jest bezpośrednio związane z tym, jak próbka reprezentuje cały materiał. Również roztwarzalność, która dotyczy procesu, w którym substancja przechodzi w stan płynny, nie ma wpływu na to, czy próbka jest reprezentatywna dla całej populacji. Dodatkowo, pojęcie jednorodności wskazuje na to, że próbka jest jednorodna w składzie, co jest istotne, ale nie wystarczy, by zapewnić reprezentatywność. Próbka może być jednorodna, ale jeśli nie jest pobrana w sposób reprezentatywny, jej analiza nie odda rzeczywistych właściwości całego materiału. Typowy błąd myślowy polega na zakładaniu, że jednorodność wystarcza do uzyskania wiarygodnych wyników analitycznych, co jest mylnym założeniem. W praktyce, aby uzyskać rzetelne wyniki, należy stosować odpowiednie metody pobierania próbek zgodnie z uznawanymi standardami, co wymaga staranności i przemyślanej metodologii. Bez zrozumienia znaczenia reprezentatywności, analizy mogą prowadzić do mylnych wniosków i nieefektywnych działań w odpowiedzi na uzyskane wyniki.

Pytanie 23

Próbkę uzyskaną z próbki ogólnej poprzez jej zmniejszenie nazywa się

A. pierwotną
B. śladową
C. ogólną
D. średnią
Odpowiedź 'średnia' jest poprawna, ponieważ w kontekście analizy próbek odnosi się do próbki, która jest reprezentatywną redukcją próbki ogólnej. Średnia próbka jest kluczowa w statystyce i analizach laboratoryjnych, gdyż zapewnia zrównoważony przegląd właściwości całej populacji. Na przykład, w badaniach chemicznych, średnia próbka powinna być przygotowana tak, aby uwzględniała różnorodność w składzie chemicznym analizowanej substancji. Przygotowanie średniej próbki może być realizowane poprzez odpowiednie mieszanie prób z różnych miejsc lub czasów, co jest zgodne z normami ISO dotyczącymi przygotowania próbek. W praktyce, stosowanie średnich próbek pomaga w minimalizacji błędów systematycznych i zwiększa wiarygodność wyników analiz, co jest kluczowe w kontekście kontrolowania jakości produktów w przemyśle oraz w badaniach naukowych. Ustalanie średniej próbki jest także niezbędne przy ocenie zmienności parametrów, co ma wpływ na dalsze podejmowanie decyzji w zakresie jakości czy bezpieczeństwa materiałów.

Pytanie 24

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. miękki
B. częściowy
C. twardy
D. średni
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 25

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 0,25 g
B. 2,5 g
C. 250 g
D. 25 g
Aby obliczyć ilość NaCl w 250 g 10% roztworu, należy zastosować wzór na stężenie procentowe. Stężenie 10% oznacza, że w 100 g roztworu znajduje się 10 g substancji rozpuszczonej. Dla 250 g roztworu, proporcja ta jest taka sama, co można obliczyć, stosując przeliczenie: (10 g / 100 g) * 250 g = 25 g NaCl. W praktyce, takie obliczenia są niezwykle istotne w laboratoriach chemicznych oraz w przemyśle farmaceutycznym, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania odpowiednich reakcji chemicznych. Zrozumienie stężenia roztworów pozwala na ich prawidłowe stosowanie w różnych procedurach, takich jak przygotowanie leków, analiza chemiczna czy też wytwarzanie materiałów. Warto również znać zasady dotyczące przechowywania oraz rozcieńczania roztworów, co jest zgodne z najlepszymi praktykami laboratoryjnymi.

Pytanie 26

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. chlorek cynku i wodorotlenek sodu
B. chlorek cynku i wodę
C. tlenek cynku i wodorotlenek sodu
D. cynk i wodę
Chlorek cynku (ZnCl2) w reakcji z wodorotlenkiem sodu (NaOH) prowadzi do powstania wodorotlenku cynku (Zn(OH)2), który jest nierozpuszczalny w wodzie. W reakcjach chemicznych, w których powstaje osad, takie jak ta, kluczowe jest zrozumienie zasad rozpuszczalności związków. Wodorotlenek cynku wytrąca się z roztworu, co można zobaczyć jako białe zabarwienie. Jest to ważne w wielu zastosowaniach, na przykład w chemii analitycznej do oznaczania cynku w różnych próbkach. Zastosowanie wodorotlenku cynku znajduje się także w przemyśle farmaceutycznym, kosmetycznym oraz w produkcji materiałów budowlanych. Znajomość takich reakcji jest istotna dla chemików, którzy pracują nad syntezami nowych związków oraz w procesach kontroli jakości. Zawężając się do dobrych praktyk, zawsze należy przeprowadzać te reakcje w odpowiednich warunkach laboratoryjnych, dbając o bezpieczeństwo i właściwe postępowanie z odpadami chemicznymi.

Pytanie 27

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. fartucha, okularów ochronnych, rękawic odpornych na kwasy
B. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
C. okularów ochronnych, rękawic lateksowych, maski ochronnej
D. rękawic odpornych na kwasy, maski ochronnej
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 28

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 11
B. 1
C. 13
D. 3
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 29

Jakie urządzenie jest wykorzystywane do procesu ekstrakcji?

A. kolba ssawkowa
B. aparat Kippa
C. pompa próżniowa
D. aparat Soxhleta
Aparat Soxhleta jest specjalistycznym urządzeniem wykorzystywanym w procesach ekstrakcji, szczególnie w laboratoriach chemicznych i analitycznych. Działa na zasadzie ciągłej ekstrakcji substancji rozpuszczalnych z materiałów stałych, co umożliwia uzyskanie wysokiej wydajności ekstrakcji. Ekstrakcja w aparacie Soxhleta polega na cyklicznym podgrzewaniu rozpuszczalnika, który paruje, a następnie skrapla się w kondensatorze, opadając z powrotem na próbkę. Taki proces pozwala na efektywne wydobycie substancji, takich jak oleje, tłuszcze czy inne składniki aktywne z roślin. Zastosowanie tego aparatu jest powszechne w przemyśle farmaceutycznym, kosmetycznym oraz przy badaniach jakości surowców naturalnych. Standardy branżowe, takie jak ISO, zalecają korzystanie z metod ekstrakcji, które zapewniają powtarzalność i dokładność wyników, co czyni aparat Soxhleta doskonałym narzędziem w tej dziedzinie.

Pytanie 30

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. żółtym
B. jasnozielonym
C. niebieskim
D. czerwonym
Butle gazowe zawierające wodór są oznaczane kolorem czerwonym zgodnie z międzynarodowymi standardami dotyczącymi oznakowania gazów. Kolor ten ma na celu poprawne identyfikowanie rodzaju gazu oraz zwiększenie bezpieczeństwa podczas jego transportu i przechowywania. W przypadku wodoru, który jest gazem łatwopalnym i wybuchowym, prawidłowe oznakowanie jest kluczowe dla minimalizacji ryzyka wypadków. Przykładem zastosowania tej wiedzy jest praca w przemyśle chemicznym oraz podczas transportu gazów, gdzie pracownicy muszą być w stanie szybko rozpoznać rodzaj gazu, z którym mają do czynienia. W praktyce, znajomość kolorów butli pozwala na skuteczne unikanie niebezpieczeństw, takich jak nieodpowiednie łączenie gazów lub ich niewłaściwe przechowywanie. Dobre praktyki w zakresie zarządzania gazami obejmują również regularne szkolenia dla pracowników oraz stosowanie systemów monitorowania, co zwiększa bezpieczeństwo operacji związanych z gazami niebezpiecznymi.

Pytanie 31

Podczas pobierania próby wody do oznaczania metali ciężkich zaleca się stosowanie butelek wykonanych z:

A. polietylenu wysokiej gęstości (HDPE)
B. aluminium
C. szkła sodowego
D. ceramiki
Polietylen wysokiej gęstości (HDPE) to materiał, który najczęściej wykorzystuje się do pobierania i przechowywania próbek wody przeznaczonych do analizy zawartości metali ciężkich. Przede wszystkim HDPE jest tworzywem chemicznie obojętnym wobec większości metali. To ogromna zaleta, bo nie wchodzi w reakcje z badanymi jonami, nie adsorbuje ich na swojej powierzchni i nie emituje zanieczyszczeń, które mogłyby zaburzyć wyniki. W praktyce laboratoria stosują butelki HDPE zarówno w analizach środowiskowych, jak i przemysłowych. Bardzo ważne jest też to, że HDPE jest wytrzymały mechanicznie, odporny na pęknięcia i łatwy do mycia oraz dekontaminacji przed kolejnym użyciem. Takie pojemniki są rekomendowane przez międzynarodowe normy, np. ISO 5667 dotyczące pobierania próbek wody. Z mojego doświadczenia wynika, że HDPE to pewność, że próbka nie zostanie zanieczyszczona metalami z materiału opakowania ani nie dojdzie do strat analitu przez związanie z powierzchnią. To naprawdę kluczowe, żeby nie zafałszować wyników, szczególnie przy bardzo niskich stężeniach metali ciężkich.

Pytanie 32

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. zlewka
B. bagietka
C. statyw
D. eksykator
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na pojemność oraz skład opakowania
B. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
C. na obecność zanieczyszczeń oraz metody ich usuwania
D. na ilość domieszek w składzie oraz datę przydatności
Odpowiedź dotycząca oznaczeń literowych R i S (obecnie H i P zgodnie z rozporządzeniem CLP) jest prawidłowa, ponieważ te oznaczenia mają na celu informowanie o ryzyku związanym z substancjami chemicznymi oraz zalecanych środkach ostrożności. Oznaczenia R (ryzyko) wskazują na potencjalne zagrożenia, takie jak toksyczność, wybuchowość czy korozja, z jakimi można się spotkać podczas pracy z danym odczynnikiem. Z kolei oznaczenia S (środki ostrożności) sugerują praktyczne zalecenia dotyczące bezpiecznego obchodzenia się z substancją, takie jak stosowanie odpowiednich środków ochrony osobistej, unikanie kontaktu ze skórą, czy przechowywanie w odpowiednich warunkach. Dla przykładu, substancja z oznaczeniem H300 (może być śmiertelna w przypadku połknięcia) wymaga szczególnej uwagi i zachowania ostrożności podczas jej używania. Stosowanie tych oznaczeń jest integralną częścią systemu zarządzania bezpieczeństwem chemicznym, a ich znajomość i przestrzeganie są kluczowe w laboratoriach, przemysłach chemicznych i w wszelkich zastosowaniach, gdzie występują substancje niebezpieczne. Obowiązujące standardy i dobre praktyki, takie jak ISO 45001, podkreślają znaczenie oceny ryzyka i stosowania odpowiednich środków ochrony w miejscach pracy, co czyni te oznaczenia niezbędnym elementem w codziennym obiegu informacji o substancjach chemicznych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Po zmieszaniu wszystkie pierwotne próbki danej partii materiału tworzą próbkę

A. średnią
B. wtórną
C. ogólną
D. analityczną
Odpowiedź ogólna jest poprawna, ponieważ po zmieszaniu wszystkich próbek pierwotnych danej partii materiału uzyskuje się jedną reprezentatywną próbkę, która odzwierciedla właściwości całej partii. W praktyce jest to kluczowe w procesach analitycznych, gdzie zapewnienie reprezentatywności próbki ma fundamentalne znaczenie dla uzyskanych wyników. W kontekście norm ISO 17025 dotyczących akredytacji laboratoriów badawczych oraz metod pobierania próbek, istotne jest, aby reprezentatywna próbka była zgodna z zaleceniami dotyczącymi wielkości i sposobu pobierania. Dzięki temu możemy mieć pewność, że wyniki analizy będą miały zastosowanie do całej partii materiału, a nie tylko do wybranych fragmentów. W praktyce, proces ten jest często stosowany w laboratoriach, które zajmują się kontrolą jakości, gdzie analiza jednego z wielu komponentów materiału pozwala na ocenę jego właściwości fizycznych czy chemicznych, co jest niezbędne w branżach takich jak przemysł spożywczy, farmaceutyczny czy chemiczny. W związku z tym, zrozumienie, czym jest próbka ogólna, jest niezbędne dla właściwej interpretacji wyników badań.

Pytanie 37

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 100
B. 50
C. 5
D. 10
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 38

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. oranżu metylowego
B. skrobi
C. fenoloftaleiny
D. chromianu(VI) potasu
Fenoloftaleina jest wskaźnikiem, którego zmiana koloru zachodzi w wyższym zakresie pH, co czyni ją nieodpowiednią do miareczkowania kwasu solnego w obecności wodorotlenku sodu. Fenoloftaleina zmienia barwę z bezbarwnej na różową w zakresie pH 8,2 – 10,0, co oznacza, że nie jest w stanie sygnalizować punktu końcowego reakcja kwasu z zasadą, ponieważ reakcja neutralizacji między HCl a NaOH kończy się w znacznie niższym pH. Wybierając wskaźnik, istotne jest, aby zrozumieć zarówno chemiczne właściwości substancji, jak i zakres pH, w którym zachodzą reakcje. Błędem jest również wybór chromianu(VI) potasu jako wskaźnika – substancja ta nie jest wskaźnikiem pH, a raczej reagentem stosowanym w innych reakcjach chemicznych, co może prowadzić do mylnych wniosków, jeśli chodzi o jego zastosowanie w kontekście miareczkowania. Stosowanie skrobi jako wskaźnika także mija się z celem, ponieważ skrobia reaguje z jodkiem, co nie ma związku z miareczkowaniem kwasów i zasad. Te błędne odpowiedzi odzwierciedlają typowe nieporozumienia dotyczące podstawowych zasad analizy chemicznej, gdzie odpowiedni dobór wskaźników jest kluczowy dla uzyskania precyzyjnych wyników.

Pytanie 39

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór chlorku potasu o stężeniu 1 mol/dm3
B. Roztwór kwasu siarkowego(VI) o stężeniu 2%
C. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
D. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.