Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 22 maja 2025 11:30
  • Data zakończenia: 22 maja 2025 11:43

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 16 A, charakterystyka C, krotność In = 5 do 10
B. In = 6 A, charakterystyka B, krotność In = 3 do 5
C. In = 16 A, charakterystyka B, krotność In = 3 do 5
D. In = 6 A, charakterystyka C, krotność In = 5 do 10
Wybrany wyłącznik nadprądowy o prądzie znamionowym In = 6 A z charakterystyką C oraz krotnością In w przedziale 5 do 10 jest odpowiedni do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym 5,5 A. Charakterystyka C oznacza, że wyłącznik jest przystosowany do tolerowania dużych prądów rozruchowych, które mogą występować podczas uruchamiania silnika indukcyjnego. Silniki klatkowe często mają prąd rozruchowy wielokrotnie przekraczający ich prąd znamionowy, co czyni wyłącznik z charakterystyką C idealnym wyborem. Krotność In w przedziale 5 do 10 pozwala na bezpieczne i efektywne działanie wyłącznika, zabezpieczając obwód przed skutkami przeciążeń, ale jednocześnie zapewniając możliwość rozruchu silnika. W praktyce oznacza to, że wyłącznik nie zadziała podczas normalnego rozruchu silnika, a zadziała w przypadku rzeczywistego przeciążenia lub zwarcia. Stosując się do zasad normy PN-EN 60947-2, można zapewnić optymalne działanie oraz bezpieczeństwo instalacji elektrycznej.

Pytanie 2

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. gG 16 A
C. aM 20 A
D. aR 16 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 3

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Niepalność
B. Zwiększenie wytrzymałości mechanicznej
C. Odporność na ciepło
D. Odporność na olej
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 4

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. rozdzielnica główna
B. przyłącze
C. złącze
D. wewnętrzna linia zasilająca
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 5

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Ochronne obniżenie napięcia
C. Izolowanie miejsca pracy
D. Podwójna lub wzmocniona izolacja
Separacja odbiornika to jedna z podstawowych metod ochrony przed dotykiem pośrednim, szczególnie w układach zasilania, gdzie izolacja galwaniczna jest kluczowa. W przypadku analizy transformatora o przekładni 230 V/230 V, zastosowanie tej metody oznacza, że urządzenie zasilane jest z transformatora, który nie jest połączony elektrycznie z innymi obwodami. Dzięki temu, jeśli dojdzie do awarii w jednym z obwodów, prąd nie popłynie do innych części instalacji, co znacząco zwiększa bezpieczeństwo użytkowania. W praktyce oznacza to, że w różnych obszarach zastosowań, takich jak instalacje w laboratoriach czy w obiektach służby zdrowia, separacja odbiornika jest stosowana do zapewnienia minimalnego ryzyka porażenia prądem. Dodatkowo, zgodnie z normami IEC 61140, separacja odbiornika jest uznawana za istotny element projektowania instalacji elektrycznych, co podkreśla jej znaczenie w zapewnieniu bezpieczeństwa użytkowników.

Pytanie 6

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. gG
B. aL
C. aM
D. gR
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 7

W jakiej sytuacji instalacja elektryczna w biurze wymaga przeprowadzenia naprawy?

A. W trakcie realizacji prac konserwacyjnych w pomieszczeniu, np. malowanie ścian
B. Gdy wartości jej parametrów są poza granicami określonymi w instrukcji eksploatacji
C. Kiedy pomiar natężenia oświetlenia w miejscu pracy jest mniejszy od wymaganego
D. Podczas zmiany tradycyjnych żarówek na energooszczędne
Instalacja elektryczna w pomieszczeniu biurowym musi być poddawana naprawie, gdy jej parametry nie mieszczą się w granicach określonych w instrukcji eksploatacji. Oznacza to, że wartości takie jak napięcie, natężenie czy rezystancja muszą odpowiadać standardom określonym przez producenta lub normy branżowe, takie jak PN-IEC 60364, które regulują kwestie bezpieczeństwa i funkcjonalności instalacji elektrycznych. Przykładem może być sytuacja, gdy pomiary przeprowadzone w biurze wskazują na zbyt niskie napięcie, co może prowadzić do niewłaściwego działania urządzeń biurowych. W takim przypadku konieczne jest zidentyfikowanie źródła problemu, co może obejmować wymianę uszkodzonych przewodów, integrację dodatkowych obwodów czy zastosowanie stabilizatorów napięcia. Ignorowanie takich sytuacji może skutkować nie tylko uszkodzeniem sprzętu, ale również stwarzać poważne zagrożenie dla bezpieczeństwa osób przebywających w danym pomieszczeniu.

Pytanie 8

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 1000 V
B. 100 V
C. 250 V
D. 500 V
Minimalna wymagana wartość napięcia probierczego przy pomiarach rezystancji izolacji w obwodach SELV i PELV wynosi 250 V. Tego rodzaju obwody są projektowane z myślą o bezpieczeństwie użytkowników, a ich izolacja musi spełniać określone standardy jakości. Przeprowadzenie pomiaru rezystancji izolacji z użyciem napięcia 250 V pozwala na skuteczne zidentyfikowanie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpieczeństwa porażenia prądem elektrycznym. W praktyce, przy pomiarach tego typu, wartość 250 V jest uznawana za wystarczającą do zbadania jakości izolacji, a także zapewnia odpowiedni margines bezpieczeństwa. Na przykład, w przypadku instalacji elektrycznych w budynkach mieszkalnych, stosowanie tego napięcia probierczego pozwala na wykrycie nieprawidłowości, które mogą powstać w wyniku starzenia się materiałów lub niewłaściwego montażu. Warto również zauważyć, że normy międzynarodowe, takie jak IEC 60364, wskazują na konieczność przeprowadzania pomiarów izolacji przy odpowiednich wartościach napięcia, aby zapewnić bezpieczeństwo użytkowania elektrycznych urządzeń i instalacji.

Pytanie 9

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Napięcia dotykowego
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Rezystancji uziemienia
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 10

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd obciążeniowy
B. Prąd różnicowy oraz czas reakcji
C. Napięcie w sieci oraz prąd różnicowy
D. Obciążenie prądowe i czas reakcji
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 11

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
C. Montaż ochronników przepięciowych w głównej rozdzielnicy
D. Użycie transformatora separacyjnego do zasilania
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 12

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 500 V
C. 1 000 V
D. 2 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 13

Jakie wartości krotności prądu znamionowego obejmuje obszar działania wyzwalaczy elektromagnetycznych w samoczynnych wyłącznikach instalacyjnych nadprądowych typu C?

A. (5÷10) · In
B. (3÷5) · In
C. (2÷3) · In
D. (5÷10) · In
Odpowiedź (5÷10) · In jest prawidłowa, ponieważ wyzwalacze elektromagnetyczne samoczynnych wyłączników instalacyjnych nadprądowych typu C działają w określonym zakresie krotności prądu znamionowego. Zgodnie z normą IEC 60947-2, wyzwalacze te są zaprojektowane do zadziałania przy prądzie zwarciowym równym 5 do 10 razy prąd znamionowy (In). Oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zadziała, aby chronić obwód przed uszkodzeniem, w przypadku gdy prąd przekroczy 5-krotną wartość znamionową. Przykładem praktycznym może być instalacja elektryczna w budynku komercyjnym, gdzie zastosowanie wyłączników typu C jest zalecane w obwodach z silnikami elektrycznymi, które mogą przy rozruchu generować wyższe prądy. Ich zastosowanie minimalizuje ryzyko fałszywego zadziałania wyłącznika podczas normalnego funkcjonowania obwodu, jednocześnie zapewniając odpowiednią ochronę w przypadku rzeczywistego zagrożenia.

Pytanie 14

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
B. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
C. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
D. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
Gniazda wtyczkowe każdego pomieszczenia zasilane z osobnego obwodu nie są praktyką zalecaną w kontekście nowych instalacji elektrycznych w mieszkaniach. W rzeczywistości gniazda wtyczkowe są zazwyczaj grupowane w obwody, co pozwala na efektywniejsze wykorzystanie przewodów oraz zmniejszenie kosztów instalacji. Zgodnie z normami PN-IEC 60364, zaleca się zasilanie gniazd wtyczkowych w różnych pomieszczeniach z jednego obwodu, co czyni instalację bardziej elastyczną i łatwiejszą w eksploatacji. Przykładowo, w przypadku lokali mieszkalnych często stosuje się obwody trójfazowe, które zapewniają równomierne obciążenie i zmniejszają ryzyko przeciążenia. Gniazda wtyczkowe w kuchni, które wymagają osobnego obwodu, są wyjątkiem, ponieważ często zasilają urządzenia o dużej mocy, takie jak piekarniki czy lodówki. Ostatecznie, taka praktyka oszczędza na kosztach instalacji i ułatwia przyszłe modyfikacje bez potrzeby rozbudowy infrastruktury elektrycznej.

Pytanie 15

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Funkcja budynku
B. Typ instalacji
C. Warunki atmosferyczne, którym podlega instalacja
D. Liczba odbiorników zasilanych z instalacji
Warunki zewnętrzne, przeznaczenie budynku oraz rodzaj instalacji mają istotny wpływ na częstotliwość sprawdzeń okresowych instalacji elektrycznej. Użytkownicy często mylą te aspekty z liczbą zainstalowanych odbiorników, co jest błędnym podejściem. Warunki zewnętrzne, takie jak wilgotność, temperatura czy zanieczyszczenia, mogą znacznie wpłynąć na stan techniczny instalacji. Na przykład, w obiektach narażonych na wysoką wilgotność, takich jak baseny czy obiekty przemysłowe, instalacje elektryczne powinny być poddawane bardziej skrupulatnym inspekcjom. Przeznaczenie budynku także odgrywa kluczową rolę; budynki użyteczności publicznej muszą spełniać wyższe standardy bezpieczeństwa, co wiąże się z koniecznością częstszych przeglądów. Rodzaj instalacji również wpływa na wymagania dotyczące częstotliwości badań. Na przykład, instalacje wykonane w trudnych warunkach, takie jak w przemyśle chemicznym, wymagają regularnych sprawdzeń z uwagi na ryzyko uszkodzenia. Powszechne jest myślenie, że im więcej odbiorników, tym większe ryzyko, co w rzeczywistości nie jest głównym czynnikiem determinującym potrzebę przeglądów. Kluczowe jest zrozumienie, że bezpieczeństwo elektryczne powinno opierać się na analizie ryzyka, a nie tylko na liczbie odbiorników w instalacji.

Pytanie 16

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. niebieski
B. czerwony
C. szary
D. żółty
Wkładki topikowe, jako elementy zabezpieczające w obwodach elektrycznych, są klasyfikowane według wartości prądu znamionowego, co znajduje swoje odzwierciedlenie w kolorach obudowy. W przypadku wkładki o prądzie znamionowym 20 A stosuje się kolor niebieski, co jest zgodne z normami określającymi oznaczenia kolorystyczne. W praktyce, znajomość tych norm jest kluczowa dla właściwego doboru zabezpieczeń w instalacjach elektrycznych. Użycie wkładek topikowych o odpowiednich wartościach jest istotne, aby zminimalizować ryzyko przegrzania oraz uszkodzeń instalacji. Przykładowo, w przypadku awarii lub zwarcia, wkładka o odpowiednim prądzie znamionowym zadziała w odpowiednim czasie, co zapewnia bezpieczeństwo użytkowania urządzeń elektrycznych. Warto zaznaczyć, że standardy międzynarodowe, takie jak IEC 60269, precyzują klasyfikację wkładek topikowych, co potwierdza ich istotną rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych.

Pytanie 17

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 2,3 Ω
B. 4,6 Ω
C. 0,4 Ω
D. 7,7 Ω
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 18

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Dodatkowe miejscowe wyrównawcze połączenia ochronne
B. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
C. Bardzo niskie napięcie ze źródła bezpiecznego
D. Samoczynne wyłączenie zasilania
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.

Pytanie 19

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem

A. IB ≤ IZ ≤ IN
B. IZ ≤ IN ≤ IB
C. IN ≤ IB ≤ IZ
D. IB ≤ IN ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 20

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. G9
B. MR11
C. GU10
D. E27
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 21

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Płaskim.
C. Nasadowym.
D. Imbusowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 22

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Kątownik, młotek, punktak
C. Ołówek traserski, przymiar kreskowy, rysik
D. Kątownik, ołówek traserski, sznurek traserski
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 23

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Pomiar oporu izolacji
B. Kontrola braku zwarć międzyzwojowych
C. Weryfikacja stanu szczelin komutatora
D. Wyważenie
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 24

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Weryfikacja stanu izolacji podłóg
B. Pomiar rezystancji izolacji przewodów
C. Pomiar impedancji w pętli zwarciowej
D. Sprawdzanie wyłącznika różnicowoprądowego
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 25

W dokumentacji dotyczącej instalacji elektrycznej w łazience podano, że gniazdo zasilające dla pralki powinno być umieszczone poza strefą II. Jaką minimalną odległość od wanny powinno mieć to gniazdo?

A. 0,5 m
B. 1,0 m
C. 1,2 m
D. 0,6 m
Wybór 0,5 m albo 1,0 m jako odpowiedzi na to pytanie może wynikać z pewnych nieporozumień co do stref w łazience i zasad bezpieczeństwa związanych z instalacjami elektrycznymi. Gniazdo musi być przynajmniej 0,6 m od krawędzi wanny, żeby było bezpiecznie. Odpowiedź 0,5 m jest słaba, bo zbliżenie gniazda do strefy II stwarza ryzyko porażenia prądem. Z kolei 1,0 m to też nie ma sensu, bo to za duża odległość, niezgodna z tym, co mówią przepisy. Te strefy są ściśle określone, a odpowiednie odległości mają na celu ograniczenie ryzyka, które może się pojawić w pobliżu wody. Dlatego żeby uniknąć niebezpieczeństwa związanego z nieprawidłowym montażem, ważne jest, żeby przestrzegać norm, takich jak PN-EN 60364, które mówią o zasadach instalacji elektrycznych w budynkach. Nie zapomnij także, że gniazda w łazienkach muszą być odporne na wilgoć i mieć odpowiednią klasę szczelności, bo to też wpływa na bezpieczeństwo. Ignorowanie tych zasad może prowadzić do poważnych problemów zdrowotnych i uszkodzeń sprzętu.

Pytanie 26

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225

A. 1 - niesprawny, 2 - sprawny.
B. 1 - sprawny, 2 - niesprawny.
C. Oba niesprawne.
D. Oba sprawne.
Stwierdzenie, że oba wyłączniki są niesprawne, jest niewłaściwe z kilku powodów. Przede wszystkim, analiza wyników pomiarów powinna opierać się na zrozumieniu zakresów prądów różnicowych, które są kluczowe dla oceny stanu technicznego wyłączników. W przypadku wyłączników EFI-2-25/003, prawidłowy zakres różnicowego prądu zadziałania wynosi od 0,5 do 1 IΔN. Użytkownicy często mylą pojęcia związane z parametrami technicznymi i mogą błędnie interpretować wartości pomiarów. Nieprawidłowe wnioski mogą się również wynikać z braku znajomości norm i standardów dotyczących testowania wyłączników różnicowoprądowych. Wiele osób zakłada, że wartości prądów, które są znacznie niższe od nominalnych, są sygnałem awarii, co jest mylące. Wyłączniki, które zadziałały przy odpowiednich wartościach, są w istocie sprawne i spełniają swoją funkcję ochronną. Kluczowe jest, aby użytkownicy mieli świadomość, że różnicowe prądy są tylko jednym z wielu parametrów, które należy brać pod uwagę przy ocenie stanu technicznego wyłączników. Wiedza na temat tego, jak prawidłowo interpretować wyniki pomiarów, jest niezbędna dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 27

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Każdorazowo podczas badań okresowych instalacji
B. Co najmniej raz na dwa lata
C. Przed każdym uruchomieniem urządzenia
D. Zgodnie z instrukcją obsługi danego odbiornika
Odpowiedź 'Zgodnie z instrukcją obsługi danego odbiornika' jest prawidłowa, ponieważ każda instalacja elektryczna oraz jej komponenty, takie jak odbiorniki, mają specyficzne wymagania dotyczące konserwacji określone przez producenta. Instrukcje obsługi zawierają zalecenia dotyczące częstotliwości przeglądów, które są dostosowane do charakterystyki danego urządzenia, jego zastosowania oraz warunków eksploatacyjnych. Na przykład, urządzenia używane w warunkach dużej wilgotności, jak np. piece elektryczne w łazienkach, mogą wymagać częstszych przeglądów. Regularna konserwacja pozwala na wczesne wykrywanie ewentualnych usterek, co wpływa na bezpieczeństwo użytkowania i niezawodność działania odbiorników. Ponadto, stosowanie się do zaleceń producenta związanych z konserwacją jest również zgodne z przepisami prawa, co może być istotne w przypadku inspekcji technicznych. Warto przy tym pamiętać, że w razie braku dostępu do instrukcji, należy zwrócić się o pomoc do specjalistów, którzy mogą ocenić stan techniczny urządzeń oraz zalecić odpowiednie działania.

Pytanie 28

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Uziemienie ochronne
C. Samoczynne wyłączanie zasilania
D. Separacja elektryczna
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 29

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 120 V
B. 250 V
C. 1000 V
D. 500 V
Wybór wartości 500 V jako minimalnego napięcia izolacji dla narzędzi używanych w pracach pod napięciem w instalacjach mieszkaniowych jest zgodny z normami bezpieczeństwa, które nakładają wymogi dotyczące odpowiedniego poziomu izolacji. Narzędzia izolowane o napięciu 500 V są powszechnie stosowane w branży elektrycznej, aby zapewnić bezpieczeństwo podczas wykonywania czynności konserwacyjnych lub naprawczych. Takie narzędzia są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, a ich izolacja powinna być testowana w odpowiednich warunkach. Przykłady takich narzędzi to wkrętaki, szczypce czy kombinerki, które mają oznaczenia jakościowe i są produkowane zgodnie z międzynarodowymi standardami, takimi jak IEC 60900, które definiują wymagania dla narzędzi izolowanych. Użycie narzędzi o odpowiedniej izolacji nie tylko chroni technika, ale także zapewnia, że prace są wykonywane zgodnie z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego.

Pytanie 30

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Sektorowe
B. Jednodrutowe
C. Płaskie
D. Wielodrutowe
Odpowiedź "Wielodrutowe" to strzał w dziesiątkę! Przewód SMYp ma właśnie taką konstrukcję, z wielu cienkich drutów, co daje mu dużą elastyczność. Dzięki temu świetnie sprawdza się tam, gdzie trzeba coś szybko zamontować lub gdzie przewody muszą się wyginać. Często używa się go w instalacjach audio czy wideo, a także w systemach automatyki. W praktyce nadaje się do domów i przemysłowych zastosowań, bo jest i trwały, i giętki. Zgodność z normami IEC i EN oznacza, że można na nich polegać, a ich żywotność w różnych warunkach eksploatacyjnych jest naprawdę dobra. Także dobrze, że to wiesz!

Pytanie 31

Jak powinno się przeprowadzać zalecane przez producenta okresowe testy działania wyłącznika różnicowoprądowego?

A. Określając minimalny prąd upływu, który powoduje zadziałanie wyłącznika
B. Mierząc czas reakcji przy wymuszeniu prądu upływu wynoszącego IΔn
C. Naciskając przycisk "TEST"
D. Wykonując kontrolne doziemienie
Naciskanie przycisku 'TEST' na wyłączniku różnicowoprądowym (RCD) jest zalecaną metodą przeprowadzania okresowego sprawdzenia jego działania. To działanie symuluje sytuację, w której dochodzi do prądu upływu, co powinno spowodować natychmiastowe zadziałanie urządzenia. Dzięki temu można zweryfikować, czy wyłącznik działa prawidłowo i czy jest w stanie skutecznie chronić przed porażeniem prądem elektrycznym. Warto podkreślić, że producenci urządzeń elektrycznych oraz normy takie jak PN-EN 61008-1 zalecają regularne testowanie RCD co najmniej raz w miesiącu. Przykład praktycznego zastosowania to wykonanie testu przed rozpoczęciem sezonu letniego, kiedy to wiele osób korzysta z urządzeń elektrycznych na świeżym powietrzu, co zwiększa ryzyko wystąpienia porażenia prądem. Regularne testowanie wyłączników różnicowoprądowych nie tylko zapewnia bezpieczeństwo, ale również może zaoszczędzić koszty związane z naprawami czy stratami energoelektrycznymi wynikającymi z niewłaściwego działania instalacji elektrycznej.

Pytanie 32

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Przekaźnik priorytetowy.
C. Regulator temperatury.
D. Automat zmierzchowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 33

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. zweryfikowanie ciągłości połączeń w instalacji
B. wykonanie pomiaru rezystancji uziemienia
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. określenie czasu oraz prądu zadziałania wyłącznika RCD
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 34

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy szeregowo, napięciowy równolegle
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy i napięciowy równolegle
D. Prądowy i napięciowy szeregowo
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 35

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. współpracujący z przekaźnikiem sygnalizacyjnym
B. współpracujący z przekaźnikiem czasowym
C. współpracujący z bezpiecznikiem topikowym
D. wyposażony w aparat różnicowoprądowy
No więc, poprawna odpowiedź to wyłącznik, który działa razem z bezpiecznikiem topikowym. Jego głównym zadaniem jest ochrona obwodu przed przeciążeniem i zwarciem. Bezpieczniki topikowe to dość popularny element w instalacjach elektrycznych, bo automatycznie przerywają obwód, gdy prąd jest za duży. Jak prąd przekroczy ustaloną wartość, to topik się przepala i obwód się przerywa. To wszystko jest zgodne z normami bezpieczeństwa, np. PN-IEC 60898, które mówią, jak powinny działać zabezpieczenia elektryczne. Używanie takiego wyłącznika w połączeniu z bezpiecznikami topikowymi naprawdę zwiększa bezpieczeństwo i chroni różne urządzenia przed uszkodzeniem. W domach często można je spotkać w skrzynkach rozdzielczych, co daje dobrą ochronę przed możliwymi awariami. Pamiętaj też, że warto regularnie sprawdzać i wymieniać bezpieczniki, żeby cały system działał jak należy.

Pytanie 36

Który z wymienionych systemów powinien być zainstalowany w instalacji elektrycznej zasilającej istotne odbiory niskiego napięcia, aby w momencie utraty zasilania nastąpiło automatyczne przełączenie pomiędzy podstawowym źródłem a rezerwowym źródłem zasilania?

A. SRN
B. SPZ
C. SCO
D. SZR
Wybór innych układów, takich jak SRN (System Rozdziału Napięcia), SPZ (System Powiadamiania Zasilania) czy SCO (System Command Output), jest niewłaściwy, ponieważ nie spełniają one wymagań dotyczących automatycznego przełączania źródeł zasilania. SRN koncentruje się na rozdzielaniu napięcia pomiędzy różne obwody i nie jest przeznaczony do monitorowania źródeł zasilania. Nie zapewnia automatyzacji ani rezerwowego zasilania, co jest kluczowe w kontekście zapewnienia ciągłości działania. Z kolei SPZ jest systemem, który głównie informuje o stanie zasilania, ale nie podejmuje działań w celu przełączenia źródła zasilania. Ostatni z wymienionych, SCO, jest systemem komunikacyjnym, który nie ma zastosowania w kontekście zarządzania zasilaniem. Użytkownicy mogą mylić te układy z SZR, sądząc, że ich funkcje obejmują automatyczne zarządzanie zasilaniem. W praktyce, nieprawidłowe zrozumienie funkcji tych systemów może prowadzić do ryzykownych sytuacji w obiektach wymagających stabilnego zasilania. Kluczowe jest, aby przy wyborze odpowiedniego układu kierować się jego specyfiką i przeznaczeniem, a także stosować się do dobrych praktyk oraz standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo w instalacjach elektrycznych.

Pytanie 37

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. DC 500 V i AC 50 V
B. AC 500 V i DC 50 V
C. DC 500 V i AC 100 V
D. AC 500 V i DC 10 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 38

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Minimalny przekrój przewodów podłączonych do zacisków
B. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Klasę ochronności przed porażeniem energią elektryczną
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 39

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. odłącznika
C. wyłącznika nadprądowego
D. wyłącznika różnicowoprądowego
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 40

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
B. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
C. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.