Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 10 kwietnia 2025 18:07
  • Data zakończenia: 10 kwietnia 2025 18:22

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Korzystając z podanego urządzenia, możliwe jest przeprowadzenie analizy działania

Ilustracja do pytania
A. pamięci RAM
B. zasilacza ATX
C. modułu DAC karty graficznej
D. interfejsu SATA
Diagnostyka modułów DAC kart graficznych przy użyciu multimetru, jak ten przedstawiony na zdjęciu, nie jest odpowiednia, ponieważ moduł DAC działa w zakresie przetwarzania sygnałów elektronicznych na sygnały analogowe, a zrozumienie jego działania wymaga oscyloskopu do analizy sygnałów i ich charakterystyk czasowych. Multimetr nie mierzy częstotliwości ani jakości sygnałów analogowych z wystarczającą precyzją dla oceny działania DAC. Pamięci RAM są z kolei testowane pod kątem błędów logicznych i stabilności za pomocą specjalistycznych narzędzi diagnostycznych, takich jak MemTest86. Diagnostyka ich działania nie polega na pomiarze napięć i oporności, gdzie multimetr mógłby być użyty, ale na analizie integralności danych, co wymaga sprzętu zdolnego do przeprowadzania testów na poziomie logicznym. Interfejs SATA to złącze dla przesyłu danych między płytą główną a urządzeniami pamięci masowej. Jego diagnostyka polega na testowaniu prędkości transmisji danych i błędów w przesyłanych danych, co wymaga oprogramowania diagnostycznego lub specjalistycznych urządzeń testowych a nie multimetru. Typowe nieporozumienia wynikają z błędnego zrozumienia funkcji multimetru, który ogranicza się do pomiarów napięcia, natężenia oraz rezystancji. Multimetr nie może diagnozować funkcjonalności sprzętowej na poziomie komponentów logicznych ani analizować przepustowości danych, co jest kluczowe dla wymienionych urządzeń lub interfejsów.

Pytanie 2

W sieci komputerowej działającej pod systemem Linux do udostępniania drukarek można zastosować serwer

A. Samba
B. Nginx
C. Firebird
D. Coda
Samba to oprogramowanie, które umożliwia współdzielenie zasobów między systemami operacyjnymi rodziny Unix (w tym Linux) a systemami Windows. Jest to implementacja protokołu SMB (Server Message Block), który pozwala na udostępnianie plików i drukarek w sieciach heterogenicznych. Dzięki Samba, użytkownicy systemów Linux mogą łatwo dzielić się drukarkami z komputerami działającymi w systemie Windows, co jest niezwykle praktyczne w środowiskach biurowych, gdzie różne systemy operacyjne współistnieją. Przykładem zastosowania Samba jest konfiguracja serwera druku, gdzie administratorzy mogą zdalnie zarządzać drukarkami oraz uprawnieniami użytkowników do korzystania z tych zasobów. W kontekście dobrych praktyk, Samba jest często używana w ramach infrastruktury sieciowej, aby zapewnić bezpieczne i efektywne zarządzanie zasobami, wspierając protokoły autoryzacji i szyfrowania. Dodatkowo, wprowadzenie Samba do środowiska IT może przyczynić się do redukcji kosztów operacyjnych, eliminując potrzebę posiadania osobnych serwerów druku dla różnych systemów operacyjnych, co w praktyce prowadzi do uproszczenia zarządzania systemami i zwiększenia efektywności pracy zespołów.

Pytanie 3

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. wysyłania wiadomości na forum dyskusyjne
B. przesyłania wiadomości e-mail
C. transmisji głosu w sieci
D. przeprowadzania rozmów za pomocą interfejsu tekstowego
Wybór odpowiedzi dotyczącej transmisji głosu przez sieć jest błędny, ponieważ IRC nie jest protokołem stosowanym do przesyłania dźwięku. Protokół ten został zaprojektowany specjalnie do komunikacji tekstowej i nie obsługuje funkcji związanych z transmisją audio, które wymagają znacznie bardziej złożonych mechanizmów kodowania i dekodowania sygnału. Rozwiązania takie jak VoIP (Voice over Internet Protocol) są dedykowane do tego celu, a ich działanie opiera się na innych protokołach, takich jak SIP (Session Initiation Protocol). Również idea transmisji listów na grupę dyskusyjną nie znajduje zastosowania w kontekście IRC, który nie działa na zasadzie przesyłania wiadomości e-mail ani nie jest platformą do publikacji artykułów czy postów w stylu forum internetowego. Kwestia przesyłania poczty e-mail, będąca tematyką drugiej niepoprawnej odpowiedzi, dotyczy zupełnie innego protokołu, jakim jest SMTP (Simple Mail Transfer Protocol), który służy do wymiany wiadomości elektronicznych. To różnorodność protokołów i ich specyficzne zastosowania jest kluczowym elementem zrozumienia architektury internetowej. Wybór nieodpowiednich odpowiedzi może wynikać z mylnego założenia, że wszystkie formy komunikacji internetowej są takie same, co prowadzi do zrozumienia różnorodności narzędzi dostępnych w sieci oraz ich konkretnych zastosowań.

Pytanie 4

Użytkownicy należący do grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie operacyjnym Windows Server. Dysponują jedynie uprawnieniami do „Zarządzania dokumentami”. Co należy uczynić, aby wyeliminować opisany problem?

A. Dla grupy Pracownicy należy odebrać uprawnienia „Zarządzanie dokumentami”
B. Dla grupy Administratorzy należy odebrać uprawnienia „Zarządzanie dokumentami”
C. Dla grupy Administratorzy należy odebrać uprawnienia „Drukuj”
D. Dla grupy Pracownicy należy przyznać uprawnienia „Drukuj”
Usunięcie uprawnień „Drukuj” dla grupy Administratorzy nie rozwiąże problemu, ponieważ administratorzy generalnie mają pełne uprawnienia do zarządzania drukarkami, a ich uprawnienia nie są zwykle ograniczane. Przypisanie błędnych uprawnień może prowadzić do zaistnienia sytuacji, w której administracja staje się bardziej skomplikowana, ponieważ administracja wymaga odpowiednich narzędzi i zasobów. Z kolei usunięcie uprawnień „Zarządzanie dokumentami” dla grupy Pracownicy wprowadziłoby dodatkowe ograniczenia, które nie są konieczne do rozwiązania problemu. Pracownicy bez tych uprawnień nie mogliby zarządzać dokumentami, co może hamować ich wydajność. Kolejnym błędnym założeniem jest przekonanie, że usunięcie uprawnień z ról administracyjnych poprawi sytuację; w rzeczywistości, takim działaniem można jedynie pogorszyć zarządzanie dostępem w organizacji. Kluczowe jest zrozumienie, że uprawnienia muszą być precyzyjnie dostosowane do ról i zadań użytkowników w przedsiębiorstwie, co zapewnia efektywność oraz bezpieczeństwo pracy. Efektywna administracja uprawnieniami powinna opierać się na analizie potrzeb użytkowników oraz ich ról w organizacji, co jest zgodne z zasadami zarządzania bezpieczeństwem informacji.

Pytanie 5

Ustawienia wszystkich kont użytkowników na komputerze znajdują się w gałęzi rejestru oznaczonej akronimem

A. HKCC
B. HKU
C. HKCR
D. HKLM
Wybór HKCC, HKLM czy HKCR, mimo że związane z rejestrem Windows, nie dotyczą profili użytkowników. HKCC, to "HKEY_CURRENT_CONFIG" i tam są informacje o bieżącej konfiguracji sprzętowej, więc to nie ma wpływu na indywidualne ustawienia. Rozumienie tej gałęzi jest ważne przy monitorowaniu sprzętu, ale nie znajdziesz tam profili użytkowników. HKLM, czyli "HKEY_LOCAL_MACHINE", to dane o konfiguracji systemu oraz sprzętu, które są wspólne dla wszystkich, więc również nie dotyczy konkretnego konta. Rola HKLM w zarządzaniu systemem jest istotna, ale nie dla personalizacji. Z kolei HKCR, czyli "HKEY_CLASSES_ROOT", przechowuje informacje o typach plików i ich skojarzeniach, co też nie dotyczy użytkowników. Dlaczego tak się dzieje? Myślę, że można tu pomylić kontekst informacji w rejestrze i nie do końca zrozumieć, jak to działa. Dobra znajomość tych gałęzi rejestru jest kluczowa, żeby skutecznie zarządzać systemem Windows.

Pytanie 6

Na ilustracji widać patchpanel - panel krosowy kategorii 5E bez ekranowania, który posiada złącze szczelinowe typu LSA. Jakie narzędzie należy zastosować do wkładania kabli w te złącza?

Ilustracja do pytania
A. narzędzie zaciskowe 8P8C
B. narzędzie uderzeniowe
C. narzędzie zaciskowe BNC
D. narzędzie JackRapid
Narzędzie uderzeniowe jest kluczowym elementem w procesie montażu kabli w złącza szczelinowe typu LSA spotykane w patchpanelach kategorii 5E. Jego główną funkcją jest precyzyjne wciskanie przewodów do szczelin złącza, co zapewnia solidne i trwałe połączenie elektryczne. Narzędzie to jest skonstruowane tak, aby jednocześnie docisnąć przewód i odciąć jego nadmiar, co jest niezwykle istotne dla zachowania porządku i estetyki instalacji. Patchpanele kategorii 5E są często stosowane w infrastrukturze sieciowej, gdzie wymagana jest prędkość transmisji danych do 1 Gbps, zgodna ze standardami TIA/EIA-568. Użycie narzędzia uderzeniowego minimalizuje ryzyko uszkodzenia przewodów dzięki kontrolowanemu naciskowi. Ponadto, dobrym zwyczajem jest stosowanie narzędzi z regulacją siły nacisku, co dodatkowo zwiększa bezpieczeństwo pracy i jakość połączeń. Warto również pamiętać o przestrzeganiu kolorystyki przewodów zgodnej z normami, co ułatwia późniejsze zarządzanie siecią i zapobiega pomyłkom w łączeniach.

Pytanie 7

W firmie konieczne jest regularne wykonywanie kopii zapasowych znacznych ilości danych, które znajdują się na serwerze, osiągających kilka set GB. Jakie urządzenie będzie najbardziej odpowiednie do realizacji tego zadania?

A. Nagrywarkę DVD
B. Streamer
C. Macierz RAID1
D. Nagrywarkę CD
Wykorzystanie macierzy RAID1, nagrywarki DVD czy nagrywarki CD do tworzenia kopii zapasowych dużych zbiorów danych jest często mylnym podejściem w kontekście zarządzania danymi. Macierz RAID1, mimo że oferuje wysoką dostępność danych poprzez lustrzane kopiowanie, nie jest niezawodnym rozwiązaniem do tworzenia kopii zapasowych. W przypadku awarii całego systemu, danych można nie odzyskać, ponieważ RAID1 nie zapewnia ochrony przed utratą danych spowodowaną błędami użytkownika czy złośliwym oprogramowaniem. Z kolei nagrywarki DVD i CD mają ograniczoną pojemność, co czyni je niepraktycznymi dla archiwizacji kilkuset gigabajtów danych, a długoterminowe przechowywanie informacji na tych nośnikach wiąże się z ryzykiem uszkodzeń oraz degradacji materiałów. Często pojawia się błędne przekonanie, że te nośniki są wystarczające, co jest niezgodne z najlepszymi praktykami w dziedzinie zarządzania danymi. Warto również pamiętać, że różnorodne rodzaje danych oraz potrzeba szybkiego dostępu do nich wymagają stosowania bardziej zaawansowanych rozwiązań, które są w stanie efektywnie i bezpiecznie zarządzać dużymi zbiorami. Dlatego kluczowe jest przyjęcie strategii, która uwzględnia zarówno potrzeby operacyjne, jak i długoterminową archiwizację danych.

Pytanie 8

Przerywając działalność na komputerze, możemy szybko wrócić do pracy, wybierając w systemie Windows opcję:

A. wylogowania
B. zamknięcia systemu
C. ponownego uruchomienia
D. stanu wstrzymania
Wybór zamknięcia systemu, ponownego uruchomienia lub wylogowania to podejścia, które nie zapewniają efektywnego i szybkiego powrotu do pracy. Zamknięcie systemu to proces, który wymaga wyłączenia wszystkich działających programów, co wiąże się z utratą niezapisanych danych. To podejście jest zwykle stosowane, gdy użytkownik kończy swoje sesje pracy, a nie podczas przerwy. Ponowne uruchomienie systemu jest również czasochłonne i angażuje więcej zasobów, ponieważ cały system operacyjny i wszystkie zainstalowane aplikacje muszą być załadowane od nowa, co może zająć kilka minut. Często prowadzi to do frustracji użytkowników, którzy chcą szybko wrócić do pracy. Wylogowanie, natomiast, kończy sesję użytkownika, co również wymaga ponownego logowania, a tym samym wydłuża czas potrzebny na kontynuację pracy. Z perspektywy zarządzania czasem i efektywności, wybór stanu wstrzymania jest zdecydowanie preferowany dla użytkowników, którzy chcą zminimalizować przestoje i utrzymać płynność w pracy. Często błędne decyzje wynikają z niepełnego zrozumienia funkcji oferowanych przez system operacyjny oraz ich zastosowania w codziennej pracy. Użytkownicy mogą zakładać, że zamknięcie lub ponowne uruchomienie jest jedynym sposobem na zabezpieczenie pracy, co nie jest prawdą. Dlatego kluczowe jest zrozumienie, jakie opcje są dostępne w systemie i ich odpowiednie zastosowanie w praktyce.

Pytanie 9

Co oznacza standard 100Base-T?

A. standard sieci Ethernet o prędkości 1000Mb/s
B. standard sieci Ethernet o prędkości 1000MB/s
C. standard sieci Ethernet o prędkości 100Mb/s
D. standard sieci Ethernet o prędkości 1GB/s
Standard 100Base-T, nazywany również Fast Ethernet, odnosi się do technologii sieci Ethernet, która umożliwia przesyłanie danych z prędkością 100 megabitów na sekundę (Mb/s). To istotny krok w rozwoju sieci komputerowych, gdyż pozwala na znacznie szybszą transmisję niż wcześniejsze standardy, takie jak 10Base-T, które oferowały jedynie 10 Mb/s. 100Base-T został szeroko wdrożony w latach 90-tych XX wieku i do dziś pozostaje popularnym rozwiązaniem w wielu lokalnych sieciach komputerowych. Przykładem zastosowania tego standardu może być biuro, gdzie komputery są połączone w sieci lokalnej, a dzięki 100Base-T możliwe jest szybkie przesyłanie dużych plików między urządzeniami oraz zapewnienie płynnej pracy aplikacji działających w sieci. Warto również zauważyć, że standard ten jest zgodny z zasadami IEEE 802.3, co zapewnia interoperacyjność między różnymi producentami sprzętu sieciowego, zgodność z dobrą praktyką inżynieryjną oraz możliwość łatwej rozbudowy i modernizacji sieci.

Pytanie 10

W systemie dziesiętnym liczba 110011(2) przedstawia się jako

A. 52
B. 51
C. 50
D. 53
Wybór innych odpowiedzi, takich jak 52, 50 czy 53, może wynikać z typowych błędów myślowych związanych z nieprawidłowym przeliczaniem wartości bitów w systemie binarnym. Na przykład, przy próbie uzyskania 52, użytkownik mógłby błędnie doliczyć dodatkową potęgę 2 lub pomylić się w zliczaniu bitów, co skutkuje dodaniem niepoprawnych wartości. W przypadku 50, możliwe jest zrozumienie, że 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 mogło zostać źle zinterpretowane jako 50, gdyż zapomniano dodać wartości 1 z ostatniego bitu. Odpowiedź 53 również wskazuje na pomyłkę polegającą na dodaniu zbyt dużej wartości do wyniku, co może być wynikiem błędnego zrozumienia potęg liczby 2. Ważne jest, aby przy przeliczaniu systemów liczbowych stosować dokładne metody oraz zrozumieć, jak każda pozycja w liczbie binarnej wpływa na wynik końcowy. Używanie narzędzi lub arkuszy kalkulacyjnych, które wspierają te konwersje, może pomóc w unikaniu takich błędów, a także przyswojenie sobie zasad konwersji poprzez ćwiczenia praktyczne oraz zrozumienie podstawowych zasad arytmetyki binarnej.

Pytanie 11

Jaki typ zabezpieczeń w sieciach WiFi oferuje najwyższy poziom ochrony?

A. NTFS
B. WPA2
C. WPA
D. WEP
WPA2 (Wi-Fi Protected Access 2) to protokół zabezpieczeń, który oferuje znacznie wyższy poziom ochrony niż jego poprzednicy, WEP i WPA. Wprowadza szyfrowanie AES (Advanced Encryption Standard), które jest obecnie uważane za jeden z najbezpieczniejszych algorytmów szyfrowania dostępnych w technologii sieciowej. WEP (Wired Equivalent Privacy) korzysta z algorytmu RC4, który ma liczne słabości i można go łatwo złamać. WPA, będąc przejściowym rozwiązaniem, oferuje poprawę bezpieczeństwa w stosunku do WEP, ale wciąż nie dorównuje WPA2. W praktyce, wiele domowych i biurowych routerów WiFi domyślnie oferuje WPA2 jako standardowy wybór, co czyni go najczęściej stosowanym typem zabezpieczeń. Warto również zwrócić uwagę na fakt, że WPA3, jako nowsza generacja zabezpieczeń, zaczyna zyskiwać na popularności, jednak WPA2 wciąż pozostaje powszechnym i skutecznym rozwiązaniem do zabezpieczania sieci bezprzewodowych.

Pytanie 12

Wskaż poprawną wersję maski podsieci?

A. 255.255.0.128
B. 0.0.0..0
C. 255.255.252.255
D. 255.255.255.255
Maski podsieci odgrywają kluczową rolę w konfiguracji i zarządzaniu sieciami komputerowymi. Odpowiedzi takie jak 0.0.0.0, 255.255.0.128 czy 255.255.252.255 są nieprawidłowe z kilku powodów. Maska 0.0.0.0 jest szczególnie myląca, ponieważ oznacza brak zdefiniowanej sieci, co nie jest akceptowane w standardowych konfiguracjach. W praktyce, taki adres jest używany do określenia domyślnej trasy w niektórych zastosowaniach, jednak nie może pełnić roli maski podsieci. Z kolei 255.255.0.128 jest niepoprawnie skonstruowaną maską, ponieważ nie spełnia zasad dotyczących bitów, które powinny być ustawione na 1 w części identyfikującej sieć, a 0 w części identyfikującej hosty. Ostatnia z odpowiedzi, 255.255.252.255, również jest problematyczna, ponieważ nie jest zgodna z konwencją maskowania, w której bity jedności muszą być ciągłe od lewej do prawej, a nie zmieniać się w trakcie. Typowe błędy myślowe prowadzące do tych błędnych odpowiedzi obejmują mylenie maski podsieci z adresem IP, zrozumienie różnicy między częścią sieci a częścią hostów oraz brak znajomości konwencji dotyczących masek. Dobrze skonstruowana maska podsieci powinna jasno określać, które bity adresu IP identyfikują sieć, a które hosta, co jest podstawowym wymogiem w zarządzaniu sieciami.

Pytanie 13

W celu zrealizowania instalacji sieciowej na stacjach roboczych z systemem operacyjnym Windows, należy na serwerze zainstalować usługi

A. wdrażania systemu Windows
B. pulpitu zdalnego
C. terminalowe
D. plików
Wdrażanie systemu Windows to usługa, która umożliwia instalację systemu operacyjnego Windows na stacjach roboczych w sieci. Aby zrealizować ten proces, serwer musi dysponować odpowiednimi narzędziami, które automatyzują i centralizują zarządzanie instalacjami. Przykładem takiego narzędzia jest Windows Deployment Services (WDS), które pozwala na rozsyłanie obrazów systemów operacyjnych przez sieć. Dzięki WDS możliwe jest zarówno wdrażanie systemu z obrazu, jak i przeprowadzanie instalacji w trybie Preboot Execution Environment (PXE), co znacznie ułatwia proces w dużych środowiskach, gdzie wiele stacji roboczych wymaga identycznej konfiguracji. Umożliwia to również oszczędność czasu oraz redukcję błędów związanych z ręcznym wprowadzaniem danych. Zgodnie z najlepszymi praktykami branżowymi, WDS jest rekomendowane do zarządzania dużymi flotami komputerów, ponieważ zapewnia jednorodność i kontrolę nad wdrażanymi systemami.

Pytanie 14

Jaką usługę należy aktywować w sieci, aby stacja robocza mogła automatycznie uzyskać adres IP?

A. WINS
B. DNS
C. DHCP
D. PROXY
Wybór nieprawidłowych usług związanych z adresowaniem IP może prowadzić do nieporozumień w zakresie zarządzania sieciami. DNS (Domain Name System) jest systemem, który tłumaczy nazwy domenowe na adresy IP, co jest istotne dla lokalizacji zasobów w sieci, ale nie ma na celu przydzielania adresów IP. Użytkownicy często mylą DNS z DHCP, ponieważ obie usługi dotyczą funkcjonowania sieci, jednak pełnią one zupełnie różne role. WINS (Windows Internet Name Service) jest usługą, która działa na podobnej zasadzie do DNS, ale służy do rozwiązywania nazw NetBIOS w sieciach Windows, a nie do przydzielania adresów IP. Korzystanie z WINS w nowoczesnych sieciach jest ograniczone, z racji na spadek popularności NetBIOS oraz rozwoju protokołów IP. Usługa PROXY natomiast, działająca jako pośrednik pomiędzy użytkownikami a zasobami w internecie, nie ma związku z przydzielaniem adresów IP. To częste zamieszanie wynika z braku zrozumienia różnych ról, jakie pełnią te usługi w architekturze sieciowej. Dlatego ważne jest, aby zrozumieć ich specyfikę i przeznaczenie, aby poprawnie konfigurować i zarządzać sieciami komputerowymi.

Pytanie 15

Jakie elementy wchodzą w skład dokumentacji powykonawczej?

A. Analiza biznesowa potrzeb zamawiającego
B. Wstępny kosztorys ofertowy
C. Kalkulacja kosztów na podstawie katalogu nakładów rzeczowych KNR
D. Wyniki testów sieci
Wyniki testów sieci stanowią kluczowy element dokumentacji powykonawczej, ponieważ dostarczają szczegółowych informacji na temat wydajności i funkcjonalności systemu po jego zainstalowaniu. Testy te są niezbędne, aby upewnić się, że wszystkie komponenty sieci działają zgodnie z wymaganiami technicznymi oraz specyfikacjami zamawiającego. Przykładowo, mogą obejmować testy przepustowości, opóźnienia, pakietów błędnych czy również testy obciążeniowe. W branży telekomunikacyjnej oraz IT, zgodnie z najlepszymi praktykami, takich jak ISO/IEC 27001 czy ITIL, dokumentacja powykonawcza powinna zawierać wyniki tych testów, ponieważ stanowią one podstawę do oceny jakości wdrożonego rozwiązania oraz jego zgodności z oczekiwaniami. Ponadto, wyniki testów są niezbędne do późniejszej analizy oraz ewentualnych działań serwisowych, co potwierdza ich istotne znaczenie w procesie zarządzania projektami.

Pytanie 16

Skoro jedna jednostka alokacji to 1024 bajty, to ile klastrów zajmują pliki przedstawione w tabeli na dysku?

A. 4 klastry
B. 5 klastrów
C. 6 klastrów
D. 3 klastry
Wybór nieprawidłowej odpowiedzi może wynikać z niepełnego zrozumienia zasad dotyczących alokacji pamięci na dysku. Często popełnianym błędem jest zliczanie wielkości plików bez uwzględnienia, jak te pliki są właściwie alokowane w jednostkach zwanych klastrami. Na przykład, jeżeli ktoś wybiera 3 klastry, może to sugerować, że zlicza tylko pliki, które w pełni wypełniają klastry, co prowadzi do pominięcia faktu, że niektóre pliki zajmują mniej niż 1024B, a tym samym wykorzystują przestrzeń dyskową w sposób nieefektywny. W przypadku wyboru 4 klastrów, może to wynikać z błędnego założenia, że ostatni plik Domes.exr nie wymaga pełnego klastra, co jest błędne, ponieważ każdy plik musi być przypisany do jednego klastra, nawet jeśli jego rozmiar jest znacznie mniejszy od 1024B. Ostatecznie, wybór 6 klastrów jest również nieprawidłowy, ponieważ przekracza całkowitą liczbę klastrów potrzebnych do przechowywania wszystkich plików. Kluczowe jest zrozumienie, że każdy klaster jest jednostką alokacji pamięci, i nawet jeśli nie jest w pełni wykorzystany, nadal zajmuje miejsce na dysku, co było istotnym elementem w tym pytaniu. Oprócz tego ważne jest, aby pamiętać o praktykach efektywnego zarządzania przestrzenią dyskową, co może wpłynąć na wydajność systemów komputerowych.

Pytanie 17

Program iftop działający w systemie Linux ma na celu

A. ustawianie parametrów interfejsu graficznego
B. kończenie procesu, który zużywa najwięcej zasobów procesora
C. monitorowanie aktywności połączeń sieciowych
D. prezentowanie bieżącej prędkości zapisu w pamięci operacyjnej
Odpowiedzi, które wskazują na konfigurowanie ustawień interfejsu graficznego, wyświetlanie prędkości zapisu do pamięci operacyjnej oraz wyłączanie procesów obciążających procesor, wskazują na fundamentalne nieporozumienia dotyczące funkcji programów w systemie Linux. Najpierw, konfigurowanie ustawień interfejsu graficznego to zadanie dla narzędzi takich jak 'gnome-control-center' lub 'systemsettings', które są ściśle związane z konfiguracją środowiska graficznego, a nie monitorowaniem ruchu sieciowego. Drugim aspektem jest wyświetlanie chwilowej prędkości zapisu do pamięci operacyjnej, co nie ma związku z iftop, ponieważ to zadanie realizowane jest przez narzędzia takie jak 'htop' czy 'vmstat', które skupiają się na monitorowaniu zużycia zasobów systemowych. Wreszcie, wyłączanie procesów zużywających moc obliczeniową jest funkcją zarządzania procesami, którą można zrealizować za pomocą komendy 'kill' lub narzędzi takich jak 'top' czy 'ps', jednak te działania nie są związane z monitorowaniem połączeń sieciowych. Wszystkie te nieporozumienia mogą wynikać z braku zrozumienia możliwości narzędzi dostępnych w systemie Linux oraz ich zastosowania w praktycznych scenariuszach zarządzania systemami. Warto zainwestować czas w naukę i eksperymentowanie z różnymi narzędziami, aby zyskać pełniejszy obraz ich funkcjonalności i zastosowań.

Pytanie 18

Płyta główna z gniazdem G2 będzie kompatybilna z procesorem

A. Intel Core i7
B. Intel Pentium 4 EE
C. AMD Opteron
D. AMD Trinity
Podejmując decyzję o wyborze procesora do płyty głównej z gniazdem G2, ważne jest zrozumienie, że nie wszystkie procesory są ze sobą kompatybilne. W przypadku AMD Trinity oraz AMD Opteron, oba te procesory są zaprojektowane do współpracy z innymi gniazdami, odpowiednio FM1 i Socket G34. Właściwa architektura i standardy gniazd są kluczowe dla zapewnienia prawidłowego działania systemu. Często spotykanym błędem w procesie wyboru procesora jest założenie, że wystarczy tylko dopasować nazwę modelu, a nie uwzględnić specyfikacji gniazda. Ponadto, Intel Pentium 4 EE jest przestarzałym procesorem, który korzysta z gniazda LGA 775, co sprawia, że również nie będzie współpracował z płytą główną G2. Osoby, które nieznajomość standardów gniazd i architektury procesorów mogą prowadzić do nieprawidłowych założeń i, w efekcie, wyboru niewłaściwych komponentów. Aby uniknąć takich błędów, warto przed zakupem dokładnie sprawdzić specyfikacje płyty głównej oraz procesora, korzystając z zasobów internetowych oraz dokumentacji producentów. Rozumienie różnic w gniazdach oraz architekturze procesorów jest kluczowe dla budowy wydajnego i stabilnego komputera.

Pytanie 19

Termin określający zdolność do rozbudowy sieci to

A. nadmiarowością
B. skalowalnością
C. bezawaryjnością
D. kompatybilnością
Nadmiarowość, bezawaryjność oraz kompatybilność to terminy, które często są mylone ze skalowalnością, ale w rzeczywistości odnoszą się do zupełnie innych koncepcji technicznych. Nadmiarowość dotyczy zapewnienia dodatkowych zasobów lub komponentów w systemie, aby mogły one przejąć funkcje w przypadku awarii. Oznacza to, że każdy element jest powielany, co zwiększa niezawodność systemu, ale niekoniecznie jego zdolność do rozbudowy. Bezawaryjność natomiast odnosi się do zdolności systemu do działania bez przerwy, nawet w obliczu awarii części jego składowych. Jest to istotna cecha, ale nie wpływa na fakt, czy system można łatwo rozszerzyć. Kompatybilność z kolei dotyczy zdolności różnych systemów lub aplikacji do współpracy ze sobą, co jest istotne w kontekście integracji, ale nie definiuje możliwości rozbudowy sieci. Często pojawiają się błędne przekonania, że dodawanie nowych elementów do istniejącej infrastruktury jest równoważne z jej skalowalnością, podczas gdy kluczowe jest, aby te nowe elementy mogły być włączane bez zakłócania działania całego systemu. Dlatego zrozumienie różnic między tymi pojęciami jest niezbędne do skutecznego projektowania i zarządzania sieciami.

Pytanie 20

Aby oczyścić zablokowane dysze kartridża drukarki atramentowej, co należy zrobić?

A. przemyć dysze specjalnym preparatem chemicznym
B. oczyścić dysze wykorzystując druciane zmywaki
C. wyczyścić dysze przy pomocy sprężonego powietrza
D. przeczyścić dysze drobnym papierem ściernym
Odpowiedź polegająca na przemyciu dysz specjalnym środkiem chemicznym jest prawidłowa, ponieważ takie środki zostały zaprojektowane z myślą o skutecznym usuwaniu zatorów z dysz kartridży drukarek atramentowych. W procesie użytkowania, atrament może zasychać i tworzyć osady, które blokują przepływ. Chemikalia zawarte w środkach czyszczących są dostosowane do rozpuszczania tego rodzaju zanieczyszczeń, co umożliwia przywrócenie prawidłowej funkcji drukarki. Przykładowo, producent drukarek często zaleca stosowanie dedykowanych roztworów czyszczących, które nie tylko eliminują zatory, ale również chronią dysze przed uszkodzeniami. W praktyce, regularne czyszczenie dysz, zwłaszcza w przypadku długotrwałego braku użycia urządzenia, może znacznie wydłużyć żywotność kartridży i poprawić jakość wydruków. Ponadto, przestrzeganie standardów producenta dotyczących konserwacji sprzętu przyczynia się do efektywności operacyjnej oraz minimalizacji kosztów eksploatacyjnych.

Pytanie 21

Do jakiego typu wtyków przeznaczona jest zaciskarka pokazana na ilustracji?

Ilustracja do pytania
A. SC/PC
B. RJ45
C. E2000
D. BNC
Zaciskarka, którą widzisz na zdjęciu, to naprawdę fajne narzędzie do montażu złącz BNC. Te złącza, znane jako BNC (Bayonet Neill-Concelman), są używane wszędzie, gdzie mamy do czynienia z telekomunikacją i wideo, zwłaszcza w systemach CCTV czy profesjonalnym sprzęcie audio-wideo. Dzięki swojemu bagnetowemu mechanizmowi te złącza montuje się bardzo szybko i pewnie. Zaciskarka jest zaprojektowana, żeby dobrze zacisnąć metalowe elementy złącza na kablu koncentrycznym, co z kolei daje nam trwałe połączenie. Ważne, aby dobrze skalibrować narzędzie, bo inaczej możemy uszkodzić złącze. Podczas montażu złączy BNC musimy też dbać o integralność dielektryka w kablu, bo to wpływa na jakość sygnału. Praca z tym narzędziem wymaga, żeby technik znał standardy dotyczące kabli koncentrycznych i wiedział, jakich narzędzi i procedur używać, jak opisano w normach EIA/TIA. Ta wiedza jest naprawdę kluczowa, żeby instalacje działały prawidłowo i były trwałe.

Pytanie 22

Jakie narzędzie w systemie Windows umożliwia kontrolę prób logowania do systemu?

A. instalacji
B. systemu
C. zabezpieczeń
D. programów
Dziennik zabezpieczeń w systemie Windows to kluczowe narzędzie odpowiedzialne za monitorowanie i rejestrowanie prób logowania oraz innych istotnych zdarzeń związanych z bezpieczeństwem. Odpowiedź "zabezpieczeń" (#3) jest prawidłowa, ponieważ dziennik ten zbiera informacje o wszystkich próbach logowania, zarówno udanych, jak i nieudanych, co jest niezbędne dla administratorów systemów w celu analizy potencjalnych incydentów bezpieczeństwa. Użycie dziennika zabezpieczeń pozwala na śledzenie aktywności użytkowników oraz identyfikację nieautoryzowanych prób dostępu. Przykładowo, administrator może wykorzystać informacje z dziennika zabezpieczeń do audytu działań użytkowników oraz do przeprowadzania analiz ryzyka, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem informacji (np. ISO 27001). Dziennik ten jest również użyteczny w kontekście spełniania wymogów regulacyjnych, takich jak RODO, gdzie monitorowanie dostępu do danych osobowych jest kluczowym elementem zgodności. Regularna analiza dziennika zabezpieczeń jest istotna dla utrzymania wysokiego poziomu bezpieczeństwa w organizacji.

Pytanie 23

W jednostce ALU do rejestru akumulatora wprowadzono liczbę dziesiętną 600. Jak wygląda jej reprezentacja w systemie binarnym?

A. 111011000
B. 111111101
C. 111110100
D. 110110000
Analizując inne odpowiedzi, można zauważyć, że zawierają one błędy w procesie konwersji liczby dziesiętnej na system binarny. Przykładowo, odpowiedź 110110000 wskazuje na nieprawidłowe obliczenia, które mogą wynikać z pomylenia reszt przy dzieleniu lub błędnego odczytu wartości. W przypadku wyboru 111011000, również następuje pomyłka w podliczaniu wartości, co może być rezultatem błędnego zrozumienia zasady konwersji, gdzie zamiast prawidłowego przekształcenia liczby, dochodzi do zamiany wartości binarnych, które nie odpowiadają rzeczywistej wartości dziesiętnej. Natomiast odpowiedź 111111101 jest na tyle bliska, że może prowadzić do mylnego wrażenia, że jest poprawna, jednak w rzeczywistości jest to wynik błędnego dodawania reszt, które nie pokrywają się z dokładnym procesem konwersji. Wiele z tych błędów może być wynikiem nieprawidłowego zrozumienia podstawowych zasad działania systemów liczbowych oraz ich konwersji. Kluczowe jest, aby podczas nauki konwersji z jednego systemu na drugi zwracać uwagę na każdy krok dzielenia i poprawne zbieranie reszt w odpowiedniej kolejności. Często zdarza się, że studenci koncentrują się na błędach w obliczeniach, które są bardziej związane z nieodpowiednim stosowaniem zasad konwersji niż z samymi umiejętnościami matematycznymi. Aby uniknąć tych pułapek, warto ćwiczyć konwersję liczb na różnych przykładach, co pozwoli na lepsze zrozumienie i przyswojenie mechanizmów rządzących tym procesem.

Pytanie 24

Na schemacie pokazano sieć LAN wykorzystującą okablowanie kategorii 6. Stacja robocza C nie może nawiązać połączenia z siecią. Jaki problem warstwy fizycznej może być przyczyną braku komunikacji?

Ilustracja do pytania
A. Nieodpowiedni przewód
B. Niewłaściwy typ switcha
C. Zła długość kabla
D. Błędny adres IP
Problemy z siecią często wynikają z nieprawidłowej konfiguracji lub zastosowania elementów sieciowych. Zły typ przełącznika to generalnie problem warstwy drugiej modelu OSI, podczas gdy pytanie dotyczy problemów warstwy fizycznej. Przełącznik musi oczywiście obsługiwać odpowiednią przepustowość i standardy sieciowe, ale jego typ nie wpływa bezpośrednio na fizyczną możliwość komunikacji. Nieodpowiedni kabel, na przykład użycie kabla kategorii niższej niż 5e dla gigabitowego Ethernetu, mógłby być problemem, ale w opisie użyto kabla kat. 6, który obsługuje transmisje do 10 Gbps na krótszych dystansach. Problem nieodpowiedniego kabla odnosi się raczej do niewłaściwego wyboru rodzaju kabla, a nie długości. Nieprawidłowy adres IP to kwestia konfiguracji warstwy trzeciej i nie wpływa na fizyczną zdolność przesyłania sygnału, choć uniemożliwia odpowiednią komunikację na poziomie sieciowym. Błędy w adresacji IP najczęściej prowadzą do sytuacji, w której urządzenia nie mogą się komunikować mimo poprawnej fizycznej instalacji sieci. Takie problemy są zazwyczaj rozwiązywane poprzez sprawdzenie ustawień adresacji i maski podsieci. Każda z tych odpowiedzi ignoruje fizyczne aspekty działania sieci, które są kluczowe w tym pytaniu i podkreślają znaczenie odpowiedniego planowania infrastruktury sieciowej.

Pytanie 25

Aby zminimalizować wpływ zakłóceń elektromagnetycznych na przesyłany sygnał w tworzonej sieci komputerowej, jakie rozwiązanie należy zastosować?

A. światłowód
B. gruby przewód koncentryczny
C. ekranowaną skrętkę
D. cienki przewód koncentryczny
Jasne, że światłowód to naprawdę rewelacyjny wybór, jeśli chodzi o zminimalizowanie wpływu zakłóceń elektromagnetycznych. W porównaniu do zwykłych miedzianych kabli, światłowody przesyłają dane jako impulsy świetlne. I przez to nie są narażone na różne zakłócenia. To naprawdę ważne w miejscach, gdzie mamy do czynienia z dużą ilością urządzeń elektrycznych czy w przemyśle. Na przykład, telekomunikacja na tym bazuje, bo muszą mieć super stabilny sygnał i dużą przepustowość. Słyszałem o standardach jak IEEE 802.3 czy ITU-T G.652, które mówią, że światłowody są naprawdę niezawodne na dłuższych dystansach. No i są lżejsze i cieńsze, co jeszcze bardziej ułatwia ich wykorzystanie w nowoczesnych sieciach. Tak czy inaczej, światłowody to zdecydowanie strzał w dziesiątkę, jeśli chodzi o jakość usług telekomunikacyjnych.

Pytanie 26

Która z anten cechuje się najwyższym zyskiem mocy i pozwala na nawiązanie łączności na dużą odległość?

A. Paraboliczna
B. Mikropasmowa
C. Dipolowa
D. Izotropowa
Dipolowe anteny, mimo że są powszechnie stosowane w wielu aplikacjach, nie osiągają tak wysokiego zysku energetycznego jak anteny paraboliczne. Ich konstrukcja jest prosta, a zysk energetyczny wynosi zazwyczaj od 2 dBi do 8 dBi, co ogranicza ich zastosowanie w komunikacji na dłuższe odległości. Izotropowe anteny, będące teoretycznym modelem anteny, rozprzestrzeniają sygnał równomiernie we wszystkich kierunkach, co sprawia, że ich efektywność w kontekście kierunkowego przesyłania sygnału jest bardzo niska. Mikropasmowe anteny, chociaż oferują pewne zalety w zakresie miniaturyzacji i integracji z nowoczesnymi technologiami, również nie są w stanie dorównać zyskom energetycznym anten parabolicznych. Błędem myślowym jest przyjęcie, że jakakolwiek antena o prostszej konstrukcji mogłaby konkurować z bardziej zaawansowanymi technologiami antenarnymi. W kontekście standardów, anteny paraboliczne są zgodne z wymaganiami wielu norm telekomunikacyjnych, co czyni je bardziej wiarygodnym wyborem dla zastosowań wymagających stabilnego i dalekiego przesyłu sygnału. Dlatego też, w przypadku potrzeby zestawienia połączeń na dużą odległość, anteny paraboliczne stanowią zdecydowanie najlepszy wybór.

Pytanie 27

Kontrola pasma (ang. bandwidth control) w switchu to funkcjonalność

A. umożliwiająca zdalne połączenie z urządzeniem
B. pozwalająca na równoczesne przesyłanie danych z danego portu do innego portu
C. pozwalająca na ograniczenie przepustowości na określonym porcie
D. umożliwiająca jednoczesne łączenie switchy przy użyciu wielu interfejsów
Zarządzanie pasmem, czyli tak zwane bandwidth control, to takie sprytne techniki stosowane w przełącznikach sieciowych. Dzięki nim można kontrolować, a nawet ograniczać przepustowość na różnych portach. No i to, że podałeś odpowiedź mówiącą o możliwości ograniczenia na wybranym porcie, to naprawdę świetny wybór. W praktyce to działa tak, że administratorzy sieci mogą ustalać limity dla różnych typów ruchu. To jest ważne, zwłaszcza tam, gdzie trzeba mądrze zarządzać zasobami albo gdzie różne aplikacje potrzebują różnej jakości usług (QoS). Weźmy na przykład port, do którego podłączone są urządzenia IoT – ten często wymaga mniej przepustowości niż port, który obsługuje ruch wideo. Fajnie jest wdrażać zasady zarządzania pasmem, żeby krytyczne aplikacje nie miały problemów przez duży ruch z innych urządzeń. Zgodnie z tym, co mówi standard IEEE 802.1Q, takie zarządzanie może pomóc w zwiększeniu efektywności sieci, co z kolei przekłada się na lepsze doświadczenia użytkowników i ogólną wydajność całej sieci.

Pytanie 28

Jaki protokół stosują komputery, aby informować router o zamiarze dołączenia do lub opuszczenia konkretnej grupy multicastowej?

A. TCP/IP
B. UDP
C. DHCP
D. IGMP
IGMP (Internet Group Management Protocol) jest protokołem, który umożliwia komputerom informowanie routerów o chęci dołączenia do lub opuszczenia określonej grupy rozgłoszeniowej. Protokół ten odgrywa kluczową rolę w zarządzaniu grupami multicastowymi, co jest istotne dla aplikacji wymagających efektywnego przesyłania danych do wielu odbiorców jednocześnie, takich jak transmisje wideo na żywo czy telekonferencje. Dzięki IGMP, router może optymalnie zarządzać ruchem multicastowym, przesyłając dane tylko do tych odbiorców, którzy wyrazili zainteresowanie danym strumieniem. Zastosowanie IGMP jest szczególnie widoczne w sieciach lokalnych oraz w środowiskach, w których wykorzystuje się usługi multicastowe, co pozwala na oszczędność pasma oraz zasobów sieciowych. W praktyce, IGMP pozwala na dynamiczne zarządzanie członkostwem w grupach, co jest niezbędne w zmieniających się warunkach sieciowych. Jest to zgodne z dobrą praktyką w projektowaniu sieci, gdzie wydajność i efektywność są kluczowymi czynnikami.

Pytanie 29

W systemie Linux dane dotyczące okresu ważności hasła są przechowywane w pliku

A. passwd
B. bash
C. grub
D. shadow
Odpowiedź 'shadow' jest poprawna, ponieważ w systemie Linux informacje o okresie ważności hasła przechowywane są w pliku /etc/shadow. Plik ten zawiera dane dotyczące użytkowników, w tym ich hasła w postaci zaszyfrowanej oraz różne atrybuty związane z bezpieczeństwem, jak data ostatniej zmiany hasła, minimalny i maksymalny czas ważności, a także czas ostrzeżenia przed wygaśnięciem hasła. Dzięki odpowiedniej konfiguracji systemu, administratorzy mogą dostosować politykę haseł, co jest kluczowe dla utrzymania bezpieczeństwa systemu. Przykładowo, administrator może ustawić minimalny czas, przez jaki użytkownik musi korzystać z aktualnego hasła, co zapobiega częstym zmianom i słabszym hasłom. Zgodnie z zasadami najlepszych praktyk w zakresie bezpieczeństwa, regularne aktualizowanie haseł oraz stosowanie złożonych haseł jest niezbędne do ochrony systemu przed nieautoryzowanym dostępem. W praktyce, wykorzystanie pliku shadow w połączeniu z narzędziami takimi jak chage pozwala na efektywne zarządzanie polityką haseł.

Pytanie 30

Gdy chce się, aby jedynie wybrane urządzenia mogły uzyskiwać dostęp do sieci WiFi, należy w punkcie dostępowym

A. skonfigurować filtrowanie adresów MAC
B. zmienić kod dostępu
C. zmienić częstotliwość radiową
D. zmienić typ szyfrowania z WEP na WPA
Zmiana szyfrowania z WEP na WPA to na pewno krok naprzód, ale sama w sobie nie załatwia sprawy, jeśli chodzi o ograniczenie dostępu do naszej sieci WiFi. WEP to już przeszłość, a WPA (i nowocześniejsza wersja WPA2) daje znacznie lepsze zabezpieczenia. Choć WPA poprawia bezpieczeństwo danych w sieci, to nie sprawia, że możemy kontrolować, które urządzenia się z nią łączą. Zmiana hasła też nie wystarczy, bo to nie blokuje dostępu dla tych nieautoryzowanych urządzeń, które mogą zdobyć to hasło. Jeśli przypadkiem przekażemy hasło osobom, które nie powinny go mieć, to możemy narazić się na poważne problemy z bezpieczeństwem. A zmiana kanału radiowego? To tylko wpływa na jakość sygnału i zakłócenia. Ludzie często myślą, że wystarczy tylko hasło zmienić, ignorując fakt, że są inne, lepsze sposoby, jak na przykład filtrowanie adresów MAC, które dają większą kontrolę nad tym, kto ma dostęp. Dlatego ważne jest, żeby zrozumieć, że samo szyfrowanie i zmiana hasła to za mało, by zapewnić bezpieczeństwo sieci WiFi – trzeba podejść do tematu kompleksowo i stosować różnorodne metody zabezpieczeń.

Pytanie 31

Jaką ochronę zapewnia program antyspyware?

A. programom antywirusowym
B. programom szpiegującym
C. programom typu robak
D. atakom typu DoS i DDoS (Denial of Service)
Wiele osób myli programy antyspyware z innymi rodzajami zabezpieczeń, co prowadzi do nieporozumień w kontekście ich funkcji. Programy typu robak to złośliwe oprogramowanie, które samodzielnie się replikuje i rozprzestrzenia, niekoniecznie ingerując w prywatność użytkowników. Choć programy te mogą być niebezpieczne, ich działanie jest różne od programów szpiegujących, które są zaprojektowane, aby gromadzić dane użytkowników. Ponadto, programy antywirusowe są ukierunkowane na wykrywanie i usuwanie złośliwego oprogramowania, w tym wirusów, robaków i trojanów, ale nie są tożsame z funkcjonalnością programów antyspyware, które koncentrują się na wykrywaniu narzędzi do szpiegowania. Z kolei ataki typu DoS i DDoS dotyczą obciążania serwerów w celu uniemożliwienia użytkownikom dostępu do usług, co jest zupełnie innym rodzajem zagrożenia, niewspółmiernym do działania programów szpiegujących. Dlatego ważne jest, aby zrozumieć, że różne rodzaje oprogramowania ochronnego mają różne cele i zastosowania, co jest kluczowe dla skutecznej ochrony przed zagrożeniami w sieci. Zrozumienie tej różnorodności pozwala na bardziej świadome podejmowanie decyzji dotyczących zabezpieczeń komputerowych.

Pytanie 32

Jakiego protokołu używa się do ściągania wiadomości e-mail z serwera pocztowego na komputer użytkownika?

A. FTP
B. HTTP
C. SMTP
D. POP3
Wybór innych protokołów, takich jak HTTP, FTP czy SMTP, do pobierania wiadomości e-mail, opiera się na niepełnym zrozumieniu ich funkcji i zastosowań. Protokół HTTP (Hypertext Transfer Protocol) jest głównie używany do przesyłania stron internetowych oraz danych w sieci. Jego struktura i mechanizmy nie są dostosowane do obsługi wiadomości e-mail. Z kolei FTP (File Transfer Protocol) służy do transferu plików pomiędzy komputerami w sieci, ale nie zajmuje się bezpośrednio obsługą poczty elektronicznej; nie jest to odpowiedni wybór do pobierania wiadomości e-mail. Protokół SMTP (Simple Mail Transfer Protocol) jest z kolei używany do wysyłania wiadomości e-mail, a nie ich odbierania. SMTP działa na zasadzie przesyłania wiadomości z klienta do serwera oraz pomiędzy serwerami pocztowymi, co czyni go kluczowym w procesie wysyłania e-maili, ale nie w ich odbieraniu. Typowym błędem w myśleniu o tych protokołach jest mylenie ich ról w ekosystemie komunikacji e-mailowej. Użytkownicy często nie zdają sobie sprawy, że każdy z tych protokołów ma swoje specyficzne zastosowanie i że do odbierania wiadomości e-mail konieczne jest użycie odpowiednich standardów, takich jak POP3 lub IMAP. Wiedza na temat funkcji poszczególnych protokołów jest kluczowa dla prawidłowej konfiguracji i użytkowania systemów pocztowych.

Pytanie 33

Jakie medium transmisyjne nosi nazwę 100BaseTX i jaka jest maksymalna prędkość danych, która może być w nim osiągnięta?

A. Światłowód jednomodowy o prędkości transmisji do 1000 Mb/s
B. Kabel UTP kategorii 5 o prędkości transmisji do 100 Mb/s
C. Światłowód wielomodowy o prędkości transmisji do 100 Mb/s
D. Kabel UTP kategorii 5e o prędkości transmisji do 1000 Mb/s
Kabel UTP kategorii 5, znany jako 100BaseTX, jest standardem określającym medium transmisyjne dla sieci Ethernet. Jego maksymalna prędkość transmisji sięga 100 Mb/s, co czyni go odpowiednim rozwiązaniem dla większości zastosowań biurowych i domowych. W standardzie tym stosuje się cztery pary skręconych przewodów, co zapewnia stabilność sygnału i minimalizuje zakłócenia elektromagnetyczne. Przykładem wykorzystania tego standardu jest budowanie lokalnych sieci komputerowych (LAN), gdzie 100BaseTX umożliwia efektywną komunikację między komputerami, routerami i innymi urządzeniami. Warto również zauważyć, że kategoria 5 została zastąpiona przez nowsze standardy, takie jak kategoria 5e, jednak 100BaseTX pozostaje w użyciu w wielu starszych instalacjach. Wiedza na temat tego standardu jest kluczowa dla projektantów sieci, którzy muszą rozważyć nie tylko aktualne potrzeby, ale i przyszłe rozszerzenia infrastruktury sieciowej.

Pytanie 34

Który adres IP jest zaliczany do klasy B?

A. 198.15.10.112
B. 100.10.10.2
C. 96.15.2.4
D. 134.192.16.1
Adres IP 134.192.16.1 należy do klasy B, co jest wyznaczane przez pierwszą oktetową wartość tego adresu. Klasa B obejmuje adresy IP od 128.0.0.0 do 191.255.255.255. W tym przypadku, pierwszy oktet wynosi 134, co mieści się w tym zakresie. Klasa B jest często wykorzystywana w dużych organizacjach, które potrzebują znacznej liczby adresów IP, ponieważ pozwala na przypisanie od 16,382 do 65,534 adresów hostów w danej sieci. Przykładowo, w przypadku dużych instytucji edukacyjnych lub korporacji, klasa B może być użyta do podziału różnych działów na mniejsze podsieci, co ułatwia zarządzanie i zwiększa bezpieczeństwo. Oprócz tego, standardy dotyczące adresacji IP, takie jak RFC 791, definiują zasady dotyczące klasyfikacji adresów IP w kontekście routingu i zarządzania sieciami, co jest kluczowe dla projektowania infrastruktury sieciowej.

Pytanie 35

Adresy IPv6 są reprezentowane jako liczby

A. 128 bitowe, wyrażane w postaci ciągów szesnastkowych
B. 256 bitowe, wyrażane w postaci ciągów szesnastkowych
C. 32 bitowe, wyrażane w postaci ciągów binarnych
D. 64 bitowe, wyrażane w postaci ciągów binarnych
Zrozumienie struktury adresów IPv6 jest kluczowe dla prawidłowego ich wykorzystania w nowoczesnych sieciach. Adresy IPv6 nie są 32-bitowe, jak sugeruje jedna z opcji odpowiedzi. Takie podejście jest typowe dla adresowania IPv4, które ogranicza się do około 4 miliardów unikalnych adresów. Z kolei 256-bitowe adresy byłyby niezwykle rozbudowane i praktycznie niepotrzebne, biorąc pod uwagę, że liczba adresów IPv6 wynosi 2^128, co przekłada się na ilość rzędu 340 undecylionów. Taki nadmiar adresów nie jest potrzebny w obecnych zastosowaniach. Inna błędna koncepcja dotyczy podawania adresów w postaci napisów binarnych. Chociaż technicznie możliwe jest przedstawienie adresów IPv6 w formie binarnej, byłoby to niewygodne i niepraktyczne dla ludzi, dlatego przyjęto konwencję szesnastkową. Format szesnastkowy jest znacznie bardziej kompaktowy i łatwiejszy do zrozumienia i zapamiętania. Z tego powodu, aby uniknąć zamieszania, ważne jest, aby przyzwyczaić się do odpowiednich formatów i standardów, takich jak RFC 5952, który promuje sposób zapisywania adresów IPv6. Zrozumienie tych różnic jest kluczowe dla prawidłowego zarządzania sieciami oraz ich bezpieczeństwem, co jest podstawowym wymaganiem w projektach IT.

Pytanie 36

W dokumentacji płyty głównej znajduje się informacja "Wsparcie dla S/PDIF Out". Co to oznacza w kontekście tej płyty głównej?

A. cyfrowe złącze sygnału audio
B. analogowe złącze sygnału wyjścia wideo
C. analogowe złącze sygnału wejścia wideo
D. cyfrowe złącze sygnału wideo
Wybór opcji dotyczących analogowych złączy sygnałów video jest niepoprawny, ponieważ S/PDIF odnosi się wyłącznie do cyfrowego sygnału audio, a nie video. Zrozumienie różnicy między sygnałem analogowym a cyfrowym jest kluczowe w kontekście nowoczesnych systemów audio-wideo. Sygnały analogowe, w tym analogowe złącza sygnału wyjścia video, są podatne na różne zakłócenia, co może prowadzić do degradacji jakości obrazu i dźwięku. Z kolei cyfrowe złącza, takie jak S/PDIF, zapewniają lepszą jakość sygnału, ponieważ przesyłają dane w formie cyfrowej, co eliminuje błędy wynikające z zakłóceń elektromagnetycznych. Odpowiedzi dotyczące analogowych sygnałów wyjścia video mogą wynikać z mylenia terminów związanych z audio i video; jest to powszechny błąd wśród osób, które nie są dobrze zaznajomione z technologią audio-wideo. Aby poprawnie podłączyć źródło dźwięku do odpowiednich urządzeń, istotne jest, aby znać różne typy złączy i ich zastosowanie. W praktyce, wybór odpowiedniego złącza powinien opierać się na specyfikacji urządzeń oraz wymaganiach dotyczących jakości dźwięku i obrazu.

Pytanie 37

Strzałka na diagramie ilustrującym schemat systemu sieciowego według normy PN-EN 50173 wskazuje na rodzaj okablowania

Ilustracja do pytania
A. szkieletowe zewnętrzne
B. poziome
C. pionowe
D. kampusowe
Okablowanie szkieletowe zewnętrzne odnosi się do infrastruktury zapewniającej połączenia między budynkami w ramach kampusu. Jest to okablowanie, które musi być odporne na warunki atmosferyczne i spełniać wymogi dotyczące bezpieczeństwa oraz ochrony środowiska. Wybór tego terminu jako odpowiedzi na pytanie dotyczące schematu wskazującego na połączenia wewnątrz budynku jest błędnym zrozumieniem kontekstu. Okablowanie kampusowe natomiast dotyczy rozwiązań łączących różne budynki w kompleksie i obejmuje zarówno okablowanie pionowe, jak i poziome, ale w szerszym zakresie geograficznym. Poziome okablowanie odnosi się do połączeń w obrębie tego samego piętra budynku, łącząc punkty dystrybucyjne z gniazdami telekomunikacyjnymi. Jest to kluczowe w zapewnieniu komunikacji w ramach danego piętra, jednak nie dotyczy połączeń między piętrami, co jest główną funkcją okablowania pionowego. Częstym błędem jest mylenie okablowania pionowego z poziomym, ponieważ oba dotyczą sieci strukturalnych, ale ich zastosowanie i funkcje są definitywnie różne. Właściwe rozróżnienie tych pojęć jest kluczowe dla poprawnego projektowania i zarządzania infrastrukturą sieciową w budynkach zgodnie z obowiązującymi standardami.

Pytanie 38

Ustawienia przedstawione na ilustracji odnoszą się do

Ilustracja do pytania
A. Drukarki
B. Skanera
C. Karty sieciowej
D. Modemu
Ustawienia przedstawione na rysunku dotyczą modemu, co można zrozumieć poprzez analizę opcji związanych z portem COM oraz użyciem buforów FIFO. Modemy często korzystają z portów szeregowych COM do komunikacji z komputerem. Standard UART 16550 jest używany w komunikacji szeregowej i pozwala na wykorzystanie buforów FIFO, co zwiększa efektywność transmisji danych. Bufory FIFO umożliwiają gromadzenie danych w kolejce, co minimalizuje przerwy i zwiększa płynność transmisji. Dzięki temu modem może obsługiwać dane w bardziej zorganizowany sposób, co jest kluczowe dla stabilności połączenia. Użycie buforów FIFO oznacza większą odporność na zakłócenia i mniejsze ryzyko utraty danych. W kontekście praktycznym, umiejętność konfiguracji takich ustawień jest ważna dla zapewnienia optymalnej wydajności i niezawodności komunikacji modemowej. Dobre praktyki zakładają dobór odpowiednich wartości buforów w zależności od specyfiki połączenia i wymagań sieciowych, co jest kluczowe dla profesjonalnej konfiguracji urządzeń komunikacyjnych.

Pytanie 39

W standardzie Ethernet 100Base-TX do przesyłania danych używane są żyły kabla UTP przypisane do pinów

A. 1,2,3,6
B. 1,2,3,4
C. 4,5,6,7
D. 1,2,5,6
Wybór odpowiedzi, która nie obejmuje pinów 1, 2, 3 i 6, jest błędny z kilku powodów. Po pierwsze, w kablu UTP wykorzystywanym w standardzie 100Base-TX, tylko te konkretne piny są przypisane do przesyłania i odbierania danych. Piny 4 i 5, które pojawiają się w niektórych odpowiedziach, są przeznaczone do innych zastosowań, takich jak pomocnicze zasilanie w standardzie PoE (Power over Ethernet) lub nie są używane w 100Base-TX, co prowadzi do nieporozumień. W kontekście sieci Ethernet, ważne jest posiadanie dokładnej wiedzy na temat tego, jak są skonstruowane różne standardy i jakie mają zastosowania. Wybór niewłaściwych pinów może skutkować nieprawidłową komunikacją i obniżoną wydajnością sieci. Ponadto, stosowanie błędnych żył może prowadzić do zakłóceń sygnału, co w praktyce przekłada się na problemy z transmisją danych, takie jak opóźnienia, utrata pakietów czy całkowita utrata połączenia. Wiedza na temat standardów Ethernet, takich jak 100Base-TX, jest kluczowa dla każdego profesjonalisty zajmującego się ustawianiem lub zarządzaniem sieciami komputerowymi. Prawidłowe podłączenia żył w kablu Ethernet wpływają nie tylko na jego funkcjonalność, ale również na stabilność i jakość całego systemu sieciowego.

Pytanie 40

Switch jako kluczowy komponent występuje w sieci o strukturze

A. pierścienia
B. pełnej siatki
C. gwiazdy
D. magistrali
Wybór odpowiedzi dotyczącej topologii pełnej siatki, pierścienia czy magistrali do opisania roli switcha w sieci nie uwzględnia fundamentalnych różnic między tymi strukturami a topologią gwiazdy. W topologii pełnej siatki, każde urządzenie jest połączone z każdym innym, co prowadzi do nadmiarowości połączeń, ale również do wyższych kosztów i bardziej skomplikowanego zarządzania. Ta struktura nie wymaga centralnego urządzenia, jak switch, co sprawia, że nie jest idealna dla typowych zastosowań biurowych. Topologia pierścienia natomiast, polega na połączeniu urządzeń w formie zamkniętego obiegu, gdzie każde urządzenie przekazuje dane dalej do następnego. To ogranicza elastyczność i powoduje, że awaria jednego urządzenia może sparaliżować całą sieć. W topologii magistrali wszystkie urządzenia są podłączone do jednego wspólnego przewodu, co z kolei naraża sieć na kolizje i utrudnia diagnostykę. W każdej z tych struktur brakuje kluczowych zalet, takich jak łatwość w zarządzaniu ruchem danych i odporność na awarie, które oferuje topologia gwiazdy. Zrozumienie tych różnic jest istotne dla właściwego projektowania sieci, co może mieć wpływ na wydajność i niezawodność operacyjną systemów informatycznych.