Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 09:19
  • Data zakończenia: 7 kwietnia 2025 09:51

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Żółto-zielony.
B. Czarny.
C. Czerwony.
D. Jasnoniebieski.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 3

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 1 m2
B. 3 m2
C. 2 m2
D. 4 m2
W kontekście aranżacji przestrzeni biurowej, minimalna powierzchnia 2 m2 przypadająca na jednego pracownika jest zgodna z normami i zaleceniami dotyczącymi ergonomii oraz zdrowia w miejscu pracy. Zgodnie z wytycznymi, takimi jak normy PN-EN 15251 oraz wytyczne BHP, zapewnienie odpowiedniej przestrzeni osobistej jest kluczowe dla komfortu i efektywności pracy. Pracownicy, mający do dyspozycji nie tylko biurko, ale także przestrzeń na poruszanie się, ograniczają uczucie przytłoczenia i zwiększają swoją wydajność. Przykładem zastosowania tej zasady mogą być biura typu open space, gdzie mimo otwartej przestrzeni, odpowiednie rozmieszczenie stanowisk pracy oraz zapewnienie przynajmniej 2 m2 na osobę sprzyja lepszej koncentracji i mniejszemu stresowi. Warto również zauważyć, że w przypadku organizacji biura, większa przestrzeń wpływa na poprawę komunikacji między pracownikami oraz umożliwia lepsze funkcjonowanie zespołów, co jest szczególnie ważne w kontekście współczesnych modeli pracy zespołowej.

Pytanie 4

Do styku oznaczonego jako TMP w czytniku kart umiejscowionym przy wejściu należy podłączyć

A. szeregowo do zasilania czytnika
B. do zacisku uziemiającego w centrali
C. równolegle do zasilania czytnika
D. do linii antysabotażowej systemu alarmowego
Podłączenie styku TMP równolegle do zasilania czytnika jest błędne, ponieważ nie zapewnia to właściwej detekcji stanu sabotażu. Tego typu rozwiązanie może wprowadzić fałszywe poczucie bezpieczeństwa, ponieważ nie monitoruje integralności samego urządzenia. W sytuacji, gdy system zasilania zostanie przerwane, styk TMP nie zgłosi żadnego alarmu, co jest kluczowe w kontekście ochrony obiektów. Plasowanie styku w szereg z zasilaniem czytnika również nie jest poprawne, ponieważ w takim przypadku, jeśli dojdzie do wyłączenia czytnika, również nie zostanie zarejestrowane żadne zdarzenie alarmowe. Ponadto, podłączenie do zacisku uziemiającego w centrali nie tylko jest niezgodne z zasadami instalacji, ale również nie ma sensu w kontekście monitorowania stanu czytnika. Uziemienie ma na celu jedynie ochronę przed przepięciami i nie jest odpowiednim sposobem na detekcję sabotażu. Zastosowanie niepoprawnych metod podłączenia może prowadzić do nieefektywności systemu alarmowego oraz narazić obiekt na ryzyko związane z włamaniami czy innymi nieautoryzowanymi działaniami. Bez odpowiedniego monitorowania, skuteczność systemu zabezpieczeń zostaje znacznie ograniczona.

Pytanie 5

Jeśli po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski lub rozmowa jest cicho, co należy zrobić?

A. dostosować napięcie w kasecie rozmownej
B. zwiększyć poziom głośności w unifonie
C. dostosować poziom głośności w zasilaczu
D. podnieść napięcie zasilania elektrozaczepu
Wybór opcji związanej z podwyższeniem poziomu głośności w unifonie nie jest wystarczająco skuteczny, ponieważ w sytuacjach, gdy dźwięk jest słabo słyszalny lub słychać piski, problem często leży w zasilaczu. Unifon, jako urządzenie odbierające sygnał, może być zbyt czuły lub nie mieć możliwości skutecznej regulacji, jeśli zasilacz nie dostarcza odpowiedniego sygnału. Ponadto, podwyższenie napięcia zasilania elektrozaczepu nie ma wpływu na jakość dźwięku w słuchawce, ponieważ elektrozaczep odpowiada tylko za otwieranie drzwi i nie wpływa na przekaz audio. Regulacja napięcia w kasecie rozmownej także nie rozwiązuje problemu, ponieważ nie jest odpowiedzialna za głośność, lecz za ogólną funkcjonalność urządzenia. Niekiedy użytkownicy błędnie myślą, że wszelkie problemy z dźwiękiem można rozwiązać poprzez dostosowanie ustawień w odbiorniku, zapominając o kluczowej roli, jaką odgrywa zasilacz w całym systemie. Z tego powodu, ważne jest, aby przy instalacji domofonów zwracać uwagę na wszystkie komponenty systemu oraz ich wzajemne oddziaływanie. Właściwe zrozumienie funkcji oraz zależności między poszczególnymi elementami jest niezbędne dla efektywnej diagnostyki i naprawy występujących problemów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. w badanym obwodzie znajduje się źródło prądowe
B. w badanym obwodzie znajduje się złącze półprzewodnikowe
C. badany obwód jest ciągły
D. badany obwód jest uszkodzony
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Termin "licznik mikrorozkazów" odnosi się do

A. manipulatora
B. oscyloskopu cyfrowego
C. systemu mikroprocesorowego
D. pętli PLL
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 10

Zasilacz impulsowy osiąga maksymalną moc wyjściową równą 60 W oraz napięcie 12 V. Jaki minimalny zakres prądu powinien być ustawiony, aby uniknąć uszkodzenia miernika?

A. 1 A
B. 2 A
C. 0,5 A
D. 5 A
Poprawna odpowiedź to 5 A, ponieważ aby określić minimalny zakres prądowy, który należy ustawić na mierniku, musimy obliczyć maksymalny prąd, jaki zasilacz impulsowy może dostarczyć przy maksymalnej mocy 60 W i napięciu 12 V. Zastosowanie wzoru P = U × I, gdzie P to moc, U to napięcie, a I to prąd, pozwala nam na obliczenie prądu: I = P / U = 60 W / 12 V = 5 A. Oznacza to, że przy prądzie o wartości 5 A zasilacz osiągnie swoją maksymalną moc wyjściową. Ustawienie niższego zakresu prądowego (np. 2 A, 1 A czy 0,5 A) spowoduje, że miernik nie będzie w stanie zmierzyć maksymalnego prądu, co może skutkować jego uszkodzeniem. Dlatego ważne jest, aby przy pomiarach prądowych stosować się do zasad bezpieczeństwa, zapewniając odpowiednią wartość zakresu pomiarowego, co jest podstawową praktyką w pracy z urządzeniami elektrycznymi i elektronicznymi.

Pytanie 11

W projekcie kabel oznakowano jako S/FTP, co to oznacza?

A. skrętka z każdą parą w oddzielnym ekranie z folii, dodatkowo w ekranie z folii
B. skrętka ekranowana zarówno folią, jak i siatką
C. skrętka z każdą parą w oddzielnym ekranie z folii
D. skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
Odpowiedź wskazuje, że kabel S/FTP (Shielded Foiled Twisted Pair) to skrętka, w której każda para przewodów jest dodatkowo ekranowana folią, a całość jest umieszczona w zewnętrznej osłonie z siatki. Taki typ kabla charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne, co czyni go idealnym do zastosowań w środowiskach o dużym poziomie zakłóceń, np. w biurach z wieloma urządzeniami elektronicznymi. Ekranowanie folią i siatką zapewnia, że sygnał przesyłany przez pary przewodów jest chroniony zarówno przed wpływem otoczenia, jak i przed wzajemnym zakłócaniem się par. Standardy takie jak ISO/IEC 11801 i ANSI/TIA-568 określają wymagania dotyczące wydajności oraz konstrukcji kabli, co podkreśla znaczenie stosowania odpowiednich materiałów i technologii w celu zapewnienia niezawodności transmisji. W praktyce kable S/FTP są często używane w sieciach lokalnych (LAN), zapewniając stabilną i szybką komunikację między urządzeniami.

Pytanie 12

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 1,0
B. p = 0,8
C. p = 0,4
D. p = 0,6
Wartość współczynnika prostokątności p = 1,0 oznacza najlepszą selektywność wzmacniacza, ponieważ wskazuje na idealne parametry przenoszenia sygnału. Wzmacniacz o p = 1,0 charakteryzuje się maksymalnym poziomem wzmocnienia w pasmie przenoszenia oraz minimalną ilością zniekształceń poza tym zakresem. W praktyce oznacza to, że wzmacniacz jest w stanie skutecznie oddzielić sygnały o różnych częstotliwościach, co jest kluczowe w aplikacjach takich jak komunikacja radiowa, gdzie ważne jest oddzielanie sygnałów o różnych częstotliwościach. W branży telekomunikacyjnej standardy, takie jak ITU-T G.703, podkreślają znaczenie selektywności w systemach transmisyjnych, co czyni ten wskaźnik krytycznym dla zapewnienia wysokiej jakości sygnału. Wartości p mniejsze niż 1,0 sygnalizują gorsze parametry selektywności, co może prowadzić do zniekształceń i utraty jakości sygnału, szczególnie w skomplikowanych systemach, gdzie wiele sygnałów jest przesyłanych równocześnie.

Pytanie 13

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
B. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
C. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
D. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 14

Osoba zajmująca się trawieniem płytek drukowanych w dziedzinie elektroniki może być narażona na

A. poparzenie środkiem chemicznym
B. pylicę płuc
C. porażenie prądem elektrycznym
D. zatrucie pokarmowe
Zatrucie pokarmowe, mimo że może być problemem zdrowotnym w różnych środowiskach pracy, nie jest typowym zagrożeniem dla elektroników zajmujących się trawieniem płytek drukowanych, które są procesem technologicznym, a nie kulinarnym. W przypadku pracy z chemikaliami, ryzyko związane z zatruciem pokarmowym jest znacznie niższe niż ryzyko oparzeń chemicznych. Porażenie prądem elektrycznym również nie jest bezpośrednio związane z procesem trawienia płytek, choć ogólnie jest to istotne zagrożenie w obszarze elektroniki. W tej branży standardowe procedury bezpieczeństwa obejmują stosowanie izolowanych narzędzi i przestrzeganie zasad pracy z urządzeniami elektrycznymi. Pylica płuc jest schorzeniem, które wynika z długotrwałej ekspozycji na pyły, ale w kontekście trawienia płytek drukowanych, ryzyko to jest ograniczone, jeśli przestrzegane są odpowiednie procedury odprowadzania powietrza i użycia filtrów. Typowe błędy myślowe, prowadzące do wyboru niepoprawnych odpowiedzi, mogą wynikać z niepełnej wiedzy na temat zagrożeń specyficznych dla danej branży, co podkreśla znaczenie edukacji w zakresie BHP i używania odpowiednich środków ochrony osobistej.

Pytanie 15

Aby móc obejrzeć wybrany film z platformy IPLA, konieczne jest posiadanie telewizora z funkcją SMART?

A. połączyć go z Internetem.
B. spiąć z odtwarzaczem Blu-ray.
C. włożyć nośnik USB.
D. zestawić z tunerem satelitarnym.
Aby oglądać filmy z serwisu IPLA, konieczne jest posiadanie dostępu do Internetu, ponieważ IPLA jest usługą streamingową, która wymaga ciągłego połączenia z siecią, aby przesyłać dane w czasie rzeczywistym. Podłączenie telewizora z funkcją SMART do Internetu można zrealizować za pomocą Wi-Fi lub przewodowego połączenia Ethernet. Po nawiązaniu połączenia użytkownik może zainstalować aplikację IPLA na swoim telewizorze i cieszyć się dostępem do bogatej biblioteki filmów i programów. Przykładem może być korzystanie z telewizora, który automatycznie aktualizuje aplikacje po podłączeniu do sieci, co pozwala na łatwy dostęp do najnowszych treści. Dobrą praktyką jest również regularne sprawdzanie połączenia internetowego i prędkości, aby zapewnić optymalne warunki do odtwarzania, co jest kluczowe dla uniknięcia opóźnień i buforowania podczas oglądania.

Pytanie 16

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 3
B. kategorii 5e
C. kategorii 6
D. kategorii 7
Odpowiedź o kategorii 5e jest poprawna, ponieważ w instalacjach sieciowych zastosowane komponenty definiują maksymalną kategorię, jaka może być osiągnięta w danej sieci. W tym przykładzie użyto panelu krosowego kategorii 7, który jest urządzeniem pozwalającym na organizację i zarządzanie połączeniami, jednak jego wydajność nie może przewyższać najniższej kategorii w instalacji - w tym przypadku gniazd abonenckich kategorii 5e. Przewody S/FTP kategorii 6 również wspierają wyższe prędkości transferu, ale ich zastosowanie w instalacji z gniazdami 5e obniża całkowitą kategorię do 5e, co oznacza maksymalną prędkość przesyłu danych do 1 Gb/s. Ważne jest, aby przy planowaniu sieci komputerowej stosować komponenty zgodne z wybraną kategorią, tak aby zapewnić optymalną wydajność i uniknąć problemów z kompatybilnością, co jest zgodne z normami ANSI/TIA-568.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
B. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
C. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
D. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 19

Jakim symbolem oznaczany jest parametr głośników wskazujący moc ciągłą (moc znamionową)?

A. PMPO
B. S
C. RMS
D. Q
Parametr RMS, czyli Root Mean Square, jest powszechnie stosowany do określenia mocy ciągłej głośników. To miara skuteczności głośnika w przetwarzaniu sygnału audio, która uwzględnia zarówno amplitudę, jak i częstotliwość dźwięku. W praktyce oznacza to, że moc RMS informuje o tym, jaką moc głośnik może utrzymać w czasie bez ryzyka uszkodzenia. Na przykład, głośnik o mocy RMS 100 W może bezpiecznie pracować przy mocy 100 W bez przegrzewania się czy zniekształceń dźwięku. W branży audio standardy dotyczące mocy RMS są uznawane za najbardziej wiarygodne, ponieważ pozwalają na porównanie różnych modeli głośników w bardziej obiektywny sposób. Warto również zauważyć, że moc PMPO (Peak Music Power Output) nie jest miarą rzeczywistej mocy, a jedynie szacunkowym wskazaniem maksymalnego poziomu, co może być mylące dla konsumentów. Dlatego w przypadku wyboru głośników, zawsze należy zwracać uwagę na parametry RMS, które odzwierciedlają rzeczywistą jakość i wydajność urządzenia.

Pytanie 20

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 1 kHz
B. 100 kHz
C. 0,1 kHz
D. 10 kHz
Częstotliwość prądu zmiennego (AC) jest odwrotnością okresu, który jest czasem jednego pełnego cyklu fali. Wzór na obliczenie częstotliwości (f) to f = 1/T, gdzie T to okres w sekundach. Dla okresu wynoszącego 0,001 s, obliczamy częstotliwość jako f = 1/0,001 s = 1000 Hz, co jest równoważne 1 kHz. Częstotliwość 1 kHz jest powszechnie występująca w różnych zastosowaniach, takich jak telekomunikacja, gdzie sygnały o wyższej częstotliwości są transmitowane z mniejszymi stratami. W praktyce 1 kHz można spotkać w prostych układach elektronicznych oraz w aplikacjach audio. Zrozumienie tego związku między okresem a częstotliwością jest kluczowe w projektowaniu i analizie systemów elektronicznych, zgodnie z zasadami inżynierii elektrycznej, które podkreślają znaczenie właściwego doboru parametrów sygnału, aby zapewnić jego skuteczną transmisję i minimalizację zakłóceń.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Router to urządzenie wykorzystywane w warstwie

A. sieci
B. prezentacji
C. sesji
D. aplikacji
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 23

Podczas montażu komponentów elektronicznych metodą lutu miękkiego nie powinno się

A. zajmować się czystością grota
B. dostosowywać temperatury lutowania do konkretnej lokalizacji na płytce
C. ustalać czasu lutowania do poszczególnych miejsc na płytce
D. przenosić lutowia na końcówce grota
Przenoszenie lutowia na grocie lutownicy jest praktyką, której należy unikać, ponieważ może prowadzić do wielu problemów związanych z jakością lutowania. Grota lutownicy powinna być czysta i odpowiednio nagrzana, aby zapewnić skuteczne i trwałe połączenie. Przenoszenie lutowia na grocie zwiększa ryzyko powstawania zanieczyszczeń, co może negatywnie wpłynąć na jakość lutowia i prowadzić do wadliwych połączeń. Zgodnie z najlepszymi praktykami, lutowie powinno być aplikowane bezpośrednio na złącze, a nie na grot. Przykładem dobrego zachowania w tym zakresie jest technika tzw. 'wstępnego podgrzewania' elementów, co zwiększa efektywność procesu lutowania oraz redukuje ryzyko przegrzania. Kolejnym aspektem jest używanie lutowia o odpowiednim składzie, które dobrze wtopi się w materiały bez tworzenia nadmiernych osadów, co z kolei pomoże w uzyskaniu czystego i mocnego połączenia.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Wymiana bezpiecznika 500 mA na bezpiecznik 2 A w urządzeniu elektronicznym może prowadzić do

A. zwiększenia zużycia prądu
B. wzrostu strat cieplnych
C. zmniejszenia efektywności
D. uszkodzenia urządzenia
Zastąpienie bezpiecznika 500 mA bezpiecznikiem 2 A w sprzęcie elektronicznym może prowadzić do uszkodzenia urządzenia z kilku kluczowych powodów. Przede wszystkim, bezpiecznik jest elementem zabezpieczającym, którego zadaniem jest przerwanie obwodu w przypadku nadmiernego prądu, co zapobiega przeciążeniu i potencjalnym uszkodzeniom komponentów. Wymiana na bezpiecznik o znacznie wyższej wartości nominalnej oznacza, że urządzenie będzie mogło pracować z prądem, który znacznie przekracza jego nominalne parametry. Na przykład, jeśli urządzenie zostało zaprojektowane do pracy z maksymalnym prądem 500 mA, przepływ prądu 2 A może prowadzić do przegrzania elementów, takich jak kondensatory czy tranzystory, co skutkuje ich uszkodzeniem. Takie działania są sprzeczne z zasadami ochrony urządzeń i mogą prowadzić do kosztownych napraw. W kontekście standardów branżowych, takich jak IEC 60950 dotyczący bezpieczeństwa sprzętu IT, dobór odpowiednich bezpieczników jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Warto również wspomnieć, że odpowiedni dobór bezpieczników w sprzęcie elektronicznym jest istotnym elementem inżynierii elektrycznej, który powinien być starannie przemyślany na etapie projektowania.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyzerować
B. zwiększyć
C. zmniejszyć
D. wyrównać
Odpowiedzi sugerujące wyrównanie, zmniejszenie lub wyzerowanie odstępu S/N wskazują na niezrozumienie tego, jak funkcjonuje proces przetwarzania obrazu w trudnych warunkach oświetleniowych. Wyrównanie odstępu S/N nie przynosi realnych korzyści, ponieważ nie poprawia on efektywności przetwarzania sygnału. W rzeczywistości, aby uzyskać lepsze rezultaty w warunkach niskiego oświetlenia, odstęp S/N musi być zwiększony, co oznacza, że sygnał musi być wyraźnie silniejszy od szumów. Zmniejszenie S/N prowadziłoby do jeszcze większych zakłóceń w obrazie, co skutkowałoby jego pogorszeniem. W przypadku wyzerowania S/N mówimy o całkowitym braku użytecznego sygnału, co jest całkowicie nieakceptowalne w kontekście tworzenia obrazów. Często pojawiające się błędne myślenie polega na założeniu, że można obejść niską jakość obrazu poprzez jakiekolwiek inne działania, co jest mylne. W rzeczywistości podstawową techniką w poprawie jakości obrazu jest optymalizacja sygnału, co jasno wskazuje, że wysokie wartości S/N są niezbędne do uzyskania jakości, która jest akceptowalna w zastosowaniach profesjonalnych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
B. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
C. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
D. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
Zmniejszający się czas podtrzymywania pracy urządzenia przez zasilacz awaryjny UPS jest sygnałem, że akumulator wymaga wymiany. Akumulatory w zasilaczach UPS mają ograniczoną żywotność, która jest zazwyczaj określana na 3-5 lat, w zależności od warunków użytkowania i jakości samego akumulatora. Z czasem ich pojemność maleje, co prowadzi do krótszego czasu działania urządzenia przy zasilaniu awaryjnym. Przykładowo, jeśli system UPS, który wcześniej działał przez 30 minut, teraz działa tylko przez 10 minut, jest to wskazanie, że akumulator stracił swoją efektywność i powinien zostać wymieniony. Regularne testowanie akumulatorów i monitorowanie ich stanu jest zalecane w ramach dobrych praktyk zarządzania energią, w zgodzie z normami takimi jak IEC 62040. Wymiana akumulatorów na czas zapewnia nieprzerwaną ochronę przed przerwami w zasilaniu, co jest kluczowe w wielu zastosowaniach, zwłaszcza w centrach danych czy systemach krytycznych.

Pytanie 36

Który z kabli jest odpowiedni do przesyłania sygnału video z kamery analogowej?

A. YTDY
B. RG58
C. YTKSy
D. RG59
Kabel RG59 jest powszechnie używany do przesyłania sygnału video z kamer analogowych, głównie ze względu na jego niską tłumienność oraz dobrą jakość sygnału na długich odległościach. RG59 charakteryzuje się impedancją 75 ohmów, co jest standardem dla większości systemów wideo, w tym telewizji kablowej i systemów CCTV. Dzięki zastosowaniu odpowiednich materiałów dielektrycznych, kabel ten skutecznie minimalizuje straty sygnału, co jest kluczowe w przypadku przesyłania obrazu w wysokiej rozdzielczości. Przykładem praktycznego zastosowania RG59 może być instalacja systemu monitoringu w obiektach komercyjnych, gdzie kamery są rozmieszczone w znacznych odległościach od rejestratorów. W takich sytuacjach, zapewnienie jakości obrazu i stabilności sygnału jest niezbędne do efektywnej pracy systemu. Decydując się na RG59, instalatorzy mogą również stosować złącza BNC, które zapewniają łatwe i bezpieczne połączenie, eliminując ryzyko zakłóceń czy utraty jakości sygnału.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Oznaczenie wiązki przewodów na schemacie elektrycznym 2xYDY3xl,5 mm2 sugeruje, że w skład tej wiązki wchodzą

A. trzy przewody trzyżyłowe o średnicy 1,5 mm2
B. dwa przewody trzyżyłowe o średnicy 1,5 mm2
C. trzy przewody dwużyłowe o średnicy 1,5 mm2
D. dwa przewody dwużyłowe o średnicy 1,5 mm2
Analizując pozostałe odpowiedzi, zauważamy, że wiele z nich opiera się na błędnych założeniach dotyczących oznaczeń przewodów. Przykładowo, odpowiedzi sugerujące zastosowanie dwużyłowych przewodów są mylne, ponieważ oznaczenie '3' w '2xYDY3x1,5 mm2' jednoznacznie wskazuje na to, że każdy przewód ma trzy żyły. Wiązki dwużyłowe nie mogą być w tym przypadku uznane za poprawne, ponieważ nie spełniają wymogów dotyczących liczby żył. Dodatkowo, istnieje powszechne nieporozumienie dotyczące interpretacji średnicy przewodów. W przypadku odwołania się do przewodów o średnicy 1,5 mm2, wiele osób może mylnie zakładać, że większa liczba żył lub ich mniejsza średnica przekłada się na wyższą moc, co jest nieprawdziwe. W rzeczywistości, przy projektowaniu instalacji elektrycznych, kluczowym jest dobór odpowiedniego typu i liczby żył dostosowanych do wymaganych obciążeń, co jest zgodne z zasadami inżynierii elektrycznej. Warto również zwrócić uwagę na normy dotyczące instalacji elektrycznych, które akcentują znaczenie stosowania przewodów dostosowanych do określonych zastosowań, co wpływa nie tylko na wydajność, ale i na bezpieczeństwo całego systemu. Zrozumienie tych aspektów jest kluczowe dla uniknięcia typowych błędów w projektowaniu i wykonawstwie instalacji elektrycznych.

Pytanie 39

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. podać leki
B. umożliwić położenie na boku
C. sprawdzić drożność dróg oddechowych
D. wykonać sztuczne oddychanie oraz masaż serca
W sytuacji zatrzymania akcji serca oraz braku oddechu najważniejsze jest, aby w pierwszej kolejności sprawdzić drożność dróg oddechowych. Bez zapewnienia drożności dróg oddechowych, nie będzie możliwe skuteczne przeprowadzenie wentylacji ani masażu serca, ponieważ niewłaściwie ukierunkowane powietrze nie dotrze do płuc. W praktyce, podczas udzielania pierwszej pomocy, należy niezwłocznie unikać wszelkich przeszkód, które mogą blokować drogi oddechowe, takich jak język, wymioty czy inne ciała obce. W standardach resuscytacji, takich jak wytyczne American Heart Association (AHA), kluczowym krokiem jest ocena i otwarcie dróg oddechowych, co powinno być zrealizowane poprzez zastosowanie manewru uniesienia podbródka lub przechylenia głowy do tyłu. Przykładem zastosowania tej zasady jest sytuacja, w której ratownik wykonuje te czynności przed przystąpieniem do udzielania sztucznego oddychania, co może znacząco zwiększyć szanse na przeżycie osoby poszkodowanej.

Pytanie 40

Podczas serwisowania konkretnego urządzenia elektronicznego, technik zauważył, że można usunąć usterkę poprzez wymianę modułu (koszt zakupu nowego modułu - 230 zł, czas trwania naprawy - 0,5 godziny) lub poprzez naprawę uszkodzonego modułu (koszt zakupu uszkodzonych elementów - 57 zł, czas trwania naprawy - 3 godziny). Koszt jednej roboczogodziny wynosi 68 zł. Koszt dostarczenia naprawionego urządzenia do klienta to 50 zł. Technik zaproponował klientowi najtańsze rozwiązanie, polegające na

A. naprawie uszkodzonego modułu bez dostarczenia naprawionego urządzenia do klienta.
B. naprawie uszkodzonego modułu z dowozem urządzenia do klienta.
C. wymianie całego modułu z dowozem urządzenia do klienta.
D. wymianie całego modułu bez dostarczania naprawionego urządzenia do klienta.
Naprawa uszkodzonego modułu bez dostarczenia naprawionego urządzenia do domu klienta jest najtańszym rozwiązaniem, które zostało zaproponowane przez pracownika. Analizując koszty, naprawa modułu wymaga wydatku 57 zł na zakup uszkodzonych elementów oraz 204 zł za roboczogodziny (3 godziny x 68 zł), co łącznie daje 261 zł. W przypadku wymiany modułu, koszty wynoszą 230 zł za nowy moduł oraz 34 zł za roboczogodziny (0,5 godziny x 68 zł), co daje 264 zł. Do tego należy doliczyć koszt dostarczenia naprawionego urządzenia, który wynosi 50 zł. Kiedy uwzględnimy dostarczenie, całkowity koszt naprawy uszkodzonego modułu wynosi 311 zł, co czyni naprawę bez dostarczenia bardziej opłacalną. Poprawne podejście w sytuacjach tego rodzaju opiera się na analizie kosztów oraz efektywności, co jest kluczowe w pracy serwisanta. Pracownicy powinni kierować się zasadą minimalizacji kosztów przy zachowaniu jakości usług, co jest zgodne z najlepszymi praktykami w branży serwisowej.