Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 31 maja 2025 13:03
  • Data zakończenia: 31 maja 2025 13:37

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas wymiany uszkodzonego wałka sprzęgłowego stwierdzono luz osiowy jego łożyska wynoszący 1,175 mm. Podkładka regulacyjna, którą należy dobrać na podstawie danych z tabeli, będzie miała grubość

Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
0,750 - 0,7740,7251,150 - 1,1741,125
0,775 - 0,7990,7501,175 - 1,1991,150
0,800 - 0,8240,7751,200 - 1,2241,175
0,825 - 0,8490,8001,225 - 1,2491,200
0,850 - 0,8740,8251,250 - 1,2741,225
0,875 - 0,8990,8501,275 - 1,2991,250
0,900 - 0,9240,8751,300 - 1,3241,275
0,925 - 0,9490,9001,325 - 1,3491,300
0,950 - 0,9740,9251,350 - 1,3741,325
0,975 - 0,9990,9501,375 - 1,3991,350
1,000 - 1,0240,9751,400 - 1,4241,375
1,025 - 1,0491,0001,425 - 1,4491,400
1,050 - 1,0741,0251,450 - 1,4741,425
1,075 - 1,0991,0501,475 - 1,4991,450
1,100 - 1,1241,0751,500 - 1,5241,475
1,125 - 1,1491,1001,525 - 1,5491,500

A. 1,150 mm
B. 1,175 mm
C. 1,775-1,799 mm
D. 1,200-1,224 mm
Odpowiedź 1,150 mm jest prawidłowa, ponieważ zgodnie z danymi z tabeli, luz osiowy łożyska wynoszący 1,175 mm wskazuje na potrzebę użycia podkładki regulacyjnej o grubości 1,150 mm. W praktyce, dobór odpowiedniej grubości podkładki jest kluczowy dla zapewnienia właściwego działania mechanizmu. Niewłaściwie dobrana podkładka może prowadzić do nadmiernych luzów lub wręcz zablokowania ruchu, co może powodować uszkodzenie wałka lub łożyska. W przemyśle stosuje się różne standardy, aby określić odpowiednie grubości podkładek w zależności od wymagań konstrukcyjnych. Użycie podkładki o grubości 1,150 mm w tym przypadku jest zgodne z najlepszymi praktykami, które sugerują, aby zawsze dobierać elementy zgodnie z rzeczywistymi wartościami luzów, aby zapewnić długotrwałą i efektywną pracę maszyn.

Pytanie 2

Aby ustalić stopień zużycia pierścieni tłokowych, tłoka, cylindra oraz gniazd zaworowych, nie jest konieczne przeprowadzanie pomiaru

A. ciśnienia smarowania
B. podciśnienia w układzie dolotowym
C. szczelności cylindrów
D. ciśnienia sprężania
Pomiar podciśnienia w układzie dolotowym, szczelności cylindrów oraz ciśnienia sprężania są istotnymi elementami diagnozowania stanu silnika, jednak nie są one wystarczające do pełnej oceny zużycia pierścieni tłokowych, tłoka, cylindra ani gniazd zaworowych. Podciśnienie w układzie dolotowym może dostarczać informacji na temat szczelności układu dolotowego i stanu uszczelek, ale nie odnosi się bezpośrednio do zużycia komponentów silnika. Nieprawidłowe wnioski mogą wynikać z mylenia objawów z ich przyczynami, co prowadzi do niepełnej analizy stanu technicznego silnika. Na przykład, niskie ciśnienie sprężania może sugerować zużycie pierścieni tłokowych lub uszkodzenie uszczelek zaworowych, ale nie jest to wystarczające do określenia ich rzeczywistego stanu. Często diagnostyka silnika wymaga złożonego podejścia, w którym wszystkie te parametry są analizowane w kontekście ich wzajemnych interakcji, by uzyskać pełny obraz stanu jednostki napędowej. Zrozumienie tych zależności jest kluczowe w pracy mechanika i przyczynia się do skutecznej diagnostyki oraz późniejszych działań naprawczych.

Pytanie 3

Jakie ciśnienie powinno panować w zbiorniku paliwa wysokiego ciśnienia w silniku wyposażonym w system zasilania Common Rail trzeciej generacji?

A. 1,8 MPa
B. 180 MPa
C. 18 MPa
D. 1800 MPa
Wybór ciśnienia 1,8 MPa jest znacznie poniżej wymaganych parametrów dla silników z układem zasilania Common Rail trzeciej generacji. Takie niskie ciśnienie mogłoby prowadzić do niewłaściwego wtrysku paliwa, co w konsekwencji skutkowałoby nieefektywnym spalaniem oraz zwiększonym zużyciem paliwa. W przypadku odpowiedzi 1800 MPa, wartość ta jest wręcz nierealna, ponieważ przekracza granice ciśnienia, które mogą być osiągnięte w praktycznych zastosowaniach w silnikach. Taki poziom ciśnienia mógłby prowadzić do uszkodzenia elementów układu paliwowego, co jest niezgodne z zasadami konstrukcji silników. Wybór 18 MPa również nie spełnia norm, jak i nie zapewnia odpowiedniej atomizacji paliwa, co jest kluczowe dla efektywności spalania. Należy pamiętać, że zmniejszenie ciśnienia paliwa może prowadzić do problemów z pracą silnika, takich jak nierównomierna praca, zwiększone emisje oraz spadek mocy. W silnikach nowoczesnych, spełniających rygorystyczne normy emisji, niezawodność układu paliwowego oparta jest na precyzyjnie określonych wartościach ciśnienia, które muszą być ściśle monitorowane i zarządzane. Dlatego kluczowe jest posługiwanie się odpowiednimi danymi technicznymi oraz standardami branżowymi, aby zapewnić prawidłową pracę silnika.

Pytanie 4

Głównym celem smaru używanego w piastach kół tylnych jest przede wszystkim

A. odprowadzanie nadmiaru ciepła
B. utrzymanie w dobrym stanie elementów piasty
C. zmniejszenie współczynnika tarcia
D. uzupełnienie wolnych przestrzeni
Smar w piastach kół tylnych odgrywa kluczową rolę w zmniejszaniu współczynnika tarcia, co jest niezwykle istotne dla zapewnienia płynności ruchu oraz wydajności układu. Gdy elementy mechaniczne poruszają się względem siebie, generują tarcie, które może prowadzić do zużycia komponentów oraz obniżenia efektywności energetycznej. Zastosowanie odpowiedniego smaru, który ma niską lepkość, pozwala na zmniejszenie tego tarcia, co z kolei przekłada się na lepsze osiągi pojazdu. Przykładem może być zastosowanie smarów litowych w piastach, które nie tylko redukują tarcie, ale także chronią przed korozją oraz zanieczyszczeniami. W branży motoryzacyjnej stosuje się także smary zgodne z normami ASTM i ISO, co zapewnia ich wysoką jakość i efektywność. Oprócz zapewnienia efektywności mechanicznej, zmniejszenie tarcia wpływa także na oszczędność paliwa, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju i ochrony środowiska. Dlatego właściwy dobór smaru oraz jego regularna wymiana są kluczowe dla długowieczności i bezawaryjności układów napędowych.

Pytanie 5

Jak przeprowadza się ocenę układu hamulcowego po jego naprawie?

A. na szarpaku
B. na rolkach pomiarowych
C. metodą Boge
D. na hamowni podwoziowej
Odpowiedzi takie jak 'na hamowni podwoziowej', 'metodą Boge' oraz 'na szarpaku' nie są odpowiednie dla oceny układu hamulcowego po naprawie, z kilku istotnych powodów. Hamownia podwoziowa jest narzędziem, które służy do pomiaru mocy silnika oraz przeprowadzania testów wydajnościowych, a nie do bezpośredniej oceny skuteczności hamowania. Choć może dostarczyć informacji o ogólnej dynamice pojazdu, nie jest w stanie precyzyjnie wskazać na problemy z hamulcami, które mogą występować jedynie w warunkach rzeczywistych. Z kolei metoda Boge to technika diagnostyczna używana głównie do oceny zawieszeń i nie ma bezpośredniego zastosowania w kontekście hamulców. W przypadku szarpaka, jest to urządzenie, które służy do testowania podzespołów zawieszenia, a nie układu hamulcowego. Używanie tego typu narzędzi do oceny hamulców prowadzi do błędnych wniosków, ponieważ nie pozwala na dokładne pomiary siły hamowania oraz równomierności działania układu. Kiedy mechanicy polegają na niewłaściwych metodach oceny, mogą przeoczyć istotne problemy z bezpieczeństwem, co jest niezgodne z najlepszymi praktykami w branży motoryzacyjnej. Dlatego kluczowe jest stosowanie odpowiednich narzędzi, takich jak rolki pomiarowe, które pozwalają na rzetelną ocenę stanu układu hamulcowego.

Pytanie 6

Elementy nazywane "tulejami mokrymi" są instalowane w

A. sprzęgle dwustopniowym
B. skrzyni biegów
C. bloku silnika
D. układzie smarowania silnika
Tuleje mokre, znane również jako tuleje cylindrowe, to elementy montowane w bloku silnika, które mają kluczowe znaczenie dla efektywnego działania jednostki napędowej. Ich główną funkcją jest zapewnienie miejsca dla tłoka oraz optymalizacja procesu smarowania. Tuleje mokre są osadzone w bloku silnika w taki sposób, że współpracują z płynem chłodzącym, co pozwala na utrzymanie odpowiedniej temperatury pracy silnika. Przykładem zastosowania tulei mokrej może być silnik spalinowy, w którym olej silnikowy krąży wokół tulei, minimalizując tarcie oraz zużycie. Niektóre nowoczesne silniki stosują standardy, takie jak SAE J300, które określają właściwości olejów silnikowych i ich kompatybilność z różnymi materiałami, w tym z tulejami mokrymi. W ramach dobrych praktyk branżowych, regularna kontrola stanu tulei oraz ich smarowania jest niezbędna dla zapewnienia długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 7

Który z płynów hamulcowych charakteryzuje się najwyższą temperaturą wrzenia?

A. DOT4
B. DOT5
C. DOT3
D. R3
Płyn hamulcowy DOT5 jest syntetycznym płynem, który posiada jedną z najwyższych temperatur wrzenia wśród dostępnych płynów hamulcowych. Temperatura wrzenia DOT5 wynosi około 260°C, co czyni go idealnym wyborem dla zastosowań, gdzie występują wysokie temperatury, takich jak sport motoryzacyjny oraz w zastosowaniach wyścigowych. Dzięki swoim właściwościom, DOT5 minimalizuje ryzyko zjawiska wrzenia płynu hamulcowego, co może prowadzić do utraty skuteczności hamulców. Jest on również odporny na wilgoć, co przyczynia się do dłuższej trwałości układu hamulcowego. DOT5 jest zalecany w pojazdach, które nie są narażone na kontakt z wodą, ponieważ zawiera silikon, który nie absorbuje wilgoci. W branży motoryzacyjnej standardy dotyczące płynów hamulcowych, takie jak FMVSS 116, określają wymagania dla płynów hamulcowych, co dodatkowo potwierdza wysoką jakość DOT5. W praktyce, stosowanie DOT5 może znacząco poprawić bezpieczeństwo i wydajność hamulców w ekstremalnych warunkach.

Pytanie 8

Jakie jest zastosowanie użebrowania cylindrów w silniku, który jest chłodzony bezpośrednio?

A. wzmocnienie struktury cylindra, który jest chłodzony powietrzem
B. odprowadzanie ciepła z cylindrów, które są chłodzone cieczą
C. wzmocnienie struktury cylindra, który jest chłodzony cieczą
D. odprowadzanie ciepła z cylindrów, które są chłodzone powietrzem
Użebrowanie cylindra w silniku chłodzonym powietrzem ma kluczowe znaczenie dla efektywnego odprowadzania ciepła generowanego podczas pracy silnika. W silnikach chłodzonych powietrzem, gdzie nie ma systemu chłodzenia cieczą, cykl odprowadzania ciepła musi opierać się głównie na konwekcji i przewodnictwie cieplnym. Żebra zwiększają powierzchnię kontaktu między cylindrem a otaczającym powietrzem, co pozwala na szybsze i skuteczniejsze rozpraszanie ciepła. Przykładem zastosowania użebrowania cylindra są silniki w motocyklach oraz niektórych modelach silników lotniczych, gdzie efektywne chłodzenie jest kluczowe dla osiągów i niezawodności. W branży motoryzacyjnej i lotniczej, stosowanie użebrowania jest zgodne z najlepszymi praktykami inżynieryjnymi, co zapewnia nie tylko wydajność, ale także dłuższą żywotność komponentów silnika. Warto również zauważyć, że odpowiednie projektowanie użebrowania ma istotny wpływ na aerodynamikę silnika, co w rezultacie może poprawić ogólną efektywność energetyczną pojazdu.

Pytanie 9

Wtryskiwacz, będący częścią systemu zasilania K-Jetronic, ma na celu dostarczenie dawki

A. paliwa bezpośrednio do komory spalania
B. powietrza do kolektora dolotowego
C. powietrza bezpośrednio do komory spalania
D. paliwa do kolektora dolotowego
Pomimo że wszystkie podane odpowiedzi dotyczą elementów układu zasilania, niestety niektóre z nich są błędne z merytorycznego punktu widzenia. Wtryskiwacz nie ma na celu dostarczania powietrza do kolektora dolotowego, ponieważ jego funkcja polega wyłącznie na wtryskiwaniu paliwa. Powietrze do silnika jest zasysane przez układ dolotowy, a jego ilość jest kontrolowana przez przepustnicę, a nie przez wtryskiwacz. Kolejna nieprecyzyjna odpowiedź sugeruje, że wtryskiwacz dostarcza paliwo bezpośrednio do komory spalania, co jest mylnym założeniem. Proces spalania w silniku spalinowym wymaga, aby paliwo najpierw zmieszało się z powietrzem w kolektorze dolotowym, gdzie następuje atomizacja paliwa, co zwiększa efektywność spalania. Również stwierdzenie, że wtryskiwacz wprowadza powietrze bezpośrednio do komory spalania, jest całkowicie błędne, ponieważ wtryskiwacz jest odpowiedzialny tylko za paliwo. Te nieporozumienia mogą wynikać z braku świadomości, jak działa system zasilania i jakie są różnice między różnymi komponentami wtrysku paliwa. Właściwe zrozumienie działania wtryskiwacza i jego roli w procesie zasilania silnika jest kluczowe dla analizy i diagnozy problemów związanych z układami paliwowymi. Zastosowanie systemów wtrysku paliwa zgodnych z aktualnymi normami emisji spalin oraz standardami technicznymi jest niezbędne dla zapewnienia efektywności i ekologiczności nowoczesnych pojazdów.

Pytanie 10

Jakiego materiału używa się do produkcji zbiorniczka wyrównawczego dla płynu hamulcowego?

A. żeliwo
B. stop aluminium
C. szkło
D. tworzywo sztuczne
Zbiorniczki wyrównawcze płynu hamulcowego są zazwyczaj wykonane z tworzyw sztucznych, takich jak polipropylen czy poliwęglan. Materiały te charakteryzują się wysoką odpornością na działanie chemikaliów, co jest istotne, biorąc pod uwagę właściwości płynów hamulcowych, które mogą być agresywne. Tworzywa sztuczne są również lekkie, co przyczynia się do zmniejszenia masy pojazdu oraz poprawy efektywności paliwowej. Ponadto, proces produkcji komponentów z tworzyw sztucznych jest bardziej ekonomiczny i pozwala na łatwiejsze formowanie skomplikowanych kształtów, co jest kluczowe w przypadku projektowania zbiorniczków. Użycie tworzyw sztucznych w branży motoryzacyjnej jest zgodne z normami i dobrymi praktykami, co przyczynia się do zwiększenia trwałości i niezawodności układów hamulcowych. Warto również zauważyć, że nowoczesne technologie umożliwiają recykling tych materiałów, co wpisuje się w trend zrównoważonego rozwoju w przemyśle motoryzacyjnym.

Pytanie 11

Aby określić stopień zużycia oleju silnikowego, należy przeprowadzić pomiar

A. multimetrem
B. refraktometrem
C. wiskozymetrem
D. pirometrem
Pomiar zużycia oleju silnikowego nie może być skutecznie dokonany przy użyciu pirometru, refraktometru ani multimetru, ponieważ te urządzenia zostały zaprojektowane do zupełnie innych zastosowań. Pirometr, na przykład, jest urządzeniem służącym do pomiaru temperatury obiektów na odległość, co nie ma żadnego związku z określaniem właściwości oleju. Użycie pirometru w tym kontekście prowadzi do błędnych wniosków, jako że temperatura sama w sobie nie jest wskaźnikiem stanu oleju. Refraktometr mierzy współczynnik załamania światła, co jest przydatne w analizie cieczy, ale nie dostarcza informacji o lepkości oleju, która jest kluczowa dla określenia jego przydatności do dalszego użytku. Natomiast multimetr, używany głównie do pomiaru napięcia, natężenia i oporu, także nie ma zastosowania w ocenie stanu oleju. Niezrozumienie specyfiki tych narzędzi oraz ich właściwego zastosowania w kontekście diagnostyki olejów silnikowych może prowadzić do nieefektywnej konserwacji i potencjalnych uszkodzeń silnika. Dlatego kluczowe jest użycie odpowiedniego sprzętu, takiego jak wiskozymetr, aby uzyskać miarodajny wynik i podjąć decyzje dotyczące serwisowania silnika.

Pytanie 12

W głowicy czterosuwowego silnika spalinowego wykorzystuje się zawory

A. grzybkowe
B. membranowe
C. suwakowe
D. kulowe
Zawory suwakowe, membranowe i kulowe nie pasują za bardzo do głowic czterosuwowych silników, bo mają różne ograniczenia. Zawory suwakowe, co prawda, można spotkać w niektórych silnikach, ale są dość skomplikowane i ciężko zapewnić ich szczelność. Ich działanie nie jest wystarczająco szybkie i precyzyjne, co jest kluczowe dla silników przy zmieniających się obrotach. Zawory membranowe to już zupełnie inna bajka, bo są raczej do silników o niskiej mocy, jak w różnych przenośnych urządzeniach. One nie wytrzymują tych wysokich ciśnień i temperatur, które są w głowicy silnika spalinowego. A zawory kulowe, chociaż świetne w hydraulice, to w silnikach spalinowych są wolniejsze i nie dają możliwości łatwej regulacji przepływu. Ważne jest, żeby wiedzieć, że zawory muszą być odpowiednio dobrane do rodzaju silnika, bo jak źle coś wybierzesz, to możesz mieć problemy z wydajnością i wyższym zużyciem paliwa oraz emisją spalin.

Pytanie 13

Silnik spalinowy chłodzony cieczą nie osiąga odpowiedniej temperatury. Jakie uszkodzenie w układzie chłodzenia może powodować takie symptomy?

A. SCS Termostatu
B. Chłodnicy
C. Nagrzewnicy
D. Wentylatora
Termostat w silniku spalinowym pełni kluczową rolę w zarządzaniu temperaturą pracy układu chłodzenia. Jego głównym zadaniem jest kontrolowanie przepływu cieczy chłodzącej pomiędzy silnikiem a chłodnicą. Po osiągnięciu odpowiedniej temperatury silnika, termostat otwiera się, co pozwala na krążenie cieczy chłodzącej, a tym samym utrzymanie optymalnych warunków pracy silnika. Jeśli termostat jest uszkodzony i pozostaje w pozycji zamkniętej, ciecz chłodząca nie może swobodnie krążyć, co prowadzi do przegrzewania silnika, lub w przypadku, gdy nie otwiera się w ogóle, silnik może nie osiągnąć optymalnej temperatury roboczej. Optymalna temperatura pracy silnika jest kluczowa dla jego wydajności i zmniejszenia emisji szkodliwych substancji. Dbanie o sprawność termostatu to nie tylko kwestia wydajności, ale także oszczędności paliwa oraz ochrony silnika przed nadmiernym zużyciem. W praktyce, jeśli zauważysz, że silnik nie osiąga właściwej temperatury, warto zbadać działanie termostatu, co jest zgodne z dobrymi praktykami w zakresie konserwacji układów chłodzenia.

Pytanie 14

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. porażenia prądem
B. urazów rąk
C. zatrucia spalinami
D. oparzenia spalinami
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 15

Zniekształcony wahacz przedniego zawieszenia

A. można naprawić poprzez podgrzanie do temperatury uplastycznienia i nadanie mu pierwotnej formy
B. należy wymienić na nowy
C. można pozostawić tak jak jest, wystarczy jedynie ustawić zbieżność kół
D. można poddać obróbce plastycznej w niskiej temperaturze
Wahacz zawieszenia przedniego jest kluczowym elementem układu jezdnego pojazdu, który odpowiada za prawidłowe prowadzenie kół oraz stabilność jazdy. Skrzywienie wahacza może prowadzić do wielu problemów, takich jak nierównomierne zużycie opon, problemy z prowadzeniem pojazdu oraz zagrożenie dla bezpieczeństwa. W przypadku zauważenia skrzywienia, najlepszym rozwiązaniem jest wymiana wahacza na nowy. Wymiana wahacza zapewnia, że wszystkie jego właściwości mechaniczne i geometrii są w pełni przywrócone do stanu fabrycznego, co jest kluczowe dla prawidłowego funkcjonowania zawieszenia. Warto zaznaczyć, że stosowanie nowych części zamiennych, które są zgodne z normami producenta, jest nie tylko wymogiem prawnym, ale również praktyką zalecaną przez specjalistów. Dodatkowo, nowy wahacz zapewnia lepszą trwałość i stabilność, co przekłada się na długotrwałe i bezpieczne użytkowanie pojazdu. Dlatego wymiana uszkodzonego wahacza to podejście zgodne z najlepszymi praktykami w branży motoryzacyjnej oraz normami bezpieczeństwa.

Pytanie 16

Aby odczytać i zinterpretować błędy zapisane w pamięci sterownika silnika, należy wykorzystać

A. czytnik kodów błędów
B. multimetr
C. komputerowy zestaw diagnostyczny
D. klucz serwisowy
Komputerowy zestaw diagnostyczny to zaawansowane narzędzie wykorzystywane w diagnostyce silników, które umożliwia odczyt i interpretację błędów zapisanych w pamięci sterownika. Tego typu zestawy są standardem w warsztatach samochodowych i są niezbędne do skutecznej diagnostyki nowoczesnych pojazdów, które są coraz bardziej skomputeryzowane. Dzięki nim można uzyskać szczegółowe informacje o stanie różnych układów pojazdu, co pozwala na szybką identyfikację problemów oraz dokładne określenie koniecznych napraw. Na przykład, przy użyciu takiego zestawu diagnostycznego można odczytać kody błędów związane z systemem zarządzania silnikiem, a także monitorować parametry pracy silnika w czasie rzeczywistym. Zestawy te często oferują także funkcje takie jak testowanie komponentów, przeprowadzanie kalibracji oraz resetowanie błędów, co czyni je niezastąpionym narzędziem dla profesjonalnych mechaników. Warto również zauważyć, że korzystanie z komputerowego zestawu diagnostycznego jest zgodne z najlepszymi praktykami branżowymi, zalecanymi przez producentów pojazdów.

Pytanie 17

Aby ocenić użyteczność eksploatacyjną oleju silnikowego, co należy zastosować?

A. mikrometr.
B. wiskozymetr.
C. pirometr.
D. sonometr.
Wiskozymetr to takie fajne urządzonko do mierzenia lepkości cieczy. Lepkość oleju silnikowego jest mega ważna, bo wpływa na to, jak dobrze olej smaruje silnik i chroni go przed zużyciem. Jak olej się starzeje, jego lepkość może się zmieniać, co czasami prowadzi do słabszej wydajności silnika. Dlatego warto mierzyć lepkość oleju wiskozymetrem, żeby wiedzieć, czy olej dalej spełnia wymagania producenta oraz normy branżowe, jak SAE czy API. Wyobraź sobie, że w warsztacie regularnie sprawdzają olej w samochodach. Dzięki wiskozymetrowi można szybko i dokładnie ocenić, czy olej nadaje się jeszcze do używania. To naprawdę dobra praktyka i zgodne z tym, co mówią producenci aut, co w sumie pozwala na dłuższe życie silnika. Poza tym, regularne badanie lepkości oleju może zaalarmować nas o problemach, jak np. zanieczyszczenie oleju, co pomoże lepiej zarządzać serwisem pojazdu.

Pytanie 18

Przy oddawaniu pojazdu do naprawy w Autoryzowanym Serwisie Obsługi należy przygotować

A. fakturę VAT
B. zlecenie serwisowe
C. zamówienie magazynowe
D. harmonogram prac naprawczych
Zlecenie serwisowe jest kluczowym dokumentem w procesie obsługi samochodu w autoryzowanym serwisie. To właśnie na nim zapisuje się szczegółowe informacje dotyczące przyjęcia pojazdu, takie jak dane właściciela, dane pojazdu, opis zgłaszanych usterek oraz zakres planowanych prac. Wypełnienie zlecenia serwisowego pozwala na prawidłowe zorganizowanie procesu naprawy i zapewnia, że wszystkie etapy są zgodne z wymaganiami zgodnymi z procedurami stosowanymi w autoryzowanych serwisach. Ponadto, zlecenie serwisowe stanowi podstawę do późniejszego wystawienia faktury oraz gwarantuje, że wszystkie usługi wykonane w serwisie są zgodne z zaleceniami producenta. W praktyce, każdy autoryzowany serwis ma swoje specyficzne formularze, które są dostosowane do wymogów producenta pojazdu, co jest standardem w branży. Dobrą praktyką jest również archiwizowanie takich zleceń, co może być pomocne w przypadku reklamacji lub późniejszych usterek. W ten sposób zlecenie serwisowe pełni rolę nie tylko informacyjną, ale i prawną, zabezpieczając interesy zarówno serwisu, jak i klienta.

Pytanie 19

Każdą element chromowany i niklowany w pojeździe, który został poddany konserwacji przed długoterminowym magazynowaniem, należy zabezpieczyć

A. smarem miedziowym
B. preparatem silikonowym
C. wazeliną techniczną
D. smarem litowym
Z wyborem odpowiednich preparatów do konserwacji chromowanych i niklowanych części pojazdu jest trochę tak, że trzeba znać ich właściwości i to, co mogą zrobić z metalem. Smar miedziowy, mimo że sporo ludzi go stosuje jako antykorozyjny, nie jest najlepszym pomysłem na delikatne chromowane powłoki. Może przez reakcje chemiczne doprowadzić do ich matowienia. Z kolei smar litowy, który świetnie znosi wysokie temperatury, może być zbyt lepki. Kiedy nałożysz go na chromowane części, potem ciężko się pozbyć nadmiaru, co tylko przyciąga brud. Preparaty silikonowe też nie dają takiej ochrony na metalowych powierzchniach – nie tworzą takiej bariery jak wazelina. Często ludzie mylą różne właściwości tych preparatów i przez to źle konserwują, co jeszcze bardziej przyspiesza korozję. Żeby skutecznie chronić chrom, najlepiej używać dedykowanych do tego środków, a wazelina techniczna to standard, którego warto się trzymać.

Pytanie 20

Jakimi metodami ocenia się szczelność cylindrów?

A. próbnikiem ciśnienia sprężania
B. lampą stroboskopową
C. analitykiem spalin
D. urządzeniem OBD
Odpowiedź 'próbnikiem ciśnienia sprężania' jest prawidłowa, ponieważ ocena szczelności cylindrów silnika polega na określeniu, czy komora spalania jest w stanie utrzymać ciśnienie. Próbniki ciśnienia sprężania są specjalistycznymi narzędziami służącymi do pomiaru ciśnienia generowanego w cylindrze podczas cyklu sprężania. Użycie tego typu narzędzia pozwala na dokładną diagnozę stanu uszczelnień, pierścieni tłokowych oraz innych komponentów odpowiedzialnych za szczelność. W praktyce, aby przeprowadzić test, należy odkręcić świecę zapłonową z cylindra, wkręcić próbnik, a następnie uruchomić silnik lub obrócić wałem korbowym. Wynik pomiaru wskazuje na ewentualne problemy – na przykład, niskie ciśnienie może sugerować zużycie pierścieni tłokowych. To podejście jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które zalecają regularne przeprowadzanie takich testów w celu utrzymania silnika w dobrym stanie technicznym. Wiedza na temat szczelności cylindrów jest kluczowa dla mechaników, ponieważ pozwala im zrozumieć ogólną kondycję silnika oraz planować ewentualne naprawy.

Pytanie 21

Na podstawie wyników pomiaru tarczowego układu hamulcowego osi przedniej przedstawionych w tabeli, określ zakres niezbędnej naprawy.

Mierzona wielkośćWartości graniczneWartości zmierzone
LP
Minimalna grubość tarczy hamulcowej [mm]22,2022,1522,23
Maksymalne bicie osiowe tarczy hamulcowej [mm]0,150,070,11
Minimalna grubość okładziny ciernej klocków hamulcowych [mm]wewnętrznej1,503,813,95
zewnętrznej3,633,88

A. Wymiana lewej tarczy hamulcowej i kompletu klocków hamulcowych.
B. Wymiana dwóch tarcz hamulcowych i kompletu klocków hamulcowych.
C. Przetoczenie dwóch tarcz hamulcowych i wymiana kompletu klocków hamulcowych.
D. Wymiana lewej tarczy hamulcowej.
Wybór wymiany dwóch tarcz hamulcowych oraz kompletu klocków hamulcowych jest uzasadniony na podstawie wyników pomiarów, które wskazują na niewystarczającą grubość lewej tarczy hamulcowej. W ramach standardów bezpieczeństwa, każda tarcza hamulcowa musi spełniać określone normy grubości, aby zapewnić skuteczność hamowania. W przypadku, gdy jedna z tarcz jest już poniżej minimalnej dopuszczalnej grubości, zawsze zaleca się wymianę obydwu tarcz. Prawa tarcza, choć na granicy normy, także powinna być wymieniona, aby uniknąć nierównomiernego zużycia, co mogłoby prowadzić do pogorszenia jakości hamowania. Co więcej, wymiana klocków hamulcowych jest również kluczowa, ponieważ ich współpraca z tarczami jest istotna dla osiągnięcia optymalnej efektywności hamowania. W praktyce, wymieniając wszystkie elementy układu hamulcowego jednocześnie, minimalizujemy ryzyko przyszłych awarii oraz kosztów związanych z ponowną naprawą. Przestrzeganie takich standardów nie tylko zwiększa bezpieczeństwo, ale także zapewnia dłuższą żywotność całego systemu hamulcowego.

Pytanie 22

Podczas naprawy pojazdu został wymieniony filtr paliwa, filtr kabinowy oraz komplet klocków hamulcowych osi przedniej. Koszt jednej roboczogodziny to 90,00 zł netto. Oblicz całkowity koszt naprawy netto.

Lp.wykaz częścicena netto
[zł]
1.olej silnikowy 4l125,00
2.filtr oleju45,00
3.filtr kabinowy85,00
4.filtr paliwa115,00
5.klocki hamulcowe osi przedniej- kpl.95,00
6.klocki hamulcowe osi tylnej- kpl.112,00
7.tarcze hamulcowe osi przedniej-kpl.160,00
Lp.czynnościczas naprawy
[rg.]
1.wymiana filtra paliwa0,5
2.wymiana filtra kabinowego0,3
3.wymiana klocków hamulcowych osi przedniej1,2
4.wymiana klocków hamulcowych osi tylnej1,3

A. 635,00 zł
B. 475,00 zł
C. 680,00 zł
D. 380,00 zł
Odpowiedź 475,00 zł to dobry wybór, bo uwzględnia wszystkie ważne elementy kosztów naprawy samochodu. Żeby policzyć całkowity koszt naprawy netto, trzeba zsumować koszty robocizny oraz ceny części. Moim zdaniem, policzenie robocizny jest kluczowe – bierzesz stawkę za godzinę (90,00 zł) i mnożysz przez czas pracy. Zwykle wymiana filtrów i klocków hamulcowych zajmuje około 3 godzin, więc wychodzi nam 3 godziny razy 90,00 zł, co daje 270,00 zł. Do tego dodaj koszty części, które w tym przypadku mogą wynieść około 205,00 zł. Jak się to zsumuje (270,00 zł + 205,00 zł), dostajemy całość 475,00 zł netto. Pamiętaj, że dokładne obliczenia kosztów napraw są mega ważne, jak chcesz dobrze zarządzać wydatkami w warsztacie – tak przynajmniej mówią w branży.

Pytanie 23

Jaki łączny koszt poniesiemy na wymianę świec zapłonowych w pojeździe z silnikiem sześciocylindrowym, jeśli cena jednej świecy wynosi 20,00 zł, a wymiana powinna zająć 45 minut, przy stawce jednego roboczogodziny równiej 120,00 zł?

A. 170,00 zł
B. 240,00 zł
C. 120,00 zł
D. 210,00 zł
Całkowity koszt wymiany świec zapłonowych w samochodzie z silnikiem sześciocylindrowym wynosi 210,00 zł, co jest wynikiem dokładnego obliczenia zarówno kosztu materiałów, jak i robocizny. Koszt jednej świecy zapłonowej wynosi 20,00 zł, a w silniku sześciocylindrowym potrzeba sześciu świec, co daje 20,00 zł x 6 = 120,00 zł za same świece. Dodatkowo, czas wymiany świec szacowany na 45 minut obliczamy w kontekście stawki robocizny. Ponieważ 45 minut to 0,75 godziny, koszt robocizny wynosi 120,00 zł (stawka za godzinę) x 0,75 = 90,00 zł. Zatem całkowity koszt wymiany świec zapłonowych to 120,00 zł (świece) + 90,00 zł (robocizna) = 210,00 zł. W kontekście praktycznym, regularna wymiana świec zapłonowych jest kluczowa dla utrzymania efektywności silnika, co wpływa na jego wydajność i zużycie paliwa. Zgodnie z zaleceniami producentów, wymianę świec należy przeprowadzać co określoną liczbę kilometrów lub co pewien czas, co przyczynia się do dłuższej żywotności silnika.

Pytanie 24

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Temperatury cieczy
B. Lepkości cieczy
C. Natężenia prądu
D. Napięcia prądu
Zrozumienie pojęć związanych z prądem elektrycznym jest kluczowe dla właściwego projektowania i użytkowania systemów elektrycznych. Odpowiedzi, które odnoszą się do napięcia prądu, lepkości cieczy czy temperatury cieczy, są błędne z kilku powodów. Napięcie prądu, mierzone w woltach (V), jest jednym z podstawowych parametrów elektrycznych, ale nie jest tym samym co natężenie prądu. Napięcie jest siłą, która 'wypycha' ładunki elektryczne przez obwód, natomiast natężenie odnosi się do rzeczywistego przepływu tych ładunków. Lepkość cieczy to zupełnie inny parametr, dotyczący oporu, jaki ciecz stawia podczas przepływu, co nie ma bezpośredniego związku z pojęciem natężenia prądu elektrycznego. Temperatura cieczy natomiast odnosi się do stopnia ciepłoty, co również jest nieadekwatne w kontekście analizowania parametrów elektrycznych. Często błędne wnioski w takich przypadkach wynikają z mylenia podstawowych pojęć oraz braku zrozumienia ich wzajemnych relacji. Dobre praktyki inżynieryjne wymagają precyzyjnego stosowania terminologii oraz znajomości właściwych definicji, co jest niezbędne dla bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 25

Który z wymienionych elementów spalin stanowi największe zagrożenie dla zdrowia i życia?

A. Para wodna
B. Tlen
C. Tlenek węgla
D. Dwutlenek węgla
Dwutlenek węgla (CO2) jest naturalnym składnikiem atmosfery i jest produktem kompletnych procesów spalania. Choć jest gazem cieplarnianym i jego nadmiar w atmosferze przyczynia się do zmian klimatycznych, sam w sobie nie jest bezpośrednio toksyczny dla zdrowia ludzkiego w normalnych stężeniach. W przypadku wysokich stężeń może prowadzić do asfiksji, jednak nie jest tak groźny jak tlenek węgla, który działa w sposób aczkolwiek bardziej bezpośredni i intensywny. Tlen to składnik niezbędny do życia, ponieważ jest kluczowy dla procesu oddychania, a para wodna naturalnie występuje w powietrzu i pełni rolę w regulacji temperatury i wilgotności atmosfery. Typowym błędem myślowym jest mylenie poziomów toksyczności różnych gazów, często wynikającym z ich powszechnej obecności. Mimo że dwutlenek węgla w nadmiarze ma swoje negatywne konsekwencje, jego obecność nie zagraża zdrowiu w takim stopniu jak tlenek węgla, który może być tragicznie niebezpieczny nawet w stosunkowo niskich stężeniach. Dlatego kluczowe jest posiadanie dobrze zaprojektowanych systemów wentylacyjnych oraz czujników gazów, które pomogą w identyfikacji i eliminacji zagrożeń, szczególnie w zamkniętych przestrzeniach, gdzie tlenek węgla ma tendencję do gromadzenia się.

Pytanie 26

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. jedynie tarczę hamulcową koła lewego przedniego
B. tarcze oraz klocki hamulcowe osi przedniej
C. wyłącznie tarcze hamulcowe kół osi przedniej
D. tarcze i klocki hamulcowe wszystkich kół
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 27

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Uszkodzony alternator
B. Niedziałający wentylator chłodnicy
C. Zbyt wysokie ciśnienie w oponach
D. Niski poziom oleju w silniku
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 28

Usterka, której kod zaczyna się na literę B, odnosi się do komponentu

A. podwozia
B. systemu komunikacyjnego
C. układu napędowego
D. nadwozia
Kod awarii zaczynający się na literę B dotyczy nadwozia, co jest zgodne z międzynarodowymi standardami, jak ISO 15031. Problemy z nadwoziem mogą obejmować różne uszkodzenia, jak zniekształcenia, problemy z malowaniem, a także kłopoty z działaniem drzwi i okien. Moim zdaniem, to zrozumienie jest kluczowe, bo technicy mogą szybciej rozpoznać usterki i dokonać napraw, co w efekcie zwiększa bezpieczeństwo i komfort jazdy. Zrozumienie, jakie konkretne problemy mogą dotyczyć nadwozia, to także pomoc w lepszym planowaniu przeglądów i konserwacji. To wszystko ma znaczenie dla długowieczności pojazdu i obniżenia kosztów. Warto też wiedzieć, że znajomość kodów usterek i ich klasyfikacji to podstawowa umiejętność dla każdego mechanika, co pokazuje, jak ważne jest ciągłe kształcenie w tym temacie.

Pytanie 29

W diagnostyce samochodów wykorzystuje się oprogramowanie komputerowe

A. Warsztat
B. ESItronic
C. Eurotax
D. AutoCAD
ESItronic to zaawansowane oprogramowanie diagnostyczne używane w warsztatach samochodowych do analizy i naprawy pojazdów. Program ten umożliwia diagnozowanie usterek oraz odczytywanie danych z różnych systemów elektronicznych w samochodach, co jest kluczowe w nowoczesnym serwisowaniu. ESItronic jest dostosowany do wielu marek i modeli pojazdów, co czyni go uniwersalnym narzędziem w diagnostyce. Dzięki zastosowaniu tego oprogramowania mechanicy mogą szybko zidentyfikować problemy, co znacząco przyspiesza proces naprawy i zwiększa efektywność pracy. Program oferuje również dostęp do informacji technicznych, schematów, a także najnowszych aktualizacji dotyczących procedur serwisowych, co jest zgodne z najlepszymi praktykami branżowymi w zakresie utrzymania pojazdów. Przykładem zastosowania ESItronic może być diagnoza problemu z systemem ABS, gdzie mechanik korzysta z aplikacji do odczytu kodów błędów i analizy danych w czasie rzeczywistym.

Pytanie 30

W jakiej sekwencji powinno się dokręcać śruby trzymające głowicę silnika?

A. Kolejno, zaczynając od strony rozrządu
B. Od lewej do prawej
C. W dowolnej sekwencji
D. Zgodnie z instrukcjami producenta silnika
Dokręcanie śrub w dowolnej kolejności lub według intuicji może prowadzić do poważnych problemów mechanicznych i uszkodzenia silnika. Każdy silnik jest projektem inżynieryjnym, który wymaga precyzyjnego podejścia do montażu. Dokręcanie od prawej do lewej lub po kolei, zaczynając od strony rozrządu, może wydawać się logiczne, jednak te metody nie uwzględniają specyfiki konstrukcji i materiałów użytych w danym silniku. Śruby są projektowane z myślą o określonym rozkładzie naprężeń, który można osiągnąć jedynie stosując odpowiednią sekwencję dokręcania, jaką zaleca producent. Dodatkowo, niespełnienie wymogów dotyczących momentu obrotowego może prowadzić do poluzowania się śrub w trakcie eksploatacji lub wręcz ich pęknięcia. Przy dokręcaniu śrub głowicy silnika, na każdym etapie należy zachować ostrożność oraz skrupulatnie przestrzegać zaleceń producenta, co jest kluczowe dla długowieczności i niezawodności silnika. Ostatecznie, podejście oparte na intuicji może prowadzić do kosztownych napraw i skrócenia żywotności jednostki napędowej.

Pytanie 31

W hydraulicznym oraz pneumatycznym amortyzatorze jednorurowym wysokociśnieniowym używa się oleju oraz

A. azotu
B. tlenu
C. acetylenu
D. powietrza
W jednorurowym wysokociśnieniowym amortyzatorze hydraulicznym stosuje się azot, ponieważ jest gazem obojętnym, który zapewnia odpowiednie ciśnienie w układzie. Azot jest niezwykle stabilny chemicznie, co minimalizuje ryzyko reakcji z olejem czy innymi składnikami amortyzatora. Jego główną rolą jest utrzymanie odpowiedniego poziomu ciśnienia, co zapobiega pojawianiu się pęcherzyków powietrza w oleju oraz zwiększa efektywność tłumienia drgań. Azot jako medium gazowe jest powszechnie wykorzystywany w różnych zastosowaniach motoryzacyjnych, w tym w sportach motorowych, gdzie wysoka wydajność i stabilność są kluczowe. Przy odpowiednim ciśnieniu azot wspomaga przenoszenie sił i wpływa na charakterystykę pracy amortyzatora, co jest istotne dla komfortu jazdy oraz bezpieczeństwa pojazdu. Zastosowanie azotu zgodne jest z normami i zaleceniami producentów, co czyni je najlepszym praktycznym rozwiązaniem w tego typu konstrukcjach.

Pytanie 32

Aby ocenić skuteczność hamulców w pojeździe na podstawie pomiaru siły hamowania, jakie urządzenie powinno być użyte?

A. urządzenie rolkowe
B. opóźnieniomierz
C. manometr o zakresie pomiarowym 0 do 10 MPa
D. czujnik nacisku
Wybór opóźnieniomierza jako metody oceny skuteczności hamulców jest niewłaściwy, ponieważ to urządzenie służy do mierzenia zmiany prędkości pojazdu w czasie, a nie bezpośrednio do pomiaru siły hamowania. Chociaż opóźnieniomierz może dostarczyć informacji o wydajności hamulców w postaci zmiany prędkości, nie jest w stanie precyzyjnie zmierzyć siły, jaką hamulce generują. To podejście może prowadzić do błędnych wniosków o skuteczności układów hamulcowych, zwłaszcza w sytuacjach, gdy warunki drogowe są zmienne. Z kolei czujnik nacisku, choć może monitorować ciśnienie w układzie hamulcowym, nie dostarcza informacji o rzeczywistej sile hamowania na koła, co jest kluczowe dla oceny skuteczności działania hamulców. Manometr, którego zakres pomiarowy wynosi 0 do 10 MPa, również nie jest odpowiednim narzędziem do oceny siły hamowania, ponieważ nie uwzględnia dynamicznych warunków pracy hamulców. Każde z tych narzędzi ma swoje zastosowanie w diagnostyce, ale nie zastąpią one kompleksowych testów prowadzonych na urządzeniach rolkowych, które są zgodne z aktualnymi standardami bezpieczeństwa. Właściwe podejście do oceny hamulców wymaga zrozumienia ich działania w rzeczywistych warunkach i zastosowania odpowiednich metod badawczych.

Pytanie 33

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Sprawdzianu do otworów
B. Mikrometru
C. Suwmiarki
D. Średnicówki zegarowej
Średnicówka zegarowa jest narzędziem pomiarowym o wysokiej precyzji, które jest szczególnie przydatne w pomiarach średnic otworów, zarówno cylindrycznych, jak i innych kształtów. Jej konstrukcja pozwala na dokładne i łatwe odczytywanie wyników dzięki zastosowaniu mechanizmu zegarowego, co znacznie ułatwia pracę. W przypadku pomiaru tulei cylindra, świetnie sprawdza się, ponieważ dokładność pomiaru jest kluczowa dla zapewnienia odpowiedniego luzu oraz prawidłowego dopasowania elementów silnika. Używając średnicówki zegarowej, można wykryć nawet niewielkie odchylenia od normy, co pozwala na wczesne wykrycie potencjalnych problemów w procesie produkcji lub remontu silnika. W praktyce, pomiar za pomocą tego narzędzia jest często stosowany w warsztatach mechanicznych i w przemyśle motoryzacyjnym, gdzie precyzja ma krytyczne znaczenie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co tylko potwierdza wybór średnicówki zegarowej jako narzędzia właściwego w tym kontekście.

Pytanie 34

Zawodnienie płynu hamulcowego na poziomie 4%

A. istotnie obniża jego temperaturę wrzenia.
B. praktycznie nie wpływa na jego właściwości.
C. istotnie zwiększa jego temperaturę wrzenia.
D. jest typowe po około 6 miesiącach użytkowania.
Wiele osób sądzi, że niewielkie zawodnienie płynu hamulcowego nie wpływa istotnie na jego właściwości, co jest mylne. Negowanie wpływu 4% zawartości wody w płynie hamulcowym jest niepoprawne, ponieważ woda znacząco obniża temperaturę wrzenia płynu, co może mieć katastrofalne skutki dla bezpieczeństwa jazdy. Przykładem może być sytuacja, gdy kierowca hamuje intensywnie w warunkach górskich lub na torze wyścigowym, gdzie temperatura płynu może wzrosnąć do niebezpiecznych poziomów. W takich warunkach, płyn hamulcowy o obniżonej temperaturze wrzenia może wrzeć, co prowadzi do powstania pęcherzyków pary i utraty ciśnienia w układzie hamulcowym. Kolejnym błędnym przekonaniem jest myślenie, że 4% zawodnienia jest normalne po sześciu miesiącach eksploatacji. W rzeczywistości, producenci zalecają regularną wymianę płynu hamulcowego co dwa lata lub wcześniej, jeśli jego stan nie spełnia norm. Ignorowanie tego zalecenia może prowadzić do tragicznych w skutkach wypadków. Prawidłowe postrzeganie roli płynu hamulcowego i jego właściwości jest kluczowe dla bezpieczeństwa pojazdu na drodze, dlatego ważne jest, aby użytkownicy byli świadomi, jak niewielkie zmiany w składzie płynu mogą wpływać na funkcjonalność układu hamulcowego.

Pytanie 35

Ciśnienie podciśnienia to ciśnienie, które jest

A. niższe od ciśnienia atmosferycznego
B. równe ciśnieniu atmosferycznemu
C. wyższe od ciśnienia atmosferycznego
D. równe ciśnieniu atmosferycznemu na poziomie morza
Zrozumienie podciśnienia wymaga przemyślenia, jak ciśnienie działa w różnych kontekstach. Odpowiedzi sugerujące, że podciśnienie jest większe lub równe ciśnieniu atmosferycznemu są nieprawidłowe z kilku powodów. Po pierwsze, podciśnienie definiuje się jako sytuację, w której ciśnienie jest niższe niż ciśnienie otoczenia. Mogłoby to prowadzić do mylnych przekonań, że w warunkach podciśnienia ciśnienie wewnętrzne jakiegoś systemu, np. zbiornika, jest wyższe od atmosferycznego, co jest fizycznie niemożliwe. Ciśnienie atmosferyczne na poziomie morza wynosi około 1013 hPa. Mówiąc o podciśnieniu, mówimy o wartościach ciśnienia, które są znacznie niższe, co prowadzi do różnych zjawisk fizycznych, takich jak wytwarzanie próżni. W praktyce, gdy ciśnienie jest równe ciśnieniu atmosferycznemu, nie mamy do czynienia z podciśnieniem, lecz z równowagą ciśnień, co nie wpływa na żadne procesy, które mogłyby wykorzystywać podciśnienie. Stąd pomylenie podciśnienia z odpowiadającym mu ciśnieniem atmosferycznym może prowadzić do błędnych decyzji w projektowaniu systemów, które wymagają precyzyjnego zarządzania ciśnieniem, jak np. w systemach wentylacyjnych czy eksperymentach laboratoryjnych. Kluczowe jest zrozumienie, że podciśnienie ma charakter niszczący dla niektórych substancji, a jego kontrola jest niezbędna w wielu procesach przemysłowych i laboratoryjnych. Wiedza o tym, jak podciśnienie wpływa na materiały i procesy, jest niezbędna dla inżynierów i technologów.

Pytanie 36

Element zmieniający niskie napięcie na wyższe w układzie zapłonowym to

A. rozdzielacz zapłonu
B. aparat zapłonowy
C. cewka zapłonowa
D. świeca zapłonowa
Cewka zapłonowa to jeden z najważniejszych elementów układu zapłonowego w silnikach spalinowych. Jej głównym zadaniem jest zamiana niskiego napięcia z akumulatora (około 12V) w to wysokie, które wywołuje iskrę w świecach zapłonowych. Robi to dzięki zasadzie indukcji elektromagnetycznej. W cewce mamy dwa uzwojenia – pierwotne i wtórne. Kiedy prąd przepływa przez uzwojenie pierwotne, tworzy pole magnetyczne, które z kolei indukuje napięcie w uzwojeniu wtórnym, sięgając nawet 20-40 kV! Taki skok napięcia to klucz do zapalenia mieszanki paliwowo-powietrznej w cylindrze. Jeśli cewka zapłonowa jest uszkodzona, można mieć problemy z uruchomieniem silnika, a także z jego równą pracą oraz większym zużyciem paliwa. Dlatego warto regularnie sprawdzać stan cewki podczas przeglądów technicznych. Takie podejście jest zgodne z obowiązującymi normami konserwacji i naprawy samochodów.

Pytanie 37

Podczas diagnostyki elektrycznej układu zapłonowego wykryto, że silnik nie uruchamia się z powodu braku iskry. Jaka może być przyczyna tego problemu?

A. Zatkany filtr powietrza
B. Uszkodzona cewka zapłonowa
C. Zbyt niskie napięcie akumulatora
D. Niewłaściwe ciśnienie wtrysku paliwa
Brak iskry w układzie zapłonowym jest najczęściej spowodowany problemem z cewką zapłonową. Cewka zapłonowa ma kluczowe znaczenie, ponieważ zamienia niskie napięcie z akumulatora na wysokie napięcie potrzebne do wytworzenia iskry w świecy zapłonowej. Gdy cewka jest uszkodzona, nie jest w stanie wytworzyć wymaganego napięcia, co prowadzi do braku iskry i uniemożliwia uruchomienie silnika. W praktyce, diagnoza uszkodzonej cewki zapłonowej może obejmować pomiar oporności uzwojeń cewki za pomocą multimetru oraz sprawdzenie fizycznego stanu cewki, takiego jak pęknięcia czy ślady przepaleń. Z mojego doświadczenia wynika, że dobrze jest również sprawdzić połączenia elektryczne i upewnić się, że nie ma korozji czy przerw. Wymiana uszkodzonej cewki zapłonowej jest standardową praktyką w naprawach układów zapłonowych i jest zgodna z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 38

Podczas inspekcji elementów systemu hamulcowego zauważono pęknięcia wentylowanych tarcz hamulcowych. W takim przypadku powinno się je

A. zespawać.
B. otrzeć.
C. wymienić.
D. przetoczyć.
Wymiana wentylowanych tarcz hamulcowych jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności układu hamulcowego. Pęknięcia w tarczach hamulcowych mogą prowadzić do poważnych problemów, takich jak nierównomierne hamowanie, drżenie kierownicy podczas hamowania, a nawet całkowita awaria hamulców. Zgodnie z normami branżowymi, tarcze hamulcowe powinny być wymieniane, gdy występują znaczące uszkodzenia, które mogą wpływać na ich funkcję. Przykładowo, w przypadku zauważenia pęknięć, które mogą rozwinąć się w większe uszkodzenia, nie należy ryzykować dalszej eksploatacji. W praktyce, technicy często dokumentują stan techniczny tarcz podczas przeglądów, co pozwala na szybkie podejmowanie decyzji o ich wymianie. Wymiana tarcz hamulcowych jest zatem nie tylko zgodna z dobrymi praktykami, ale także kluczowa dla bezpieczeństwa pojazdu i pasażerów. Tylko nowe, nieuszkodzone tarcze mogą zagwarantować odpowiednią wydajność hamowania oraz stabilność pojazdu w różnych warunkach drogowych.

Pytanie 39

Zanim przeprowadzisz pomiar ciśnienia sprężania w silniku wysokoprężnym czterocylindrowym, należy najpierw usunąć

A. wtryskiwacz z analizowanego cylindra
B. wszystkie świec żarowych
C. świecę zapłonową z analizowanego cylindra
D. wszystkie świece zapłonowe
Wymontowanie wtryskiwacza z badanego cylindra przed badaniem ciśnienia sprężania jest nieprawidłowe, ponieważ wtryskiwacze nie mają wpływu na ten pomiar. Ich główną funkcją jest wtrysk paliwa do cylindra, co nie ma związku z procesem sprężania powietrza. Z kolei demontaż świec zapłonowych w silniku wysokoprężnym jest niewłaściwy, gdyż silniki te nie są wyposażone w świece zapłonowe, a zamiast tego korzystają ze świec żarowych. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla właściwej diagnostyki silników wysokoprężnych. Zgubienie lub pominięcie detali, takich jak rodzaj stosowanej świecy, może prowadzić do błędnych założeń i mylnych diagnoz. Ponadto, demontowanie świecy zapłonowej z badanego cylindra w silniku wysokoprężnym jest zbędne, ponieważ te silniki nie mają takiego rodzaju zapłonu. Właściwe przygotowanie do testu ciśnienia sprężania wymaga zrozumienia konstrukcji silnika oraz jego komponentów. Zaniedbanie tych elementów może skutkować nieprecyzyjnymi pomiarami, co ma poważne konsekwencje dla dalszej diagnostyki i ewentualnych napraw silnika. Dlatego tak ważne jest, aby przed przystąpieniem do badania ciśnienia sprężania zrozumieć zasady działania silnika i jego poszczególnych części.

Pytanie 40

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Pompa hamulcowa
B. Zbiornik powietrza
C. Kable hamulcowe
D. Zawór sterujący
Linki hamulcowe, zbiornik powietrza oraz zawór sterujący nie są elementami hydraulicznego układu hamulcowego, co może wprowadzać w błąd osoby analizujące ten temat. Linki hamulcowe są stosowane w mechanicznych układach hamulcowych, takich jak hamulce ręczne, gdzie działają na zasadzie mechanicznego przesunięcia. W hydraulicznych układach hamulcowych, zamiast linki, wykorzystuje się płyn hamulcowy, co pozwala na szybkie i skuteczne przeniesienie siły z pedału hamulca na klocki hamulcowe. Zbiornik powietrza natomiast jest elementem układów pneumatycznych, które są stosowane głównie w pojazdach ciężarowych i nie są częścią standardowych hydraulicznych układów hamulcowych w samochodach osobowych. Zawór sterujący, mimo że może być używany w różnych układach hydraulicznych, nie jest kluczowym elementem tradycyjnego hydraulicznego układu hamulcowego. Często mylone są te terminy z powodu ich użycia w różnych kontekstach, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że hydrauliczne układy hamulcowe opierają się na działaniu płynów i odpowiednich komponentów, które umożliwiają skuteczne hamowanie pojazdu, co jest fundamentem bezpieczeństwa na drodze.