Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 8 czerwca 2025 22:42
  • Data zakończenia: 8 czerwca 2025 22:51

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 1 kHz
C. 0,1 kHz
D. 100 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 2

Jaką czynność należy wykonać najpierw, gdy podczas serwisowania instalacji antenowej telewizji naziemnej zauważono obniżenie poziomu sygnału antenowego?

A. Oczyścić wszystkie złącza
B. Zamienić przewód antenowy
C. Wyregulować ustawienie anteny
D. Wyregulować odbiornik
Wyregulowanie ustawienia anteny jest kluczowym krokiem w przypadku stwierdzenia spadku poziomu sygnału antenowego. Anteny telewizyjne, w zależności od ich typu i lokalizacji, są zaprojektowane tak, aby odbierały sygnał radiowy z określonego kierunku. Niekiedy, na przykład z powodu zmiany warunków atmosferycznych, przeszkód w terenie czy działań budowlanych, kąt nachylenia lub kierunek anteny mogą wymagać korekty. Regulacja anteny powinna być przeprowadzana zgodnie z zaleceniami producenta oraz obowiązującymi standardami, takimi jak normy DVB-T, które określają wymagania dotyczące jakości sygnału. Przykładem praktycznego zastosowania jest użycie analizatora sygnału, który pozwala precyzyjnie ustawić antenę, aby osiągnąć optymalny poziom odbioru. Warto także pamiętać, że przed rozpoczęciem regulacji warto zidentyfikować, czy nie ma innych problemów z instalacją, takich jak uszkodzenia przewodów czy złączy, co może wpłynąć na jakość sygnału.

Pytanie 3

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
B. Połączenie przewodu za pomocą tulejek zaciskowych
C. Zainstalowanie w miejscu uszkodzenia złączki typu F
D. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
Zainstalowanie w miejscu uszkodzenia złączki typu F to najlepszy sposób na naprawę przerwanego kabla antenowego, gdyż złączki te są standardem w transmisji sygnału telewizyjnego i radiowego. Gwarantują one niskie straty sygnału oraz stabilne połączenie. Złączki typu F są zaprojektowane z myślą o minimalizacji refleksji sygnału, co jest kluczowe dla zachowania jakości odbioru. Przykładowo, gdy stosujemy złączkę F, zapobiegamy niepożądanym zakłóceniom, które mogą wystąpić przy innych metodach łączenia kabli. W instalacjach antenowych, standardem jest używanie kabli koncentrycznych, a zastosowanie złączek typu F pozwala na łatwe połączenie z urządzeniami, takimi jak dekodery czy telewizory. Warto również pamiętać o regularnym sprawdzaniu stanu połączeń i wymianie uszkodzonych elementów, co jest zgodne z najlepszymi praktykami utrzymania instalacji RTV.

Pytanie 4

Rezystor podciągający, który jest połączony z wyjściem bramki TTL w cyfrowych układach, stosuje się w celu

A. sprzęgania układów CMOS→TTL
B. dopasowania impedancji w układach TTL
C. eliminacji hazardu statycznego w układach TTL
D. sprzęgania układów TTL→CMOS
Rezystor podciągający, podłączony do wyjścia bramki TTL, pełni kluczową rolę w zapewnieniu kompatybilności pomiędzy układami TTL i CMOS. Jego głównym zadaniem jest podciąganie napięcia na wyjściu do poziomu logicznego '1', co jest istotne w sytuacji, gdy bramka TTL nie jest aktywna. W praktyce oznacza to, że kiedy bramka TTL nie generuje wyjścia, rezystor podciągający zapobiega swobodnemu unoszeniu się napięcia, co mogłoby prowadzić do niepewnych stanów na wyjściu. Przykładem zastosowania tego rozwiązania jest projektowanie układów scalonych, gdzie wyjście TTL jest używane do sterowania wejściem CMOS. W takich aplikacjach stosowanie rezystorów podciągających jest uważane za dobrą praktykę, ponieważ przyczynia się do stabilności całego systemu, minimalizując ryzyko wystąpienia błędów logicznych. W kontekście standardów, rozwiązanie to jest powszechnie zalecane w dokumentacji technicznej dotyczącej integracji układów TTL i CMOS, co czyni je nieodłącznym elementem inżynierii cyfrowej.

Pytanie 5

Podczas wymiany uszkodzonych części elektronicznych w systemie automatyki przemysłowej, technik korzysta z narzędzi z uchwytami pokrytymi izolacją, aby zabezpieczyć się przed

A. wysoką temperaturą
B. uszkodzeniami mechanicznymi
C. porażeniem prądem elektrycznym
D. niską wilgotnością
Izolacja uchwytów narzędzi stosowanych w instalacjach automatyki przemysłowej jest kluczowym środkiem ochrony przed porażeniem prądem elektrycznym. Prąd elektryczny, w przypadku kontaktu z nagimi metalowymi częściami narzędzi, może prowadzić do poważnych obrażeń, a nawet śmierci. Dlatego odpowiednie zastosowanie narzędzi z izolowanymi uchwytami jest niezbędne, aby zminimalizować ryzyko takich zdarzeń. W takich środowiskach, jak przemysł, gdzie występują wysokie napięcia, izolacja jest nie tylko zalecana, ale wręcz wymagana przez normy bezpieczeństwa, takie jak IEC 60900, która określa wymagania dotyczące narzędzi izolowanych do pracy pod napięciem. Przykładem zastosowania mogą być wkrętaki, szczypce czy klucze, które są używane w instalacjach elektrycznych. Używając narzędzi z izolacją, instalatorzy mogą bezpiecznie pracować w obszarach potencjalnego ryzyka, co przyczynia się do poprawy bezpieczeństwa w miejscu pracy oraz zwiększa efektywność wykonywanych zadań.

Pytanie 6

Jakie elementy chłodzące urządzeń powinny być poddane czyszczeniu w trakcie konserwacji?

A. Czujnika kontaktronowego
B. Symetryzatora antenowego
C. Zwrotnicy antenowej
D. Zasilacza komputerowego
Kiedy wybierasz elementy, które nie potrzebują czyszczenia, pokazuje to, że nie do końca rozumiesz, jak działają urządzenia elektroniczne. Zwrotnice antenowe czy symetryzatory antenowe zarządzają sygnałem, a ich budowa zwykle nie pozwala na gromadzenie się kurzu. Dlatego nie musisz ich tak często czyścić, jak zasilaczy. Konserwacja w ich przypadku bardziej polega na sprawdzaniu, czy wszystko działa jak należy. A jeżeli chodzi o czujniki kontaktronowe, to też nie mają chłodzenia, więc ich konserwacja to głównie dbanie o to, by dobrze reagowały na zmiany w otoczeniu. Często mylimy te urządzenia z tymi, które wymagają aktywnego chłodzenia, przez co źle rozumiemy, jak ważne jest czyszczenie. Warto pamiętać, że każde z tych urządzeń ma inne wymagania konserwacyjne niż zasilacze, więc dobrze znać ich specyfikę, aby zadbać o odpowiednią konserwację.

Pytanie 7

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Programowanie
B. Regulacja parametrów
C. Czyszczenie
D. Pomiary sprawdzające
Programowanie to głównie takie zajęcie, które polega na tworzeniu i zmienianiu oprogramowania, co pozwala na sterowanie różnymi urządzeniami elektronicznymi. Kiedy mówimy o konserwacji tych urządzeń, to programowanie nie wchodzi w skład typowych działań konserwacyjnych. Tu chodzi o to, żeby sprzęt działał jak należy, więc skupiamy się na czyszczeniu, regulacji i przeprowadzaniu różnych sprawdzeń. Na przykład, czyszczenie wentylatorów czy złączy to coś, co naprawdę może pomóc uniknąć przegrzewania się urządzenia. A regulacja parametrów? To sposób na dostosowanie sprzętu do zmieniających się warunków, co ma ogromne znaczenie dla wydajności. Więc, programowanie jest ważne, ale nie dotyczy bezpośrednio codziennych zadań związanych z konserwacją, które mają na celu utrzymanie sprzętu w dobrej formie.

Pytanie 8

Zanim rozpoczniesz konserwację jednostki centralnej komputera stacjonarnego, co należy wykonać?

A. wymontować pamięci RAM
B. uziemić metalowe elementy obudowy
C. odłączyć przewód zasilający
D. wymontować dysk twardy
Odłączenie przewodu zasilającego przed rozpoczęciem konserwacji jednostki centralnej komputera stacjonarnego to naprawdę ważna sprawa. Dzięki temu zarówno sprzęt, jak i osoba, która to robi, są w większym bezpieczeństwie. Przewód zasilający daje prąd do jednostki, więc jego odpięcie zmniejsza ryzyko porażenia prądem i oszczędza podzespoły przed uszkodzeniami, których można uniknąć. W sumie, wielu pasjonatów napraw komputerów stosuje tę zasadę jak mantra. W moim doświadczeniu zawsze lepiej jest być ostrożnym. Przydaje się też położenie maty antystatycznej, żeby nie narobić bałaganu z ładunkami elektrostatycznymi. A w sytuacjach, kiedy pracujemy na serwerach czy innych bardziej skomplikowanych komputerach, pamiętajmy, że czasem trzeba użyć wyłącznika zasilania. Lepiej dmuchać na zimne, szczególnie kiedy chodzi o drogie komponenty.

Pytanie 9

Multiswitche umożliwiają

A. wybór programów telewizyjnych do odbioru.
B. zmianę kąta azymutu anteny.
C. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
D. sterowanie wszystkimi torami satelitarnymi.
Multiswitche to urządzenia stosowane w systemach telewizji satelitarnej, które umożliwiają rozdzielenie sygnału satelitarnego na wiele gniazd odbiorczych. Dzięki nim można zbudować instalację antenową o dowolnej liczbie odbiorników, co jest szczególnie przydatne w dużych obiektach, takich jak bloki mieszkalne czy hotele. Multiswitch pozwala na podłączenie wielu dekoderów do jednego talerza satelitarnego. W praktyce oznacza to, że mieszkańcy mogą korzystać z różnych programów telewizyjnych bez potrzeby instalacji osobnych anten. Warto podkreślić, że dobrze zaprojektowana instalacja z użyciem multiswitchy powinna uwzględniać odpowiednie normy, takie jak EN 50083-2, które dotyczą parametrów technicznych systemów rozdzielających sygnały. Właściwe dobranie multiswitcha oraz jego konfiguracja mogą zadecydować o jakości odbioru i stabilności sygnału w różnych warunkach użytkowania.

Pytanie 10

Kiedy w obwodzie prądu stałego rezystancja obciążenia jest taka sama jak rezystancja wewnętrzna źródła, to mówi się

A. o dopasowaniu energetycznym
B. o zwarciu w obwodzie
C. o stanie nieustalonym
D. o przerwie w obwodzie
Odpowiedź "o dopasowaniu energetycznym" jest prawidłowa, ponieważ odnosi się do sytuacji, w której rezystancja obciążenia równa jest rezystancji wewnętrznej źródła prądu. W takim przypadku osiągamy maksymalną transfer energii do obciążenia, co jest zasadą znaną jako twierdzenie o maksymalnym transferze mocy. Z praktycznego punktu widzenia oznacza to, że urządzenie podłączone do źródła będzie działać z największą efektywnością, ponieważ straty energii są minimalne. To zjawisko jest często wykorzystywane w aplikacjach audio, gdzie głośniki muszą być dobrze dopasowane do wzmacniacza, aby uzyskać optymalną jakość dźwięku. W inżynierii elektrycznej i elektronicznej, dopasowanie energetyczne jest kluczowe przy projektowaniu układów, aby zapewnić ich stabilność i wydajność. Na przykład, w sieciach telekomunikacyjnych, dopasowanie impedancji jest ważne dla minimalizacji refleksji sygnału i utraty danych. Zatem, zrozumienie tej zasady pozwala inżynierom na skuteczne projektowanie systemów elektronicznych.

Pytanie 11

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. stopień ochrony obudowy
B. częstotliwość napięcia zasilającego
C. moc pozorna
D. ilość zacisków wyjściowych
Wybór nieprawidłowych odpowiedzi może wynikać z niepełnego zrozumienia, czym są standardy ochrony obudowy urządzeń elektronicznych. Odpowiedź zakładająca, że zapis IP20 odnosi się do mocy pozornej jest błędna, ponieważ moc pozorna dotyczy ilości energii elektrycznej, a nie stopnia ochrony urządzenia. Z kolei, odpowiedź wskazująca na częstotliwość napięcia zasilającego odnosi się do parametrów elektrycznych, które mają na celu zdefiniowanie, jaką częstotliwość prądu stosuje urządzenie, co jest zupełnie niezwiązane z ochroną obudowy. Odpowiedź sugerująca, że IP20 dotyczy ilości zacisków wyjściowych także jest myląca. Liczby w oznaczeniu IP nie mają związku z liczbowym opisem elementów wewnętrznych urządzenia, lecz koncentrują się na ochronie przed dostępem do wnętrza obudowy. W praktyce, nieprawidłowe rozumienie tych znaczeń może prowadzić do niewłaściwego doboru sprzętu w różnych zastosowaniach, co w konsekwencji może skutkować uszkodzeniami, zagrożeniem dla użytkowników lub zwiększeniem kosztów eksploatacji. Wiedza na temat oznaczeń IP i ich zastosowania jest kluczowym elementem w projektowaniu systemów elektrycznych i elektronicznych, dlatego warto poświęcić czas na ich dokładne przestudiowanie.

Pytanie 12

Aby ocenić sprawność kabla krosowego, należy zastosować

A. wobulatora, gdy kabel jest odłączony od wszystkich urządzeń
B. testera kabli sieciowych, gdy kabel jest odłączony od wszystkich urządzeń
C. wobulatora, gdy kabel jest podłączony do sieci komputerowej
D. testera kabli sieciowych, gdy kabel jest podłączony do sieci komputerowej
Wykorzystywanie testera kabli sieciowych przy kablu włączonym do sieci komputerowej może prowadzić do błędnych wyników diagnostycznych. Dzieje się tak, ponieważ inne urządzenia podłączone do sieci mogą wpływać na sygnały przesyłane przez badany kabel, co może skutkować fałszywymi wskazaniami błędów, które nie są rzeczywiście związane z jego stanem. Podobnie, korzystanie z wobulatora w trakcie pracy kabla w sieci komputerowej nie jest zalecane, ponieważ wobulator, który jest urządzeniem do analizy sygnałów, również może być zakłócony przez inne urządzenia, co czyni jego pomiary nieprecyzyjnymi. W przypadku kabla odłączonego od wszystkich urządzeń, możemy uzyskać czystsze wyniki, co pozwala na skuteczną diagnostykę. Warto również zwrócić uwagę, że błędne podejście do testowania kabli może prowadzić do pomijania istotnych problemów, które mogą wpływać na wydajność całej sieci, takich jak uszkodzenia w okablowaniu czy niewłaściwe połączenia. To z kolei może prowadzić do frustracji użytkowników, a także do kosztownych przestojów w pracy systemów. Dlatego do testowania kabli zawsze należy podchodzić z należytą starannością i przestrzegać dobrych praktyk inżynieryjnych, które podkreślają znaczenie izolacji kabla od innych elementów sieci podczas badania jego stanu.

Pytanie 13

Charakterystykę amplitudowo-częstotliwościową wzmacniacza mocy można określić przy użyciu generatora funkcyjnego oraz

A. rezystor
B. oscyloskop
C. miernik prądu
D. miernik częstotliwości
Odpowiedź 'oscyloskop' jest prawidłowa, ponieważ oscyloskop jest kluczowym przyrządem do analizy sygnałów elektrycznych. Pozwala na obserwację kształtu fali, co jest niezbędne do określenia charakterystyki amplitudowo-częstotliwościowej wzmacniacza mocy. W praktyce, używając oscyloskopu, możemy zmieniać częstotliwość sygnału wyjściowego wzmacniacza i jednocześnie obserwować zmiany amplitudy sygnału. Dzięki temu możemy określić, jak wzmacniacz reaguje na różne częstotliwości, co jest fundamentalne dla jego oceny i kalibracji. Zgodnie z dobrymi praktykami, oscyloskopy są często używane w laboratoriach oraz przy testowaniu sprzętu audio, co pozwala inżynierom na optymalizację parametrów pracy wzmacniacza. Użycie oscyloskopu do analizy sygnału jest zgodne z normami branżowymi, które wymagają dokładnych pomiarów dla zapewnienia jakości i niezawodności urządzeń elektronicznych. Wzmacniacze mocy powinny być testowane w szerokim zakresie częstotliwości, aby upewnić się, że działają zgodnie z oczekiwaniami, a oscyloskop jest do tego niezastąpionym narzędziem.

Pytanie 14

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. wzrost prądu lasera
B. zwiększenie prędkości silnika
C. zmniejszenie prędkości silnika
D. spadek prądu lasera
Zwiększenie prądu lasera jest typowym objawem zużycia głowicy laserowej w odtwarzaczach CD. Kiedy głowica laserowa ulega zużyciu, efektywność emitowania światła lasera maleje, co skutkuje potrzebą zwiększenia prądu w celu uzyskania odpowiedniej intensywności promieniowania. W praktyce, gdy głowica laserowa nie jest w stanie dostarczyć wystarczającej ilości energii do poprawnego odczytu danych zapisanych na płycie, system automatycznie zwiększa prąd, aby zrekompensować tę utratę. Taki mechanizm jest zgodny z zasadami działania systemów optycznych i protokołami diagnostycznymi, które monitorują poziom sygnału oraz jego jakość. Warto również zauważyć, że zbyt wysokie napięcie może prowadzić do przegrzania komponentów, co może skutkować trwałym uszkodzeniem urządzenia. Dlatego ważne jest regularne serwisowanie i monitorowanie stanu technicznego odtwarzacza, aby zminimalizować ryzyko awarii.

Pytanie 15

Który układ cyfrowy należy wykorzystać do konwersji kodu BCD na kod dla wyświetlacza siedmiosegmentowego?

A. Transkoder
B. Koder
C. Dekoder
D. Enkoder
Transkoder to taki sprytny układ cyfrowy, który pomaga zamieniać dane z jednego formatu na inny. W naszym przypadku chodzi o konwersję kodu BCD, czyli Binary-Coded Decimal, na kod dla wyświetlacza siedmiosegmentowego. W BCD każda cyfra dziesiętna jest przedstawiona w postaci binarnej, co oznacza, że do jej zapisania potrzebujemy czterech bitów. Wyświetlacze siedmiosegmentowe muszą z kolei wiedzieć, które segmenty zapalić, żeby pokazać odpowiednią cyfrę od 0 do 9. Transkoder robi właśnie to - bierze dane w kodzie BCD i generuje sygnały, które zapalają odpowiednie segmenty od A do G oraz punkt. Można go spotkać w różnych urządzeniach, na przykład w cyfrowych zegarach, gdzie czas musi być wyświetlany tak, żeby każdy mógł go łatwo odczytać. Używanie transkoderów to standard w elektronice, niezależnie czy w przemyśle, czy w produkcie dla konsumenta. Jak widać, są one naprawdę przydatne i często znaleźć je można w układach scalonych, co sprawia, że mniej miejsca zajmują na płytce drukowanej.

Pytanie 16

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. oczyścić oraz pomalować antenę, a następnie ją ustawić
B. określić rezystancję falową kabla i w razie potrzeby ją skorygować
C. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
D. zmierzyć impedancję falową kabla koncentrycznego
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 17

Który z elementów atmosferycznych wpływa na jakość sygnału telewizyjnego w standardzie DVB-T?

A. Duża wilgotność powietrza
B. Wysoka temperatura powietrza
C. Porywisty podmuch wiatru
D. Intensywny opad atmosferyczny
Intensywny opad atmosferyczny ma kluczowy wpływ na jakość odbioru sygnału telewizyjnego w standardzie DVB-T, ponieważ może prowadzić do znacznego osłabienia sygnału radiowego. Przeszkody atmosferyczne, w tym deszcz, mogą powodować tłumienie sygnału, co skutkuje zniekształceniem obrazu lub całkowitym brakiem sygnału. Na przykład, w przypadku silnych opadów deszczu, fale radiowe mogą być absorbowane i rozpraszane, co zmniejsza ich zasięg. W praktyce oznacza to, że użytkownicy, którzy znajdują się w obszarze o dużych opadach, mogą doświadczać problemów z jakością odbioru. W branży telekomunikacyjnej stosuje się różne metody, aby zminimalizować wpływ opadów na odbiór sygnału, takie jak stosowanie anten o wyższej czułości lub instalowanie wzmacniaczy sygnału. Zgodnie z normami DVB-T, projektowanie systemów nadawczych musi uwzględniać zmienne warunki atmosferyczne, aby zapewnić stabilność i jakość sygnału w różnych warunkach pogodowych, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 18

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odtwarzacza DVD
B. odbiornika TV
C. rejestratora DVR
D. nadajnika TV
Wybór nadajnika TV, odbiornika TV lub odtwarzacza DVD jako odpowiedzi wydaje się zrozumiały, jednak opiera się na pewnych mylnych założeniach dotyczących funkcji i zastosowania tych urządzeń. Nadajniki TV i odbiorniki TV są elementami systemów telewizyjnych, których główną rolą jest przechwytywanie i przesyłanie sygnału wideo oraz audio. Nadajniki koncentrują się na emisji sygnału, natomiast odbiorniki na dekodowaniu i wyświetlaniu go. Dla użytkowników, którzy poszukują informacji o monitoringu, funkcje te nie są wystarczające. Odtwarzacze DVD z kolei służą do odtwarzania filmów i programów zapisanych na nośnikach optycznych, a ich techniczne parametry są zupełnie inne niż te związane z rejestratorami DVR. W kontekście systemów nadzoru wideo, istotne jest zrozumienie, że rejestratory DVR są zaprojektowane do rejestrowania i przechowywania obrazu z kamer, co nie ma związku z funkcjami ani specyfikacjami urządzeń telewizyjnych. Praktyczne podejście do tematu monitoringu wymaga znajomości takich parametrów jak rozdzielczość, kompresja, sposób przechowywania danych, czy możliwości analizy wideo, co nie jest charakterystyczne dla żadnego z wymienionych urządzeń. Błędne odpowiedzi mogą wynikać z pomylenia roli różnych urządzeń w systemach wideo, co podkreśla znaczenie precyzyjnego zrozumienia ich funkcji.

Pytanie 19

Jak powinna wyglądać prawidłowa sekwencja działań przy konserwacji systemu automatyki przemysłowej?

A. Zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych, przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych
B. Kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
C. Dokręcenie styków zaciskowych, kontrola przewodów ciśnieniowych, przeprowadzenie pomiarów elektrycznych instalacji, zapoznanie się z dokumentacją techniczną instalacji
D. Przeprowadzenie pomiarów elektrycznych instalacji, kontrola przewodów ciśnieniowych, zapoznanie się z dokumentacją techniczną instalacji, dokręcenie styków zaciskowych
Prawidłowa kolejność czynności konserwacyjnych w instalacji automatyki przemysłowej rozpoczyna się od zapoznania się z dokumentacją techniczną. Jest to kluczowy krok, który umożliwia zrozumienie specyfiki instalacji, funkcji poszczególnych komponentów oraz zależności pomiędzy nimi. Następnie, dokręcenie styków zaciskowych jest niezwykle istotne, ponieważ luźne połączenia mogą prowadzić do awarii, przepięć czy strat energii. Po tych działaniach przeprowadza się pomiary elektryczne, które pozwalają na ocenę stanu technicznego instalacji oraz identyfikację potencjalnych problemów, takich jak zwarcia czy niskie napięcia. Na końcu sprawdzane są przewody ciśnieniowe, co jest niezbędne dla zapewnienia bezpieczeństwa i funkcjonalności systemu. Taka kolejność gwarantuje, że wszystkie działania są wykonywane w sposób przemyślany i efektywny, zgodnie z najlepszymi praktykami branżowymi, a także normami bezpieczeństwa, co przyczynia się do długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 20

Jaki środek ochrony osobistej jest najczęściej używany podczas naprawy urządzeń elektronicznych w serwisie RTV?

A. Szkła ochronne
B. Maska ochronna do twarzy
C. Fartuch ochronny
D. Rękawiczki
Wybór innych środków ochrony indywidualnej, takich jak okulary, maski ochronne czy rękawice, może wydawać się logiczny, jednak nie adresują one najistotniejszych zagrożeń podczas wykonywania napraw w serwisach RTV. Okulary, mimo że chronią oczy przed drobnymi odłamkami czy kurzem, nie zapewniają ochrony całego ciała przed substancjami chemicznymi, które mogą być obecne w procesie naprawy. W przypadku maski ochronnej, jej zasadniczym celem jest ochrona dróg oddechowych, co jest istotne, lecz nie wystarcza do zabezpieczenia całego ciała przed ewentualnymi zagrożeniami. Rękawice, choć mogą chronić dłonie przed zranieniami czy chemikaliami, to wciąż pozostawiają inne części ciała nieosłonięte. Zastosowanie fartucha ochronnego jest szczególnie ważne, ponieważ łączy w sobie ochronę przed różnorodnymi zagrożeniami, co czyni go najbardziej wszechstronnym środkiem ochrony w tej sytuacji. Niezrozumienie tej zasady prowadzi do błędnych wniosków dotyczących bezpieczeństwa w miejscu pracy. Kluczowym jest holistyczne podejście do ochrony osobistej, które powinno obejmować stosowanie fartucha jako priorytetowego środka ochrony, a nie jedynie dodatku do pozostałych elementów wyposażenia ochronnego.

Pytanie 21

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. wyładowań atmosferycznych
B. wietrznej pogody
C. ograniczonej widoczności
D. niskiej temperatury
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 22

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym ujemnym napięciem na wyjściu
B. regulowanym ujemnym napięciem na wyjściu
C. nieregulowanym dodatnim napięciem na wyjściu
D. regulowanym dodatnim napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 23

Które z podanych elementów układów elektrycznych mogą być sprzęgnięte magnetycznie?

A. Cewki
B. Rezystory
C. Diody
D. Tranzystory
Cewki są elementami obwodów elektrycznych, które mogą być sprzężone magnetycznie dzięki zjawisku indukcji elektromagnetycznej. Gdy przez cewkę przepływa prąd, wytwarza ona pole magnetyczne. Jeśli w pobliżu znajduje się druga cewka, to zmiana prądu w pierwszej cewce może indukować prąd w drugiej. To zjawisko jest szeroko wykorzystywane w transformatorach, które są kluczowymi urządzeniami w systemach zasilania. Transformator składa się z dwóch cewek na wspólnym rdzeniu magnetycznym i umożliwia zmianę napięcia prądu przemiennego. Ponadto, sprzężenie magnetyczne jest podstawą działania silników elektrycznych, które przekształcają energię elektryczną w mechaniczną, a także w indukcyjnych elementach elektronicznych wykorzystywanych w różnych aplikacjach, takich jak filtry czy oscylatory. Dobre praktyki w projektowaniu obwodów elektrycznych uwzględniają odpowiednią separację i proporcje cewek, aby zminimalizować straty energii oraz zapewnić optymalne działanie systemu.

Pytanie 24

Korytka kablowe powinny być

A. przyspawane
B. przyklejone
C. przykręcone
D. zaciskane
Odpowiedź 'przykręcić' jest poprawna, ponieważ korytka kablowe do ściany budynku powinny być montowane w sposób zapewniający ich stabilność i trwałość. Przykręcanie korytek do ściany umożliwia ich solidne mocowanie, co jest istotne dla ochrony przewodów elektrycznych przed uszkodzeniami mechanicznymi oraz wpływem warunków atmosferycznych. Do montażu korytek często stosuje się wkręty samowiercące lub wkręty do drewna, w zależności od materiału, z którego wykonana jest ściana. Przykładowo, w przypadku ścian betonowych lub murowanych można użyć kołków rozporowych. Dobrą praktyką jest również wykorzystanie odpowiednich dystansów, które pomogą w utrzymaniu korytka w odpowiedniej odległości od ściany, co sprzyja wentylacji i minimalizuje ryzyko przegrzewania się kabli. Zgodnie z normami, takimi jak PN-IEC 60364, odpowiedni montaż korytek kablowych jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznej.

Pytanie 25

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jedynie dostarczony przez producenta szlabanu
B. uniwersalny (samouczący)
C. jakikolwiek zmiennokodowy
D. jakikolwiek stałokodowy
Wybór odpowiedzi "wyłącznie dostarczony przez producenta szlabanu" jest właściwy, ponieważ systemy zdalnego sterowania, takie jak Keeloq, często są zaprojektowane do pracy z określonymi pilotami, które są dostarczane przez producenta. System Keeloq oparty jest na technologii kodowania zmiennego, co oznacza, że piloty są programowane do współpracy z danym urządzeniem, zapewniając maksymalne bezpieczeństwo i niezawodność. Użycie uniwersalnych pilotów lub pilotów stałokodowych może prowadzić do problemów z kompatybilnością, a nawet do naruszenia bezpieczeństwa, ponieważ mogą nie być w stanie poprawnie zidentyfikować sygnałów lub mogą być podatne na nieautoryzowane kopiowanie sygnałów. Przykładem zastosowania tego podejścia jest system zabezpieczeń w parkingach, gdzie korzystanie z pilotów dostarczonych przez producenta zapobiega nieautoryzowanemu dostępowi. W przypadku uszkodzenia pilota, zaleca się kontakt z producentem w celu uzyskania oryginalnych komponentów, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 26

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. niesymetryczne (unbalanced)
B. symetryczne (balanced)
C. sygnalizacyjne YKSY
D. sygnalizacyjne YKSwXs
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 27

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
B. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
C. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
D. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
Zwrotnica antenowa pełni kluczową rolę w instalacji antenowej w budynkach wielorodzinnych, umożliwiając integrację sygnałów telewizyjnych z różnych źródeł. Dzięki jej zastosowaniu, sygnały z kilku anten mogą być wprowadzone do jednego przewodu antenowego, co pozwala na efektywne zarządzanie sygnałem i ogranicza ilość kabli w budynku. Przykładem może być budynek z instalacją odbierającą sygnał z anteny naziemnej oraz anteny satelitarnej – zwrotnica pozwala na przesyłanie tych sygnałów do jednego odbiornika. W praktyce, stosowanie zwrotnic zgodnych z obowiązującymi normami, takimi jak EN 50083, zapewnia ich wysoką jakość i minimalizację strat sygnału. Dobrze zaprojektowana instalacja z wykorzystaniem zwrotnic przyczynia się do uzyskania lepszego odbioru sygnału, co jest szczególnie istotne w budynkach o dużej liczbie mieszkańców, gdzie każdy chce mieć dostęp do wysokiej jakości transmisji telewizyjnej.

Pytanie 28

Który z poniższych programów jest przeznaczony do symulacji działania układów elektronicznych?

A. Power Point
B. Paint
C. Word
D. PSpice
PSpice to zaawansowane oprogramowanie służące do symulacji i analizy układów elektronicznych. Jest szczególnie popularne wśród inżynierów elektroniki oraz studentów kierunków technicznych, ponieważ umożliwia modelowanie różnych układów i analizowanie ich zachowania bez potrzeby budowy fizycznego prototypu. Dzięki PSpice użytkownicy mogą symulować zarówno układy analogowe, jak i cyfrowe, co pozwala na szybkie sprawdzenie teorii i założeń projektowych. Przykładem zastosowania PSpice może być analiza układów wzmacniaczy, gdzie można zbadać ich odpowiedź częstotliwościową lub badanie układów zasilania, aby ocenić stabilność i wydajność. Program jest zgodny z wieloma standardami branżowymi, co sprawia, że jego wiedza i umiejętności są cennym atutem na rynku pracy. PSpice dostarcza również narzędzi do analizy wrażliwości oraz umożliwia przeprowadzanie symulacji Monte Carlo, co znacznie zwiększa precyzję i wiarygodność wyników.

Pytanie 29

Przy włączaniu wzmacniacza akustycznego konieczne jest ustawienie wartości

A. częstotliwości sygnału wejściowego na możliwie najniższą
B. częstotliwości sygnału wejściowego na możliwie najwyższą
C. amplitudy sygnału wejściowego na możliwie najwyższą
D. amplitudy sygnału wejściowego na możliwie najniższą
Właściwe ustawienie amplitudy sygnału wejściowego jest kluczowe w procesie uruchamiania wzmacniacza akustycznego. Ustawienie zbyt wysokiej amplitudy sygnału wejściowego, jak w przypadku odpowiedzi sugerującej, prowadzi do przesterowania, co jest jednym z najczęstszych problemów w systemach audio. Przesterowanie sygnału to zjawisko, w którym amplituda sygnału przekracza maksymalne możliwości wzmacniacza. W rezultacie dochodzi do zniekształcenia dźwięku oraz potencjalnego uszkodzenia sprzętu. Z kolei ustawienie częstotliwości sygnału na wartości minimalne lub maksymalne nie ma wpływu na bezpieczeństwo urządzenia i nie jest związane z optymalnym działaniem wzmacniacza przy jego uruchamianiu. Optymalizacja częstotliwości sygnału jest istotna w kontekście uzyskania odpowiedniego brzmienia, ale nie w fazie uruchamiania, gdyż ta powinna skupić się na stabilności sygnału. Powszechnym błędem w myśleniu o ustawieniach wzmacniacza jest przekonanie, że głośność powinna być maksymalna już na starcie, co może prowadzić do nieprzyjemnych doświadczeń akustycznych oraz uszkodzenia sprzętu. Standardy branżowe zalecają stopniowe zwiększanie poziomu sygnału, co pozwala na bezpieczne dostosowanie ustawień i uniknięcie nieprzyjemnych skutków ubocznych.

Pytanie 30

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. ADD
B. SINGLE
C. DUAL
D. X - Y
Wybór trybu X - Y w oscyloskopie dwukanałowym jest kluczowy dla analizy sygnałów za pomocą krzywych Lissajous. W tym trybie sygnał z kanału CH-A jest przedstawiany na osi Y, a sygnał z kanału CH-B na osi X, co pozwala na bezpośrednie porównanie obu sygnałów. Krzywe Lissajous są wykorzystywane do wizualizacji relacji częstotliwości i fazy między dwoma sygnałami. Jeżeli częstotliwości obu sygnałów są zbliżone, na ekranie oscyloskopu pojawi się charakterystyczny kształt krzywej, którego geometria pozwala na określenie stosunku częstotliwości sygnałów. Na przykład, jeśli sygnał badany w CH-A ma częstotliwość 2 razy większą niż sygnał w CH-B, to na oscyloskopie zobaczymy kształt przypominający elipsę. To podejście jest powszechnie stosowane w praktyce inżynieryjnej, szczególnie w dziedzinach takich jak telekomunikacja i elektronika, gdzie precyzyjna analiza sygnałów jest niezbędna. Poprawna interpretacja krzywych Lissajous wymaga znajomości relacji między częstotliwościami oraz umiejętności ich analizy, co jest istotnym aspektem pracy z oscyloskopem.

Pytanie 31

Switch w sieci LAN

A. posiada serwer DNS
B. odczytuje adresy IP
C. przydziela adresy IP
D. przekazuje sygnał do PC
Istnieje wiele nieporozumień dotyczących funkcji przełączników w sieciach LAN, co prowadzi do błędnych odpowiedzi. Po pierwsze, przydzielanie adresów IP jest zadaniem serwera DHCP (Dynamic Host Configuration Protocol), a nie przełącznika. Serwer DHCP automatycznie przydziela adresy IP urządzeniom w sieci, co jest kluczowe dla ich dalszej komunikacji. W sieci LAN, każdy komputer wymaga unikalnego adresu IP, aby mógł komunikować się z innymi urządzeniami, a przełącznik nie ma takiej funkcji. Odczytywanie adresów IP również leży poza zakresem obowiązków przełączników. Te urządzenia operują na poziomie adresów MAC, co oznacza, że nie analizują ruchu na poziomie IP. W przypadku serwera DNS (Domain Name System), jego rola polega na tłumaczeniu nazw domenowych na adresy IP, co jest niezbędne do lokalizacji serwerów w internecie. Przełącznik nie pełni funkcji serwera DNS, ponieważ nie angażuje się w procesy związane z rozpoznawaniem nazw. Typowym błędem jest mylenie funkcji przełączników z innymi komponentami sieciowymi, co może prowadzić do nieefektywnego projektowania sieci oraz utrudnienia w rozwiązywaniu problemów. Zrozumienie roli każdego elementu w infrastrukturze sieciowej jest kluczowe dla prawidłowego funkcjonowania i efektywności całego systemu.

Pytanie 32

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 3 m2
B. 1 m2
C. 4 m2
D. 2 m2
W kontekście aranżacji przestrzeni biurowej, minimalna powierzchnia 2 m2 przypadająca na jednego pracownika jest zgodna z normami i zaleceniami dotyczącymi ergonomii oraz zdrowia w miejscu pracy. Zgodnie z wytycznymi, takimi jak normy PN-EN 15251 oraz wytyczne BHP, zapewnienie odpowiedniej przestrzeni osobistej jest kluczowe dla komfortu i efektywności pracy. Pracownicy, mający do dyspozycji nie tylko biurko, ale także przestrzeń na poruszanie się, ograniczają uczucie przytłoczenia i zwiększają swoją wydajność. Przykładem zastosowania tej zasady mogą być biura typu open space, gdzie mimo otwartej przestrzeni, odpowiednie rozmieszczenie stanowisk pracy oraz zapewnienie przynajmniej 2 m2 na osobę sprzyja lepszej koncentracji i mniejszemu stresowi. Warto również zauważyć, że w przypadku organizacji biura, większa przestrzeń wpływa na poprawę komunikacji między pracownikami oraz umożliwia lepsze funkcjonowanie zespołów, co jest szczególnie ważne w kontekście współczesnych modeli pracy zespołowej.

Pytanie 33

Aby przeprowadzić konserwację systemu alarmowego, należy

A. zmierzyć omomierzem jakość połączeń kabli, sprawdzić stan izolacji przewodów induktorem
B. zobaczyć reakcję czujników na ruch, sprawdzić datę wyświetlaną na manipulatorze, ocenić napięcie akumulatora
C. przywrócić centralę do ustawień fabrycznych, ponownie zainstalować oprogramowanie centrali alarmowej
D. wyczyścić wnętrze obudowy z centralą, ocenić jakość styku sabotażowego centrali, zabrać akumulator do ładowania
Dokładne sprawdzenie reakcji czujek na ruch, daty wyświetlanej na manipulatorze oraz napięcia akumulatora jest kluczowe w procesie konserwacji systemu alarmowego. Czujki ruchu są podstawowym elementem zabezpieczeń, a ich regularne testowanie pozwala upewnić się, że działają zgodnie z normami i są w pełni funkcjonalne. Przykładowo, w przypadku, gdy czujki nie reagują na ruch, może to prowadzić do fałszywego poczucia bezpieczeństwa oraz zwiększonego ryzyka włamania. Sprawdzanie daty na manipulatorze jest istotne, gdyż wiele systemów alarmowych ma przypisane terminy do aktualizacji oprogramowania czy wymiany baterii, co pomaga w utrzymaniu ich efektywności. Napięcie akumulatora również jest czynnikiem krytycznym, ponieważ niewłaściwy poziom napięcia może skutkować awarią systemu w sytuacji braku zasilania. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie regularnych przeglądów i konserwacji, co jest kluczowe dla zapewnienia bezpieczeństwa obiektów. Wiedza na temat tych procedur pozwala nie tylko na poprawne funkcjonowanie systemu, ale także na zwiększenie jego żywotności oraz niezawodności.

Pytanie 34

Jakiego środka używa się do oczyszczania płytek drukowanych po zamontowaniu elementów elektronicznych?

A. Kwasu
B. Benzyny
C. Alkoholu
D. Wody
Izopropanol to naprawdę świetny wybór do czyszczenia płytek drukowanych po lutowaniu. Działa jak rozpuszczalnik i szybko odparowuje, co jest mega przydatne, bo dzięki temu zmniejszamy ryzyko uszkodzenia elementów. W branży to już standard – zawsze warto umyć płytki, żeby pozbyć się resztek topnika, olejów i innych brudów, które mogą wpłynąć na to, jak wszystko będzie działać. Jak używasz 99% alkoholu izopropylowego, to skutecznie usuwasz pozostałości po lutowaniu. To z kolei zapobiega takim problemom jak korozja czy zwarcia. No i czyszczenie alkoholem jest zgodne z normami IPC-A-610 i IPC-J-STD-001, więc wiadomo, że to sprawdzone metody. W sumie, to szybkie i efektywne, dlatego wielu w warsztatach wybiera właśnie alkohol do czyszczenia płytek.

Pytanie 35

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
B. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
C. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
D. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
Opaska antyelektrostatyczna na rękę jest kluczowym elementem zabezpieczającym podczas pracy z delikatnymi komponentami elektronicznymi, szczególnie z układami scalonymi CMOS. Układy te są szczególnie wrażliwe na ładunki elektrostatyczne, które mogą powodować uszkodzenia, a nawet zniszczenie elementów. Opaska działa na zasadzie uziemienia ciała montera, co pozwala na rozproszenie nagromadzonych ładunków elektrostatycznych, eliminując ryzyko ich przekazania na wrażliwe komponenty. Przykładem praktycznego zastosowania opaski może być wymiana pamięci RAM czy procesora w komputerze stacjonarnym. W takich sytuacjach, nie tylko zapobiega się uszkodzeniu pojedynczych układów, ale także zwiększa się ogólną niezawodność urządzenia. Zgodnie z normami IPC (Institute for Interconnecting and Packaging Electronics), stosowanie opasek antyelektrostatycznych jest standardową procedurą w procesach montażu i serwisowania elektroniki, co dodatkowo podkreśla ich znaczenie w branży.

Pytanie 36

Skrót SNR odnosi się do

A. współczynnika błędów modulacji
B. stosunku sygnału do szumu
C. bitowej stopy błędów
D. współczynnika zniekształceń nieliniowych
Zarówno bitowa stopa błędów, współczynnik zniekształceń nieliniowych, jak i współczynnik błędów modulacji są ważnymi parametrami w inżynierii telekomunikacyjnej, jednak nie są one tym, co oznacza skrót SNR. Bitowa stopa błędów (BER) odnosi się do liczby błędnie odebranych bitów w stosunku do całkowitej liczby przesyłanych bitów. Wysoka bitowa stopa błędów może być rezultatem niskiego SNR, ponieważ szum w systemie może zniekształcać sygnał, prowadząc do niepoprawnego odbioru danych. Z kolei współczynnik zniekształceń nieliniowych odnosi się do wpływu nieliniowych efektów w systemach, które mogą wprowadzać dodatkowe zniekształcenia do sygnału. Wartości tego współczynnika mogą być wyznaczane w kontekście jakości sygnału, ale same w sobie nie mierzą stosunku sygnału do szumu. Współczynnik błędów modulacji dotyczy skuteczności procesu modulacji sygnału i również nie jest bezpośrednio związany ze stosunkiem sygnału do szumu. Zrozumienie tych różnic jest kluczowe dla prawidłowej analizy jakości systemów komunikacyjnych. Często osoby uczące się tych zagadnień mylą te koncepcje, zakładając, że są one wymienne, podczas gdy SNR jest kluczowym wskaźnikiem efektywności systemu komunikacyjnego i jego zdolności do przesyłania informacji przy minimalnym wpływie szumów.

Pytanie 37

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe wzrośnie
B. napięciowe zostanie niezmienne
C. napięciowe zmniejszy się
D. prądowe pozostanie na tym samym poziomie
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 38

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. wat.
C. war.
D. woltoamper.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 39

Jaką maksymalną liczbę urządzeń sieciowych da się podłączyć do komputerowej sieci, której maska podsieci wynosi 255.255.255.248?

A. 6 urządzeń
B. 4 urządzenia
C. 8 urządzeń
D. 2 urządzenia
W przypadku adresu maski podsieci 255.255.255.248, pojawiają się powszechne nieporozumienia dotyczące liczby urządzeń, które można podłączyć do danej sieci. Wiele osób może błędnie zakładać, że maska 255.255.255.248, co oznacza 29 bitów, pozwala na podłączenie 8 urządzeń. Takie podejście opiera się na myśleniu, że wszystkie adresy w podsieci są dostępne dla hostów, co jest nieprawidłowe. Ważne jest zrozumienie, że adresy IP w każdej podsieci są zorganizowane w taki sposób, że jeden adres jest zarezerwowany jako adres sieci (identyfikujący samą sieć), a jeden jako adres rozgłoszeniowy (służący do komunikacji z wszystkimi urządzeniami w sieci). Dlatego z 8 potencjalnych adresów IP, tylko 6 może być przypisanych do urządzeń. Takie błędne myślenie może prowadzić do niewłaściwego projektowania sieci, co w praktyce może skutkować problemami z konfiguracją i skalowalnością. Ponadto, zrozumienie efektywnego zarządzania podziałem na podsieci jest kluczowe w infrastrukturze sieciowej, zwłaszcza w większych organizacjach, gdzie optymalne wykorzystanie adresów IP jest kluczowe dla prawidłowego funkcjonowania sieci.

Pytanie 40

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. usytuowanie gniazd
B. metodę ułożenia przewodów
C. położenie anteny
D. jakość sygnału w gniazdku
Podczas rozważania, co należy sprawdzić podczas okresowej kontroli instalacji TV, można natknąć się na różne koncepcje, które niekoniecznie są kluczowe dla jakości odbioru. Na przykład, umiejscowienie anteny, mimo że istotne, nie jest przedmiotem analizy w kontekście okresowej kontroli, ponieważ zakłada się, iż antena została poprawnie zainstalowana na etapie montażu. W przypadku lokalizacji gniazd, również należy zauważyć, że ich umiejscowienie powinno być określone już na etapie projektowania instalacji. Ponadto, sposób ułożenia kabli, choć ważny dla estetyki i bezpieczeństwa, nie ma bezpośredniego wpływu na jakość sygnału. W rzeczywistości, niepoprawna analiza takiej sytuacji może prowadzić do błędnych wniosków, które nie rozwiążą problemów związanych z odbiorem telewizyjnym. Kluczowym elementem jest bowiem poziom sygnału, który jest bezpośrednio związany z jakością odbioru. Skupienie się na umiejscowieniu anteny, gniazd czy kabli bez zbadania poziomu sygnału może prowadzić do zignorowania podstawowego problemu, jakim jest nieodpowiednia moc sygnału. Tego typu myślenie może skutkować nieefektywnym podejściem do problematyki instalacji telewizyjnych, co w konsekwencji nie przynosi oczekiwanych rezultatów w postaci wysokiej jakości odbioru.