Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 09:56
  • Data zakończenia: 7 kwietnia 2025 10:19

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zablokować hasło dla użytkownika egzamin w systemie Linux, jakie polecenie należy zastosować?

A. usermod –L egzamin
B. userdel –r egzamin
C. passwd –p egzamin
D. useradd –d egzamin
Odpowiedzi wskazujące na inne polecenia są niepoprawne z różnych powodów. Użycie 'passwd –p egzamin' wprowadza w błąd, ponieważ opcja '–p' zmienia hasło użytkownika na podane w formacie zaszyfrowanym, co nie blokuje konta, a jedynie ustawia nowe hasło, co może prowadzić do niezamierzonych konsekwencji, jeśli nowe hasło jest puste lub niewłaściwe. 'userdel –r egzamin' z kolei usuwa konto użytkownika i jego domowy katalog, co jest nieodwracalne i w większości przypadków niepożądane w sytuacji, gdy chcemy tylko zablokować dostęp. Podejście to ignoruje fakt, że często zablokowanie konta jest lepszym rozwiązaniem niż jego usunięcie. Zastosowanie 'useradd –d egzamin' jest również błędne, ponieważ 'useradd' jest poleceniem do tworzenia nowych kont użytkowników, a opcja '-d' wskazuje na katalog domowy, co w kontekście blokowania konta użytkownika jest zupełnie nieadekwatne. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, to mylenie funkcji różnych poleceń w systemie Linux oraz brak zrozumienia, czego faktycznie potrzebujemy w danej sytuacji administracyjnej. Ostatecznie kluczowe jest, aby zrozumieć różnice między usuwaniem a blokowaniem konta oraz zasady bezpieczeństwa związane z zarządzaniem użytkownikami w systemach operacyjnych.

Pytanie 2

Sygnał kontrolny generowany przez procesor, umożliwiający zapis do urządzeń wejściowych i wyjściowych, został na diagramie oznaczony numerem

Ilustracja do pytania
A. 2
B. 1
C. 3
D. 4
Wybór błędnej odpowiedzi co do sygnału sterującego zapisem do urządzeń wejścia-wyjścia często wynika z niepełnego zrozumienia roli poszczególnych sygnałów w architekturze mikroprocesora. Sygnały MEMR i MEMW oznaczają operacje odczytu i zapisu do pamięci, co jest mylące dla wielu uczących się, którzy mogą błędnie przypuszczać, że są one związane z urządzeniami wejścia-wyjścia. MEMR jest używany do odczytu danych z pamięci, natomiast MEMW do zapisu danych do pamięci. Sygnały te są integralną częścią komunikacji z pamięcią RAM i ROM, ale nie z urządzeniami wejścia-wyjścia. I/OR i I/OW to sygnały dedykowane dla operacji z urządzeniami I/O. I/OR oznacza odczyt z urządzeń I/O, podczas gdy I/OW oznacza zapis. Mylenie sygnałów związanych z pamięcią i I/O jest powszechnym błędem, zwłaszcza u początkujących projektantów systemów. Aby uniknąć takich pomyłek, ważne jest dogłębne zrozumienie funkcji i zastosowania każdego sygnału oraz kontekstu, w jakim są używane. W systemach komputerowych sygnały są wykorzystywane w złożonych sekwencjach operacji, a prawidłowe ich przypisanie jest kluczowe dla stabilnej i wydajnej pracy całego systemu. Inżynierowie muszą być świadomi standardowych praktyk i protokołów komunikacyjnych używanych w systemach mikroprocesorowych, by skutecznie projektować i diagnozować złożone systemy komputerowe. Dobra znajomość tych zasad pozwala na unikanie kosztownych błędów w projektowaniu sprzętu i oprogramowania, co jest kluczowe w nowoczesnym inżynierii komputerowej.

Pytanie 3

Czym dokonuje się przekształcenia kodu źródłowego w program do wykonania?

A. interpreter.
B. kompilator.
C. debugger.
D. emulator.
Wybór debugera, emulatora czy interpretera jako narzędzi do zamiany kodu źródłowego na program wykonywalny jest niepoprawny, ponieważ każde z tych narzędzi pełni inne funkcje w procesie tworzenia oprogramowania. Debuger jest narzędziem do analizy i naprawy błędów w kodzie, umożliwiając programiście monitorowanie wykonania programu oraz jego stanów. Nie wykonuje on jednak kompilacji kodu źródłowego ani nie przekształca go na kod maszynowy, a jedynie wspiera proces debugowania. Emulator z kolei naśladuje zachowanie sprzętu lub systemu operacyjnego, co pozwala na uruchamianie programów przeznaczonych na inne platformy, ale nie jest narzędziem do kompilacji. Interpreter jest narzędziem, które wykonuje kod źródłowy linia po linii w czasie rzeczywistym, co oznacza, że nie przekształca go w kod maszynowy przed jego uruchomieniem. Choć interpretery są użyteczne w wielu kontekstach, na przykład w językach skryptowych jak Python, nie generują one plików wykonywalnych, przez co ich zastosowanie w kontekście zamiany kodu źródłowego na program wykonywalny jest ograniczone. Wybór niewłaściwych narzędzi do kompilacji może prowadzić do nieporozumień w procesie programowania i powodować problemy z wydajnością oraz błędy w działaniu programów.

Pytanie 4

Cookie to plik

A. tekstowy, z którego korzystają wszystkie strony internetowe
B. graficzny, używany przez wszystkie strony internetowe
C. graficzny, przechowujący zdjęcie witryny sieci Web
D. tekstowy, zapisujący dane dla konkretnej witryny sieci Web
Wiele osób może nie zdawać sobie sprawy, że pliki cookie nie są graficznymi elementami stron internetowych, jak sugeruje niektóre z odpowiedzi. Cookies nie przechowują obrazów ani innych zasobów graficznych, a ich format jest czysto tekstowy. To fundamentalne nieporozumienie dotyczące natury plików cookie może prowadzić do błędnych wniosków o ich funkcjonalności. Pliki cookie są używane przede wszystkim do przechowywania danych tekstowych, które mogą być odczytane przez serwery, co pozwala na personalizację oraz śledzenie sesji użytkowników. Warto również zauważyć, że nie wszystkie witryny korzystają z tych samych plików cookie. Odpowiedzi sugerujące, że cookie są używane przez wszystkie witryny, nie uwzględniają różnic w ich implementacji oraz w podejściu do prywatności. Różne serwisy mogą mieć różne polityki dotyczące plików cookie, co sprawia, że nie są one uniwersalnym rozwiązaniem. Właściwe zrozumienie działania plików cookie i ich zastosowań jest kluczowe dla każdego, kto zajmuje się tworzeniem stron internetowych lub aplikacji webowych. Konsekwencje braku zrozumienia tego tematu mogą prowadzić do nieprawidłowego wdrożenia zabezpieczeń oraz naruszenia prywatności użytkowników.

Pytanie 5

Aby poprawić niezawodność oraz efektywność przesyłania danych na serwerze, należy

A. zainstalować macierz dyskową RAID1
B. trzymać dane na innym dysku niż systemowy
C. ustawić automatyczne wykonywanie kopii zapasowej
D. stworzyć punkt przywracania systemu
Utworzenie punktu przywracania systemu to dobre rozwiązanie w kontekście przywracania systemu operacyjnego do wcześniejszego stanu, jednak nie zapewnia ochrony przed utratą danych na poziomie dysku. Przywracanie systemu działa na założeniu, że system operacyjny może zostać naprawiony, ale nie zabezpiecza fizycznych danych przechowywanych na dyskach. W przypadku uszkodzenia dysku twardego, dane mogą zostać trwale utracone, a punkt przywracania nie będzie w stanie ich uratować. Przechowywanie danych na innym dysku niż systemowy może pomóc w organizacji danych, ale nie zapewnia automatycznej redundancji, co oznacza, że jeśli inny dysk ulegnie awarii, dane również mogą zostać utracone. Konfiguracja automatycznego wykonywania kopii zapasowej jest korzystna, ale nie zastępuje mechanizmów ochrony danych, takich jak RAID. Kopie zapasowe są kluczowe, ale proces ich wykonywania może być przerywany, co prowadzi do sytuacji, w której najnowsze dane nie są zabezpieczone. Dlatego poleganie wyłącznie na kopiach zapasowych bez implementacji systemów RAID może być mylnym podejściem. W kontekście zapewnienia zarówno wydajności, jak i niezawodności, kluczowym jest zastosowanie technologii RAID jako fundamentu zarządzania danymi, a nie jedynie dodatkowego środka zabezpieczającego.

Pytanie 6

Które z poniższych poleceń służy do naprawienia głównego rekordu rozruchowego dysku twardego w systemie Windows?

A. fixboot
B. bcdedit
C. bootcfg
D. fixmbr
Istnieją różne polecenia, które mogą być stosowane do zarządzania procesem rozruchu systemu Windows, ale nie wszystkie one służą do naprawy głównego rekordu rozruchowego. Na przykład, fixboot jest poleceniem używanym do zapisywania nowego kodu rozruchowego na partycji systemowej, co jest przydatne, gdy problem dotyczy sektora rozruchowego, a nie samego MBR. Bcdedit to narzędzie do zarządzania danymi rozruchowymi, co może obejmować ustawienia dotyczące sposobu uruchamiania systemu, ale nie naprawia fizycznych uszkodzeń MBR. Bootcfg, z kolei, jest używane w starszych wersjach Windows do konfigurowania ustawień rozruchu, ale nie jest odpowiednie do naprawy MBR. Wiele osób myli te polecenia, co prowadzi do nieefektywnych prób rozwiązania problemów z uruchamianiem. Kluczowym błędem jest założenie, że wszystkie te polecenia pełnią tę samą funkcję, co jest nieprawidłowe. Aby skutecznie rozwiązywać problemy z rozruchem, ważne jest, aby dobrze rozumieć różnice między tymi narzędziami oraz ich odpowiednie zastosowanie w różnych scenariuszach. Wiedza o tym, kiedy używać konkretnego polecenia, jest kluczowa dla efektywnej diagnostyki i naprawy systemów operacyjnych.

Pytanie 7

Narzędziem służącym do monitorowania efektywności oraz niezawodności w systemach Windows 7, Windows Server 2008 R2 i Windows Vista jest

A. dfrg.msc
B. perfmon.msc
C. devmgmt.msc
D. tsmmc.msc
Dfrg.msc to narzędzie do defragmentacji dysków, które poprawia wydajność poprzez organizowanie danych na dyskach, ale nie zapewnia kompleksowego monitorowania systemu. Tego rodzaju narzędzie jest użyteczne dla poprawy wydajności dysków, ale nie dostarcza informacji na temat ogólnego stanu systemu ani niezawodności jego komponentów. Z kolei tsmmc.msc (Terminal Services Manager) koncentruje się na zarządzaniu sesjami zdalnymi w systemach Windows, co również nie ma związku z monitorowaniem wydajności, lecz z administrowaniem użytkownikami korzystającymi z usług terminalowych. Devmgmt.msc (Menadżer urządzeń) umożliwia zarządzanie sprzętem zainstalowanym w systemie, ale nie dostarcza informacji o wydajności systemu ani nie monitoruje jego działania. Takie podejście do problemu ujawnia typowy błąd myślowy, polegający na myleniu narzędzi administracyjnych z narzędziami monitorującymi. Efektywne zarządzanie systemami operacyjnymi wymaga wyraźnego rozróżnienia pomiędzy tymi funkcjami, co pozwala na bardziej precyzyjne wykorzystanie dostępnych zasobów i narzędzi. W praktyce, brak umiejętności identyfikacji właściwego narzędzia do monitorowania może prowadzić do nieefektywnego zarządzania, co z kolei wpływa negatywnie na stabilność i wydajność systemu.

Pytanie 8

Zilustrowany na obrazku interfejs to

Ilustracja do pytania
A. HDMI
B. S-Video
C. DisplayPort
D. D-Sub
Wybór innego interfejsu niż HDMI w tym przypadku jest błędny ponieważ różne interfejsy mają odmienne zastosowania i właściwości. Na przykład S-Video to standard analogowy używany głównie do przesyłania sygnału wideo w niskiej rozdzielczości bez dźwięku co czyni go nieodpowiednim do nowoczesnych zastosowań multimedialnych. DisplayPort z kolei jest cyfrowym interfejsem podobnie jak HDMI ale jest częściej wykorzystywany w środowiskach komputerowych. Oferuje większą przepustowość i wsparcie dla zaawansowanych funkcji takich jak obsługa wielu monitorów co czyni go preferowanym wyborem dla profesjonalistów IT i grafików. Natomiast D-Sub znany także jako VGA to starszy analogowy standard do przesyłania sygnału wideo używany w starszych monitorach i komputerach. Chociaż był powszechnie stosowany jego ograniczenia w przesyłaniu wysokiej jakości obrazu czynią go przestarzałym w kontekście nowoczesnych urządzeń. Częstym błędem jest mylenie tych interfejsów ze względu na ich wygląd lub nieznajomość ich specyfikacji i zastosowań. Ważne jest zrozumienie że w kontekście wymagań współczesnego sprzętu multimedialnego HDMI jest najczęściej wybieranym standardem ze względu na swoją zdolność do przesyłania zarówno wysokiej jakości wideo jak i dźwięku w jednym kablu co daje przewagę nad innymi interfejsami wymienionymi w pytaniu

Pytanie 9

Po wykonaniu podanego polecenia w systemie Windows: ```net accounts /MINPWLEN:11``` liczba 11 zostanie przydzielona dla

A. maksymalnej ilości dni ważności konta.
B. maksymalnej liczby dni pomiędzy zmianami haseł użytkowników.
C. minimalnej liczby minut, przez które użytkownik może być zalogowany.
D. minimalnej liczby znaków w hasłach użytkowników.
Wartość 11 ustawiona przez komendę 'net accounts /MINPWLEN:11' odnosi się do minimalnej liczby znaków, które muszą być zawarte w hasłach użytkowników systemu Windows. Praktyka ustalania minimalnej długości haseł jest kluczowym elementem polityki bezpieczeństwa, mającym na celu ochronę kont użytkowników przed atakami typu brute force, w których hakerzy próbują odgadnąć hasła przez generowanie różnych kombinacji. Zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa, zaleca się, aby hasła miały co najmniej 12 znaków, co dodatkowo zwiększa ich odporność na przełamanie. Ustawienie minimalnej długości hasła na 11 znaków jest krokiem w kierunku zapewnienia użytkownikom większego poziomu bezpieczeństwa. Warto pamiętać, że im dłuższe i bardziej złożone hasło, tym trudniej je złamać, dlatego organizacje powinny regularnie aktualizować polityki haseł oraz edukować użytkowników na temat znaczenia silnych haseł oraz stosowania menedżerów haseł.

Pytanie 10

Jeśli sieć 172.16.6.0/26 zostanie podzielona na dwie równe podsieci, to ile adresowalnych hostów będzie w każdej z nich?

A. 32 hosty
B. 29 hostów
C. 30 hostów
D. 28 hostów
Odpowiedzi wskazujące na większą liczbę hostów, takie jak 32, 29 czy 28, zawierają błędne założenia dotyczące adresowania sieci. Przykładowo, wybierając 32 hosty, należy pamiętać, że w każdej podsieci jeden adres jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego. Dlatego w rzeczywistości, nawet dla większej liczby dostępnych adresów, ilość hostów, które można przypisać, będzie zawsze mniejsza o dwa. W przypadku podsieci /27, co daje 32 adresy IP, tylko 30 z nich będzie mogło być użytych do przypisania komputerom, serwerom czy innym urządzeniom. Podobnie, wybór 29 lub 28 hostów nie uwzględnia prawidłowych zasad obliczania dostępnych adresów w podsieciach. Błędy te najczęściej wynikają z pomyłek podczas obliczania liczby dostępnych adresów lub braku znajomości standardowych zasad dotyczących adresacji IP. Zrozumienie tych zasad jest kluczowe do efektywnego zarządzania siecią i jej segmentowania, co w praktyce może prowadzić do oszczędzania adresów IP i uniknięcia problemów w przyszłości.

Pytanie 11

Jaką maksymalną długość może mieć kabel miedziany UTP kategorii 5e łączący bezpośrednio dwa urządzenia w sieci, według standardu Fast Ethernet 100Base-TX?

A. 1000 m
B. 150 m
C. 100 m
D. 300 m
Wybierając odpowiedzi takie jak 150 m, 1000 m czy 300 m, można się odnosić do mylnych przekonań dotyczących długości kabli UTP w kontekście technologii Ethernet. Wiele osób mylnie interpretuje maksymalne długości kabli, zakładając, że im dłuższy kabel, tym lepsza komunikacja, co jest absolutnie nieprawdziwe. Rzeczywista wydajność kabla Ethernet nie tylko zależy od jego długości, ale także od jakości sygnału, który może zostać zakłócony przez zjawiska takie jak tłumienie czy interferencje elektromagnetyczne. Użytkownicy mogą sądzić, że 150 m lub 300 m to akceptowalne długości, jednak takie podejście może prowadzić do poważnych problemów z wydajnością sieci. Na przykład, przy długości kabla 150 m, sygnał może ulegać znacznemu osłabieniu, co w praktyce skutkuje niską prędkością transferu danych oraz problemami z opóźnieniami. Podobnie, długość 1000 m znacznie przekracza maksymalne specyfikacje dla standardów Ethernet i może skutkować brakiem połączenia. Ponadto, różne standardy kabli, takie jak 10Base-T czy 1000Base-T, również mają swoje ograniczenia, które powinny być znane każdemu, kto projektuje lub zarządza siecią. Właściwe zrozumienie specyfikacji długości kabli jest kluczowe dla utrzymania stabilności i efektywności każdej sieci komputerowej.

Pytanie 12

Na stabilność wyświetlanego obrazu w monitorach CRT istotny wpływ ma

A. Wieloczęstotliwość
B. Częstotliwość odświeżania
C. Czas reakcji
D. Odwzorowanie barw
Częstotliwość odświeżania to bardzo ważny parametr, jeśli chodzi o stabilność obrazu w monitorach CRT. To właściwie mówi nam, jak często ekran jest odświeżany w ciągu sekundy. Im wyższa ta liczba, tym mniejsze ryzyko migotania, co może męczyć nasze oczy. Z mojego doświadczenia, warto zwrócić uwagę na to, że standardowe częstotliwości to zazwyczaj między 60 a 120 Hz, a niektóre monitory potrafią wyciągnąć nawet 180 Hz! Jeśli planujesz grać w gry albo pracować z grafiką przez dłuższy czas, lepiej wybrać monitor z wyższą częstotliwością. Fajnie jest też dostosować częstotliwość do tego, co właściwie robisz na komputerze, bo wtedy obraz będzie wyglądał lepiej, a oczy mniej się zmęczą. No i pamiętaj, niektóre karty graficzne mogą działać z różnymi częstotliwościami w zależności od rozdzielczości, więc przy konfiguracji monitora warto to mieć na uwadze.

Pytanie 13

Jak nazywa się jednostka przeprowadzająca obliczenia stałoprzecinkowe?

A. AND
B. ALU
C. RPU
D. FPU
Odpowiedzi takie jak FPU i RPU, chociaż dotyczą jednostek obliczeniowych, nie są odpowiednie w kontekście obliczeń stałoprzecinkowych. FPU, czyli jednostka zmiennoprzecinkowa, jest zaprojektowana do wykonywania obliczeń na liczbach zmiennoprzecinkowych, co oznacza, że operacje takie jak dodawanie, mnożenie czy dzielenie realizuje na liczbach, które mogą mieć zmienny zakres wartości i precyzję. Zastosowanie FPU jest kluczowe w aplikacjach wymagających dużej precyzji, takich jak symulacje naukowe czy obliczenia w inżynierii, ale nie jest ona odpowiednia do obliczeń stałoprzecinkowych, które operują na liczbach całkowitych. RPU, z kolei, nie jest standardowym terminem w architekturze komputerowej i można go mylić z innymi jednostkami, jak DSP (procesor sygnałowy). Ostatecznie, AND jest operatorem logicznym, który również nie jest jednostką obliczeniową, lecz częścią zestawu operacji, które mogą być wykonywane przez ALU. Zrozumienie różnicy między tymi jednostkami jest kluczowe dla efektywnego projektowania systemów komputerowych oraz ich optymalizacji w zależności od wymagań aplikacji. Często popełnianym błędem jest mylenie jednostek obliczeniowych i funkcji logicznych, co prowadzi do nieprawidłowych wniosków na temat ich zastosowania i funkcji w systemie komputerowym.

Pytanie 14

ARP (Adress Resolution Protocol) to protokół, który pozwala na przekształcenie adresu IP na

A. adres MAC
B. adres e-mail
C. nazwa systemu
D. nazwa domeny
Odpowiedzi dotyczące odwzorowania adresu IP na inne typy danych, takie jak adres poczty e-mail, nazwa domenowa czy nazwa komputera, wskazują na fundamentalne nieporozumienie dotyczące funkcji protokołu ARP. Adres poczty e-mail jest wykorzystywany do komunikacji w aplikacjach pocztowych i nie ma związku z sieciowym przesyłaniem danych na poziomie sprzętowym. Protokół ARP nie jest zaprojektowany do konwersji adresów IP na adresy e-mail, ponieważ te dwie technologie działają na różnych poziomach architektury sieci. Z kolei nazwa domenowa, używana w systemie DNS (Domain Name System), również nie jest obsługiwana przez ARP. DNS przekształca nazwy domenowe na adresy IP, ale nie zajmuje się adresami sprzętowymi. Podobnie, nazwa komputera odnosi się do identyfikacji hosta w sieci, ale nie może być bezpośrednio związana z fizycznym adresem MAC. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z nieznajomości zasad działania każdego z tych protokołów oraz ich roli w komunikacji sieciowej. Zrozumienie, że ARP jest ściśle związany z warstwą łącza danych modelu OSI, a nie z warstwą aplikacji, jest kluczowe dla prawidłowego stosowania i interpretacji tego protokołu w praktyce.

Pytanie 15

Jakie komponenty są obecne na zaprezentowanej płycie głównej?

Ilustracja do pytania
A. 2 gniazda ISA, 3 gniazda PCI, 4 gniazda pamięci DIMM
B. 2 gniazda ISA, 4 gniazda PCI, 3 gniazda pamięci DIMM
C. 3 gniazda ISA, 4 gniazda PCI, 2 gniazda pamięci DIMM
D. 4 gniazda ISA, 2 gniazda PCI, 3 gniazda pamięci DIMM
Odpowiedź 2 jest poprawna, ponieważ płyta główna przedstawiona na obrazku posiada 2 złącza ISA, 4 złącza PCI i 3 złącza pamięci DIMM. Złącza ISA były popularne w starszych komputerach, umożliwiając podłączanie kart rozszerzeń takich jak karty dźwiękowe czy sieciowe. Złącza PCI są bardziej zaawansowane i oferują szybszy transfer danych, co jest istotne w przypadku kart graficznych i innych urządzeń wymagających większej przepustowości. Obecność 3 złączy DIMM pozwala na instalację modułów pamięci RAM, co jest kluczowe dla wydajności systemu. Współcześnie, chociaż standardy takie jak PCIe zastąpiły stare PCI, zrozumienie starszych technologii jest istotne dla serwisowania starszych urządzeń i poszerza wiedzę techniczną. Zrozumienie różnic między tymi standardami oraz ich zastosowań wpływa na skuteczną analizę i modernizację sprzętu, co jest zgodne z najlepszymi praktykami utrzymania infrastruktury IT.

Pytanie 16

Program iftop działający w systemie Linux ma na celu

A. ustawianie parametrów interfejsu graficznego
B. kończenie procesu, który zużywa najwięcej zasobów procesora
C. monitorowanie aktywności połączeń sieciowych
D. prezentowanie bieżącej prędkości zapisu w pamięci operacyjnej
Odpowiedzi, które wskazują na konfigurowanie ustawień interfejsu graficznego, wyświetlanie prędkości zapisu do pamięci operacyjnej oraz wyłączanie procesów obciążających procesor, wskazują na fundamentalne nieporozumienia dotyczące funkcji programów w systemie Linux. Najpierw, konfigurowanie ustawień interfejsu graficznego to zadanie dla narzędzi takich jak 'gnome-control-center' lub 'systemsettings', które są ściśle związane z konfiguracją środowiska graficznego, a nie monitorowaniem ruchu sieciowego. Drugim aspektem jest wyświetlanie chwilowej prędkości zapisu do pamięci operacyjnej, co nie ma związku z iftop, ponieważ to zadanie realizowane jest przez narzędzia takie jak 'htop' czy 'vmstat', które skupiają się na monitorowaniu zużycia zasobów systemowych. Wreszcie, wyłączanie procesów zużywających moc obliczeniową jest funkcją zarządzania procesami, którą można zrealizować za pomocą komendy 'kill' lub narzędzi takich jak 'top' czy 'ps', jednak te działania nie są związane z monitorowaniem połączeń sieciowych. Wszystkie te nieporozumienia mogą wynikać z braku zrozumienia możliwości narzędzi dostępnych w systemie Linux oraz ich zastosowania w praktycznych scenariuszach zarządzania systemami. Warto zainwestować czas w naukę i eksperymentowanie z różnymi narzędziami, aby zyskać pełniejszy obraz ich funkcjonalności i zastosowań.

Pytanie 17

Jak na diagramach sieciowych LAN oznaczane są punkty dystrybucyjne znajdujące się na różnych kondygnacjach budynku, zgodnie z normą PN-EN 50173?

A. BD (BuildingDistributor)
B. MDF (Main Distribution Frame)
C. FD (Floor Distribution)
D. CD (Campus Distribution)
Odpowiedź FD (Floor Distribution) jest prawidłowa, ponieważ oznacza ona punkty rozdzielcze (dystrybucyjne) znajdujące się na poszczególnych piętrach budynku, co jest zgodne z normą PN-EN 50173. Norma ta klasyfikuje różne poziomy dystrybucji w sieciach LAN, aby zapewnić odpowiednią organizację i efektywność instalacji. Punkty dystrybucyjne na piętrach są kluczowym elementem infrastruktury sieciowej, ponieważ umożliwiają one podłączenie urządzeń końcowych, takich jak komputery, drukarki czy telefony. Przykładowo, w biurowcach, gdzie na każdym piętrze znajduje się wiele stanowisk pracy, odpowiednie oznaczenie FD pozwala na łatwe lokalizowanie rozdzielni, co ułatwia zarządzanie siecią oraz wykonywanie prac konserwacyjnych. Dobrze zaplanowana dystrybucja na każdym piętrze wprowadza porządek w instalacji, co jest szczególnie istotne w przypadku modernizacji lub rozbudowy infrastruktury sieciowej. W praktyce, stosowanie jednolitych oznaczeń, takich jak FD, zwiększa efektywność komunikacji między specjalistami zajmującymi się siecią oraz ułatwia przyszłe prace serwisowe.

Pytanie 18

Który z podanych elementów jest częścią mechanizmu drukarki igłowej?

A. Lustro
B. Soczewka
C. Filtr ozonowy
D. Traktor
Wybór odpowiedzi związanych z filtrami ozonowymi, lusterkami i soczewkami sugeruje pewne nieporozumienia dotyczące funkcji elementów używanych w drukarkach igłowych. Filtr ozonowy, chociaż mógłby wydawać się istotny w kontekście ochrony środowiska, nie jest bezpośrednio związany z mechanizmem drukowania w drukarkach igłowych. Jego główną rolą jest redukcja emisji ozonu, co jest bardziej istotne w kontekście urządzeń emitujących ozon, a nie w drukowaniu. Lustra są wykorzystywane w technologii optycznej, ale nie mają zastosowania w pracy drukarek igłowych, które opierają się na mechanizmie wybijania tuszu przez igły na papier. Soczewki, na ogół używane w aparatach fotograficznych czy projektorach, również nie mają zastosowania w tej technologii. Często błędem myślowym jest mylenie różnych technologii druku, co prowadzi do przypisania nieodpowiednich elementów do mechanizmów drukujących. Kluczową kwestią jest zrozumienie, że drukarki igłowe działają na zasadzie mechanicznego zderzenia igieł z taśmą drukującą, co różni się od technologii wykorzystujących światło lub tusz w inny sposób. Uznanie tych różnic jest niezbędne do prawidłowego zrozumienia działania różnych technologii druku.

Pytanie 19

Programem wiersza poleceń w systemie Windows, który umożliwia kompresję oraz dekompresję plików i folderów, jest aplikacja

A. Expand.exe
B. Compact.exe
C. CleanMgr.exe
D. DiskPart.exe
Expand.exe to narzędzie, które głównie służy do rozpakowywania plików z archiwum, a nie do kompresji. Zwykle używa się go, kiedy trzeba przywrócić pliki z archiwum, ale nie ma tu mowy o kompresji, co jest najważniejsze w tym pytaniu. DiskPart.exe to zupełnie inna bajka – to program do zarządzania partycjami, a nie do kompresji plików. Można z jego pomocą tworzyć czy kasować partycje, ale to nic nie ma wspólnego z kompresowaniem danych. CleanMgr.exe, czyli Oczyszczanie dysku, działa na rzecz usuwania niepotrzebnych plików, co też nie dotyczy kompresji. Czasami może się wydawać, że te narzędzia mogą kompresować, ale każde ma inne przeznaczenie. Warto pamiętać, że kompresja i dekompresja to różne procesy, a odpowiedni wybór narzędzi jest kluczowy dla zachowania wydajności systemu.

Pytanie 20

Aby chronić urządzenia w sieci LAN przed przepięciami oraz różnicami potencjałów, które mogą się pojawić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. przełącznik
B. sprzętową zaporę sieciową
C. urządzenie typu NetProtector
D. ruter
Urządzenia typu NetProtector są specjalistycznymi elementami ochrony sieci, które zabezpieczają przed przepięciami oraz różnicami potencjałów, jakie mogą wystąpić w wyniku wyładowań atmosferycznych, takich jak burze. W sytuacjach, gdy sieć LAN jest narażona na działanie takich czynników, zastosowanie NetProtectora może zminimalizować ryzyko uszkodzenia sprzętu sieciowego, jak routery, przełączniki, czy komputery. Działają one na zasadzie odprowadzania nadmiaru energii do ziemi, co jest zgodne z najlepszymi praktykami w zakresie zabezpieczeń sieci. Warto pamiętać, że ochrona przed przepięciami jest nie tylko zalecana, ale i często wymagana przez standardy branżowe, takie jak IEEE 1100, które definiują zasady stosowania systemów ochrony przed przepięciami (Surge Protective Devices - SPD). Przykładem ich zastosowania mogą być serwerownie, które ze względu na wysoką wartość sprzętu oraz ich kluczowe znaczenie dla działalności firm, powinny być szczególnie chronione. Dlatego NetProtector stanowi niezbędny element każdej dobrze zabezpieczonej infrastruktury sieciowej.

Pytanie 21

Przydzielaniem adresów IP w sieci zajmuje się serwer

A. WINS
B. DNS
C. DHCP
D. NMP
Serwer DHCP (Dynamic Host Configuration Protocol) jest odpowiedzialny za automatyczne przydzielanie adresów IP oraz innych informacji konfiguracyjnych urządzeniom w sieci. Dzięki temu procesowi możliwe jest zarządzanie adresacją IP w sposób zautomatyzowany i efektywny, co jest niezbędne w dużych sieciach. DHCP działa w oparciu o mechanizm, w którym urządzenia klienckie wysyłają zapytania o adres IP, a serwer DHCP przydziela im dostępne adresy z puli. Przykładem zastosowania DHCP jest sytuacja w biurze, gdzie wiele komputerów, drukarek i innych urządzeń wymaga unikalnego adresu IP. W takim przypadku administracja siecią może skonfigurować serwer DHCP, aby automatycznie przydzielał adresy IP, co znacząco ułatwia zarządzanie siecią oraz minimalizuje ryzyko konfliktów adresowych. Dobre praktyki w używaniu DHCP obejmują rezerwacje adresów dla urządzeń, które wymagają stałego IP, jak serwery, co pozwala na zachowanie stabilności konfiguracji sieci. Współczesne standardy sieciowe uznają DHCP za kluczowy element infrastruktury sieciowej, umożliwiający dynamiczne zarządzanie zasobami IP.

Pytanie 22

Klawiatura QWERTY, która pozwala na wprowadzanie znaków typowych dla języka polskiego, nazywana jest także klawiaturą

A. maszynistki
B. diaktryczną
C. programisty
D. polską
Klawiatura QWERTY, znana jako klawiatura programisty, jest dostosowana do wprowadzania znaków diakrytycznych, które są niezbędne w polskim alfabecie. W skład tego układu wchodzą dodatkowe znaki, takie jak 'ą', 'ę', 'ł', 'ó', 'ś', 'ź', 'ż', a także znaki interpunkcyjne, które są kluczowe dla poprawnej pisowni w języku polskim. Klawiatura programisty jest szczególnie użyteczna dla programistów i osób pracujących z tekstem, ponieważ umożliwia łatwe i szybkie wprowadzanie polskich znaków bez potrzeby zmiany układu klawiatury. Szereg programów i edytorów tekstu automatycznie rozpoznaje ten układ, co przyspiesza proces pisania kodu lub tekstów. Standardowe praktyki w branży zalecają korzystanie z klawiatury, która umożliwia sprawne pisanie w lokalnym języku, co zwiększa produktywność oraz minimalizuje ryzyko błędów w komunikacji pisemnej. Dostosowanie układu klawiatury do potrzeb użytkownika to kluczowy element efektywnej pracy biurowej oraz programistycznej.

Pytanie 23

W systemach Linux, aby wprowadzić nowe repozytorium, należy wykorzystać komendy

A. zypper ar oraz add-apt-repository
B. zypper rr oraz remove-apt-repository
C. zypper lr oraz remove-apt-repository
D. zypper ref oraz add-apt-repository
Polecenie 'zypper ar' służy do dodawania repozytoriów w systemach opartych na openSUSE, podczas gdy 'add-apt-repository' jest używane w systemach opartych na Debianie i Ubuntu. Oba te polecenia są zestawem narzędzi, które pozwalają administratorom na efektywne zarządzanie pakietami oraz aktualizację oprogramowania poprzez dostęp do zewnętrznych źródeł. Na przykład, w przypadku użycia 'zypper ar', można dodać repozytorium wpisując 'sudo zypper ar http://example.com/repo.repo nazwa_repo', co pozwala na pobieranie pakietów z tego źródła. Z kolei 'add-apt-repository ppa:nazwa/ppa' w systemach Debian/Ubuntu umożliwia dodanie PPA (Personal Package Archive), co jest powszechną praktyką w celu uzyskania dostępu do najnowszych wersji oprogramowania, które mogą nie być dostępne w standardowych repozytoriach. Dobrą praktyką jest zawsze sprawdzenie zaufania repozytoriów, aby uniknąć problemów z bezpieczeństwem. Używanie tych narzędzi jest kluczowe dla zapewnienia aktualności i bezpieczeństwa systemu, przez co stają się one podstawowymi umiejętnościami dla administratorów systemów.

Pytanie 24

Jaką klasę reprezentuje adres IPv4 w postaci binarnej 00101000 11000000 00000000 00000001?

A. Klasy D
B. Klasy B
C. Klasy C
D. Klasy A
Aby zrozumieć, dlaczego odpowiedzi dotyczące klas B, C oraz D są niepoprawne, warto zwrócić uwagę na sposób klasyfikacji adresów IPv4. Adresy klasy B rozpoczynają się od bitów 10, co oznacza, że pierwszy bajt powinien mieścić się w zakresie 128-191. Adresy klasy C zaczynają się od bitów 110, co przekłada się na zakres od 192 do 223. Adresy klasy D są zarezerwowane dla multicastu i zaczynają się od bitów 1110, co odpowiada zakresowi od 224 do 239. Adres 40.192.0.1, konwertowany na zapis dziesiętny, znajduje się w zakresie klasy A, co wyklucza możliwość zakwalifikowania go do klas B, C czy D. Typowym błędem jest zakładanie, że adresy z wyższych zakresów są bardziej uniwersalne, podczas gdy każdy typ adresu ma swoje specyficzne zastosowania oraz zasady przydzielania. Klasy B i C są często używane w średnich i małych sieciach, ale nie spełniają wymagań dużych organizacji. Zrozumienie tych różnic jest kluczowe w kontekście projektowania architektury sieci oraz efektywnego zarządzania adresami IP, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 25

Aby zweryfikować w systemie Windows działanie nowo zainstalowanej drukarki, co należy zrobić?

A. wydrukować stronę testową za pomocą zakładki Ogólne w oknie Właściwości drukarki
B. sprawdzić status urządzenia w Menadżerze urządzeń
C. uruchomić narzędzie diagnostyczne dxdiag
D. wykonać polecenie gpupdate /force w Wierszu poleceń
Wydrukowanie strony testowej za pomocą zakładki Ogólne w oknie Właściwości drukarki to najskuteczniejszy sposób na potwierdzenie, że nowo zainstalowana drukarka działa poprawnie. Proces ten polega na wejściu w ustawienia drukarki z poziomu systemu Windows, gdzie użytkownik może uzyskać dostęp do opcji takich jak wydrukowanie strony testowej. Strona testowa zazwyczaj zawiera różne elementy, takie jak kolory, tekst oraz grafiki, co pozwala na ocenę jakości wydruku oraz sprawności urządzenia. Jest to standardowa procedura, która jest często zalecana w dokumentacji producentów sprzętu. Wydrukowanie strony testowej jest również pomocne w diagnostyce, ponieważ pozwala zidentyfikować ewentualne problemy, takie jak brak kolorów, zacięcia papieru lub inne błędy, które mogą występować w trakcie drukowania. Tego rodzaju praktyki są kluczowe w profesjonalnym środowisku biurowym, gdzie niezawodność sprzętu drukującego ma bezpośredni wpływ na efektywność pracy.

Pytanie 26

Użytkownicy w sieciach bezprzewodowych mogą być uwierzytelniani zdalnie przy pomocy usługi

A. NNTP
B. IMAP
C. RADIUS
D. HTTPS
No to widzę, że wybrałeś odpowiedzi jak IMAP, HTTPS i NNTP, ale muszę przyznać, że są one nieco mylące w kontekście zdalnego uwierzytelniania w sieciach bezprzewodowych. IMAP to protokół do zarządzania e-mailami, więc nie ma tu mowy o uwierzytelnianiu w sieci. Użycie go w tym przypadku to trochę nietrafione posunięcie, bo nie ma żadnych mechanizmów, które by pomogły w autoryzacji dostępu do sieci. HTTPS z kolei to protokół, który dba o bezpieczne przesyłanie danych w internecie, ale znów nie jest to coś, co służy do uwierzytelniania w sieci lokalnej. Może się wydawać, że jest to jakiś sposób na ochronę, ale w tym kontekście po prostu nie pasuje. NNTP natomiast to protokół do wymiany wiadomości w grupach dyskusyjnych, i to też nie ma nic wspólnego z procesem uwierzytelniania w sieciach. Tutaj błędnie myślisz, myląc funkcje tych protokołów, które tak naprawdę mają różne zadania. Zrozumienie, jak te protokoły działają i do czego służą, jest kluczowe, szczególnie w kontekście bezpieczeństwa sieci.

Pytanie 27

Jaką normę odnosi się do okablowania strukturalnego?

A. ISO 9001
B. TIA/EIA-568-B
C. IEC 60364
D. IEEE 1394
ISO 9001 jest standardem dotyczącym zarządzania jakością, a nie spełnia wymagań dotyczących okablowania strukturalnego. Choć wdrożenie systemu zarządzania jakością ma na celu poprawę efektywności organizacji i satysfakcji klientów, nie odnosi się bezpośrednio do aspektów technicznych dotyczących okablowania, które są kluczowe w kontekście transmisji danych. IEEE 1394, znane również jako FireWire, jest standardem komunikacji szeregowej, który jest używany głównie do łączenia urządzeń multimedialnych, takich jak kamery, dyski twarde i inne urządzenia, ale nie odnosi się do infrastruktury okablowania strukturalnego w budynkach. Z kolei IEC 60364 jest standardem dotyczącym instalacji elektrycznych, skoncentrowanym głównie na bezpieczeństwie i niezawodności systemów zasilania, a nie na okablowaniu telekomunikacyjnym. Pojawiające się nieporozumienia mogą wynikać z mylenia różnych standardów i ich zastosowań. Właściwe zrozumienie, w jakim kontekście dany standard powinien być stosowany, jest kluczowe dla efektywnego projektowania i wdrażania infrastruktury telekomunikacyjnej. Często można spotkać się z błędnymi wnioskami, które powstają na skutek nieznajomości specyfiki poszczególnych norm i ich rzeczywistych zastosowań w branży IT.

Pytanie 28

W skład sieci komputerowej wchodzą 3 komputery stacjonarne oraz drukarka sieciowa, połączone kablem UTP z routerem mającym 1 x WAN oraz 5 x LAN. Które z urządzeń sieciowych pozwoli na podłączenie dodatkowych dwóch komputerów do tej sieci za pomocą kabla UTP?

A. Przełącznik
B. Modem
C. Terminal sieciowy
D. Konwerter mediów
Przełącznik, znany również jako switch, jest urządzeniem sieciowym, które umożliwia podłączenie wielu komputerów i innych urządzeń do jednej sieci lokalnej. Jego działanie polega na przekazywaniu danych między urządzeniami na podstawie adresów MAC, co zapewnia efektywną komunikację i minimalizuje kolizje. W przypadku opisanej sieci, gdzie już istnieją 3 komputery stacjonarne oraz drukarka sieciowa, a ruter ma ograniczoną liczbę portów LAN, dodanie przełącznika pozwala na zwiększenie liczby dostępnych portów. Dzięki temu, dwa dodatkowe komputery mogą być podłączone bezpośrednio do przełącznika, a ten przekaże ruch do rutera. W praktyce, przełączniki są często stosowane w biurach i domach, aby rozbudować sieci lokalne i zwiększyć liczbę urządzeń bez potrzeby inwestowania w droższe rutery z większą liczbą portów. Ważne jest również, że przełączniki mogą pracować na różnych warstwach modelu OSI, w tym warstwie drugiej (łącza danych), co czyni je elastycznymi narzędziami w zarządzaniu ruchem sieciowym. Stanowią one kluczowy element w każdej nowoczesnej infrastrukturze sieciowej, zgodnie z najlepszymi praktykami w projektowaniu sieci.

Pytanie 29

W systemie Linux komendą, która jednocześnie podnosi uprawnienia dla procesu uruchamianego z terminala, jest

A. users
B. uname
C. passwd
D. sudo
Polecenie 'sudo' w systemie Linux jest kluczowym narzędziem do podnoszenia uprawnień dla procesów uruchamianych z konsoli. Skrót 'sudo' oznacza 'superuser do', co pozwala na wykonywanie poleceń z uprawnieniami administratora (root) bez konieczności logowania się na konto administratora. Używanie 'sudo' jest zgodne z zasadą najmniejszych uprawnień, co oznacza, że użytkownicy powinni otrzymywać tylko te uprawnienia, które są im niezbędne do wykonywania swoich zadań. Przykład zastosowania: jeśli chcesz zainstalować nowy pakiet oprogramowania przy użyciu menedżera pakietów, musisz mieć odpowiednie uprawnienia. W takim przypadku można użyć polecenia 'sudo apt install'. Jest to również praktyka zgodna z politykami bezpieczeństwa, ponieważ 'sudo' zapisuje wszystkie wykonane polecenia w dzienniku, co pozwala na audyt i monitoring działań użytkowników. Dzięki temu administratorzy systemu mogą lepiej zarządzać dostępem do krytycznych funkcji oraz szybko identyfikować potencjalne problemy z bezpieczeństwem.

Pytanie 30

Częścią zestawu komputerowego, która zajmuje się zarówno przetwarzaniem danych wejściowych, jak i wyjściowych, jest

A. skaner
B. ploter
C. głośnik
D. modem
Modem jest urządzeniem, które przetwarza zarówno dane wejściowe, jak i wyjściowe, co czyni go kluczowym elementem w komunikacji sieciowej. Działa na zasadzie modulacji i demodulacji sygnałów, co pozwala na przesyłanie danych przez różne media, takie jak linie telefoniczne czy kable światłowodowe. W praktyce, modem przekształca sygnały cyfrowe z komputera na analogowe, które mogą być przesyłane przez linię telefoniczną, a następnie odbierane z powrotem i konwertowane z powrotem na cyfrowe przez drugi modem. Dzięki temu użytkownicy mogą korzystać z Internetu, przesyłać e-maile, korzystać z aplikacji chmurowych, czy realizować wideokonferencje. Modemy są zgodne z różnymi standardami, takimi jak ADSL, VDSL czy DOCSIS, co zapewnia ich interoperacyjność w różnych sieciach. Dzięki tym właściwościom, modem jest niezbędnym elementem w strukturach komunikacyjnych, które wymagają zarówno przesyłania, jak i odbierania danych.

Pytanie 31

Standardowe napięcie zasilające dla modułów pamięci RAM DDR4 wynosi

A. 1,5 V
B. 1,65 V
C. 1,2 V
D. 1,35 V
Wybór napięcia zasilania 1,5 V, 1,65 V lub 1,35 V dla modułów pamięci RAM DDR4 jest błędny, ponieważ napięcia te odpowiadają starym standardom lub innym technologiom pamięci. Napięcie 1,5 V jest charakterystyczne dla pamięci RAM DDR3, która była powszechnie stosowana przed wprowadzeniem DDR4. Przy pracy na wyższym napięciu, DDR3 generuje więcej ciepła, co prowadzi do obniżenia efektywności energetycznej systemu. Z kolei napięcie 1,65 V często jest związane z pamięcią RAM działającą na wyższych częstotliwościach, ale nie jest zgodne z DDR4. Używanie modułów z takimi specyfikacjami zasilania w systemach zaprojektowanych pod kątem DDR4 może prowadzić do uszkodzenia pamięci lub niestabilności systemu. Napięcie 1,35 V, choć jest stosowane w niektórych wariantach DDR4 (np. Low Voltage DDR4), nie jest standardowym napięciem dla ogólnych zastosowań DDR4. W praktyce, wybór niewłaściwego napięcia może prowadzić do problemów z kompatybilnością, co jest powszechnym błędem wśród użytkowników, którzy nie są świadomi różnic między wersjami pamięci. Kluczowe jest, aby przy projektowaniu i budowie systemów komputerowych przestrzegać specyfikacji JEDEC oraz stosować komponenty zgodne z tymi standardami, co zapewnia nie tylko stabilność, ale i wydajność sprzętu.

Pytanie 32

Jakie jest najbardziej typowe dla topologii gwiazdy?

A. niskie zużycie kabli
B. zatrzymanie sieci wskutek awarii terminala
C. centralne zarządzanie siecią
D. trudności w lokalizacji usterek
Rozważając niewłaściwe odpowiedzi, można zauważyć, że małe zużycie kabla jest mylącym stwierdzeniem, ponieważ w rzeczywistości topologia gwiazdy może wiązać się z większym zużyciem kabli w porównaniu do innych topologii, jak na przykład topologia magistrali. W gwieździstej strukturze każdy węzeł wymaga oddzielnego kabla do centralnego punktu, co z kolei zwiększa ilość materiału potrzebnego do budowy sieci. Ponadto, centralne zarządzanie siecią nie tylko ułatwia kontrolę, ale również wprowadza ryzyko, że awaria centralnego urządzenia może spowodować zablokowanie całej sieci, co jest nieprawdziwe w kontekście pozostałych odpowiedzi. Trudna lokalizacja uszkodzeń również nie odnosi się do topologii gwiazdy, gdyż jednym z jej atutów jest właśnie uproszczona lokalizacja potencjalnych problemów, co kontrastuje z bardziej złożonymi topologiami, w których trudniej jest zidentyfikować źródło awarii. Zrozumienie tych różnic jest kluczowe, aby właściwie ocenić zalety i wady różnych architektur sieciowych oraz ich wpływ na wydajność i niezawodność sieci.

Pytanie 33

Informacja tekstowa KB/Interface error, widoczna na wyświetlaczu komputera podczas BIOS POST od firmy AMI, wskazuje na problem

A. baterii CMOS
B. sterownika klawiatury
C. pamięci GRAM
D. rozdzielczości karty graficznej
Komunikat tekstowy KB/Interface error, który pojawia się podczas testu samo-testowego BIOS (POST) u producenta AMI, wskazuje na problem związany ze sterownikiem klawiatury. W momencie uruchamiania komputera, BIOS przeprowadza szereg testów mających na celu wykrycie podzespołów oraz ich poprawnej funkcjonalności. Jeżeli klawiatura zostanie wykryta jako nieprawidłowo działająca lub nie zostanie w ogóle zidentyfikowana, BIOS generuje ten komunikat. W praktyce, może to oznaczać, że klawiatura jest źle podłączona, uszkodzona lub wymaga wymiany. Warto również zwrócić uwagę, że w przypadku używania klawiatury USB, może być potrzebne sprawdzenie portu, do którego jest podłączona, lub przetestowanie z inną klawiaturą, aby wykluczyć uszkodzenie sprzętowe. Zastosowanie się do procedur diagnostycznych, jak odłączanie i ponowne podłączanie klawiatury oraz sprawdzanie jej na innym urządzeniu, jest zgodne z dobrymi praktykami w zakresie rozwiązywania problemów związanych z komputerami.

Pytanie 34

Czy bęben światłoczuły znajduje zastosowanie w drukarkach?

A. termosublimacyjnych
B. laserowych
C. igłowych
D. atramentowych
Bęben światłoczuły, znany również jako bęben fotoreceptorowy, jest kluczowym elementem drukarek laserowych. Jego główną rolą jest zbieranie naładowanych cząsteczek tonera, które są następnie przenoszone na papier podczas procesu drukowania. Proces ten polega na wykorzystaniu technologii elektrofotograficznej, gdzie bęben pokryty materiałem światłoczułym jest naświetlany laserem. Dzięki zmianom ładunku elektrycznego na powierzchni bębna, toner przylega do określonych obszarów, co pozwala na uzyskanie wysokiej jakości wydruków z precyzyjnie odwzorowanymi detalami. Przykładowo, w biurach i środowiskach profesjonalnych, drukarki laserowe z bębnem światłoczułym są preferowane ze względu na ich szybkość, efektywność kosztową oraz zdolność do wydruku dużych ilości dokumentów. Standardy ISO dotyczące jakości wydruku podkreślają znaczenie bębna fotoreceptorowego w uzyskiwaniu spójnych i wyraźnych wydruków, co czyni go nieodłącznym elementem w tym typie urządzeń.

Pytanie 35

Element trwale zamontowany, w którym znajduje się zakończenie okablowania strukturalnego poziomego dla abonenta, to

A. punkt rozdzielczy
B. gniazdo energetyczne
C. gniazdo teleinformatyczne
D. punkt konsolidacyjny
Wybór punktu konsolidacyjnego jako odpowiedzi jest mylny, ponieważ termin ten odnosi się do elementu, który służy do łączenia różnych segmentów okablowania w sieci, a nie jako końcowy punkt dostępu dla użytkowników. Punkty konsolidacyjne są zazwyczaj instalowane w bardziej centralnych lokalizacjach systemu okablowania, co pozwala na organizację i zarządzanie kablami w obrębie budynku. Służą one do konsolidacji różnych połączeń i zapewniają elastyczność w przyszłych zmianach w infrastrukturze sieciowej. W kontekście gniazd energetycznych, ich funkcja jest zupełnie inna – służą one do zasilania urządzeń elektrycznych, a nie do przesyłania danych. Błędne założenie, że gniazdo energetyczne może pełnić rolę końcowego punktu okablowania strukturalnego, prowadzi do nieporozumień w zakresie projektowania i wdrażania infrastruktury IT. Z kolei punkt rozdzielczy, jako element systemu dystrybucji sygnałów, również nie pełni funkcji bezpośredniego zakończenia okablowania, lecz działa jako pośrednik w transmisji sygnałów między różnymi segmentami sieci. Właściwe zrozumienie ról i funkcji tych elementów jest kluczowe dla efektywnego projektowania oraz zarządzania sieciami teleinformatycznymi.

Pytanie 36

Firma planuje stworzenie lokalnej sieci komputerowej, która będzie obejmować serwer, drukarkę oraz 10 stacji roboczych bez kart bezprzewodowych. Internet będzie udostępniany przez ruter z modemem ADSL i czterema portami LAN. Które z wymienionych elementów sieciowych jest konieczne, aby sieć mogła prawidłowo działać i uzyskać dostęp do Internetu?

A. Przełącznik 16 portowy
B. Przełącznik 8 portowy
C. Access Point
D. Wzmacniacz sygnału bezprzewodowego
Wybór Access Pointa, przełącznika 8-portowego lub wzmacniacza sygnału bezprzewodowego nie jest właściwy w kontekście budowy lokalnej sieci komputerowej, jaką firma planuje stworzyć. Access Point jest urządzeniem, które rozszerza zasięg sieci bezprzewodowej, co jest nieistotne w przypadku stacji roboczych, które nie mają kart sieciowych bezprzewodowych. W sytuacji, gdy wszystkie urządzenia w sieci są podłączone przewodowo, Access Point nie ma zastosowania ani nie przynosi żadnej wartości dodanej do infrastruktury. Wybór przełącznika 8-portowego również nie jest wystarczający, ponieważ w sieci znajduje się 10 stacji roboczych, a do tego serwer oraz drukarka, co przekracza liczbę portów w 8-portowym przełączniku. W rezultacie może on nie zapewnić miejsca dla wszystkich potrzebnych połączeń, co mogłoby prowadzić do problemów ze zwiększeniem liczby urządzeń w przyszłości. Wzmacniacz sygnału bezprzewodowego również nie odpowiada potrzebom tej konkretnej sieci, ponieważ nieobsługiwane są w niej urządzenia bezprzewodowe. Typowym błędem w takim podejściu jest założenie, że wszystkie urządzenia w sieci mogą być podłączane w dowolny sposób, bez analizy rzeczywistych potrzeb i struktury sieci. W projektowaniu sieci lokalnych kluczowe jest zrozumienie, jakie urządzenia będą używane oraz jaką rolę odgrywają w komunikacji wewnętrznej i dostępie do Internetu. Stosowanie niewłaściwych komponentów może prowadzić do nieefektywności, a nawet do awarii całego systemu, co podkreśla znaczenie staranności w wyborze odpowiednich rozwiązań sieciowych.

Pytanie 37

Który standard Ethernet określa Gigabit Ethernet dla okablowania UTP?

A. 10 GBase-TX
B. 1000 Base-TX
C. 100 GBase-TX
D. 10 Base-TX
Odpowiedzi 10 Base-TX, 10 GBase-TX oraz 100 GBase-TX są nieprawidłowe w kontekście pytania dotyczącego Gigabit Ethernet dla okablowania UTP. 10 Base-TX odnosi się do standardu Ethernet o prędkości 10 Mb/s, który jest znacznie wolniejszy od technologii Gigabit Ethernet, a jego zastosowanie jest ograniczone do starszych, mniej wymagających aplikacji. Ten standard był popularny w początkach rozwoju sieci Ethernet, ale dziś praktycznie nie jest już stosowany w nowoczesnych infrastrukturach sieciowych, które wymagają większej przepustowości. 10 GBase-TX z kolei to standard umożliwiający przesyłanie danych z prędkością 10 Gb/s, co jest znacznie szybsze niż Gigabit Ethernet, lecz wymaga bardziej zaawansowanego okablowania, jak np. kategoria 6a lub 7, a tym samym nie można go zaliczyć do standardu Ethernet, który działa na UTP. 100 GBase-TX to jeszcze wyższy standard, obsługujący prędkości do 100 Gb/s, przeznaczony głównie dla zastosowań w centrach danych oraz w zaawansowanych systemach telekomunikacyjnych, również niekompatybilny z UTP. Wybór niewłaściwego standardu Ethernet może prowadzić do nieefektywności w sieci, wysokich kosztów modernizacji oraz problemów z kompatybilnością, co pokazuje, jak istotne jest zrozumienie podstawowych różnic pomiędzy standardami Ethernet.

Pytanie 38

Które z poniższych stwierdzeń NIE odnosi się do pamięci cache L1?

A. Zastosowano w niej pamięć typu SRAM
B. Znajduje się we wnętrzu układu procesora
C. Czas dostępu jest dłuższy niż w przypadku pamięci RAM
D. Jej wydajność jest równa częstotliwości procesora
Wybór odpowiedzi, że pamięć cache L1 ma dłuższy czas dostępu niż pamięć RAM jest poprawny, ponieważ pamięć cache, w tym L1, charakteryzuje się znacznie szybszym czasem dostępu niż tradycyjna pamięć RAM. Cache L1, będąca pamięcią typu SRAM (Static Random Access Memory), jest projektowana z myślą o minimalizowaniu opóźnień w dostępie do danych, co jest kluczowe dla wydajności procesora. Przykładem zastosowania tej technologii jest jej rola w architekturze procesorów, gdzie dane najczęściej używane są przechowywane w cache, co znacząco przyspiesza operacje obliczeniowe. Normalny czas dostępu do pamięci RAM wynosi kilka nanosekund, podczas gdy cache L1 operuje na poziomie około 1-3 nanosekund, co czyni ją znacznie szybszą. W praktyce, umiejscowienie pamięci cache wewnątrz rdzenia procesora oraz jej związane z tym szybkie połączenia z centralną jednostką obliczeniową (CPU) pozwala na znaczne zredukowanie czasu potrzebnego do wykonania operacji, co jest standardem w projektowaniu nowoczesnych mikroprocesorów. Dobre praktyki inżynieryjne zalecają maksymalne wykorzystanie pamięci cache, aby zminimalizować opóźnienia i zwiększyć efektywność energetyczną systemów obliczeniowych.

Pytanie 39

Który z zapisów adresu IPv4 z maską jest niepoprawny?

A. 18.4.0.0, maska 255.0.0.0
B. 16.1.1.1/5
C. 192.168.0.1, maska 255.250.255.0
D. 100.0.0.0/8
Adresy IPv4, takie jak 16.1.1.1/5, 100.0.0.0/8 oraz 18.4.0.0 z maską 255.0.0.0, są przykładem sprawnie skonfigurowanych adresów, jednak nie oznacza to, że są one pozbawione błędów konceptualnych. Zapis 16.1.1.1/5 sugeruje, że pierwsze 5 bitów adresu odnosi się do części sieci, co w praktyce przekłada się na bardzo dużą sieć z maksymalnie 2^27 (134217728) możliwymi adresami hostów, co jest niepraktyczne w większości zastosowań. Adres 100.0.0.0/8 jest stosowany jako adres klasy A, jednak jego wykorzystanie w małych sieciach lokalnych może prowadzić do zbędnego marnotrawienia przestrzeni adresowej. Z kolei adres 18.4.0.0 z maską 255.0.0.0 również nie jest adekwatny do typowych scenariuszy, ponieważ umożliwia tworzenie zbyt dużych podsieci. Błędy te często wynikają z nieporozumienia dotyczącego zasad podziału i przypisywania adresów IP. Właściwe podejście do adresowania wymaga zrozumienia hierarchicznych struktur sieci oraz umiejętności właściwego doboru maski podsieci do specyficznych potrzeb lokalnych sieci. Użytkownicy często mylą zakresy adresów z maskami, co prowadzi do błędnych konfiguracji sieciowych, a w konsekwencji do problemów z komunikacją w sieci.

Pytanie 40

Granice domeny kolizyjnej nie są określane przez porty takich urządzeń jak

A. router
B. przełącznik (ang. switch)
C. koncentrator (ang. hub)
D. most (ang. bridge)
Koncentrator (ang. hub) jest urządzeniem sieciowym, które działa na warstwie fizycznej modelu OSI. Jego podstawowym zadaniem jest rozsyłanie sygnałów do wszystkich podłączonych urządzeń w sieci. W przeciwieństwie do routerów, przełączników i mostów, koncentratory nie analizują ani nie kierują ruchu na podstawie adresów MAC czy IP. Oznacza to, że nie mają zdolności do wydzielania domen kolizyjnych, ponieważ każde urządzenie podłączone do koncentratora współdzieli tę samą domenę kolizyjną. W praktyce oznacza to, że jeśli jedno urządzenie wysyła dane, inne muszą czekać na swoją kolej, co może prowadzić do problemów z wydajnością w większych sieciach. Standardy takie jak IEEE 802.3 definiują działanie sieci Ethernet, w której koncentratory mogą być używane, jednak w nowoczesnych architekturach sieciowych coraz częściej zastępują je bardziej efektywne urządzenia, takie jak przełączniki, które segregują ruch i minimalizują kolizje. Dlatego zrozumienie roli koncentratora jest kluczowe dla projektowania i zarządzania współczesnymi sieciami komputerowymi.