Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 maja 2025 17:52
  • Data zakończenia: 21 maja 2025 18:13

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Aby zamontować element na szynie DIN, jakie narzędzie powinno zostać zastosowane?

A. wkrętaka płaskiego
B. klucza płaskiego
C. szczypiec płaskich
D. cążków bocznych
Wkrętak płaski to takie must-have, jeśli chodzi o montowanie elementów na szynie DIN. Dzięki niemu możesz łatwo i dokładnie dokręcać śruby i wkręty, które są naprawdę popularne, gdy mocujemy różne urządzenia elektryczne, jak moduły zabezpieczeń czy przekaźniki. W praktyce, jak już zakładamy te elementy na szynę, ważne jest, żeby śruby były dobrze dokręcone. To daje stabilność całej instalacji i zmniejsza ryzyko luźnych połączeń, które mogą narobić problemów. Z tego, co wiem, każdy element powinien być zamontowany zgodnie z odpowiednim momentem obrotowym, a wkrętak płaski daje możliwość dostosowania siły dokręcania do konkretnego komponentu. No i warto dodać, że wkrętaki płaskie są w różnych rozmiarach, więc można je używać w różnych sytuacjach. Poza tym, korzystanie z wkrętaka płaskiego zamiast innych narzędzi, jak klucz płaski czy cążki, jest lepsze dla ergonomii pracy i bezpieczeństwa, bo daje większą kontrolę podczas montażu.

Pytanie 3

W systemie automatyki uległ awarii przekaźnik. Napięcie zasilające cewkę tego przekaźnika wynosi 12 V DC. Prąd przepływający przez styki robocze przekaźnika osiąga maksymalnie 20 A DC. Napięcie na stykach roboczych może wynosić nawet 100 V DC. Jakie parametry powinien posiadać przekaźnik, który ma zastąpić uszkodzony?

A. Napięcie cewki – 12 V DC Prąd styków – 25 A DC Napięcie styków – 50 V DC
B. Napięcie cewki – 12 V DC Prąd styków – 20 A DC Napięcie styków – 50 V DC
C. Napięcie cewki – 12 V DC Prąd styków – 25 A DC Napięcie styków – 300 V DC
D. Napięcie cewki – 12 V DC Prąd styków – 15 A DC Napięcie styków – 300 V DC
Wybór niewłaściwych parametrów przekaźnika może prowadzić do poważnych problemów w funkcjonowaniu systemu automatyki. Przykładowo, w przypadku pierwszej odpowiedzi, prąd styków wynoszący 15 A DC jest niewystarczający, gdyż nie pokrywa maksymalnego prądu roboczego 20 A DC. Użycie przekaźnika o zbyt niskim prądzie roboczym może prowadzić do jego przegrzania, a w konsekwencji do uszkodzenia przekaźnika i awarii całego systemu. W kolejnej odpowiedzi, napięcie styków wynoszące 50 V DC jest znacznie poniżej maksymalnego napięcia 100 V DC, co oznacza, że przekaźnik może nie być w stanie wytrzymać wymaganych warunków pracy, co prowadzi do ryzyka uszkodzenia sprzętu. W przypadku trzeciej odpowiedzi, mimo że prąd styków wynosi 25 A DC, co jest odpowiednie, napięcie styków wynoszące 300 V DC jest zbędne w kontekście zastosowania, ale nie stanowi bezpośredniego błędu. Wybierając przekaźnik, kluczowe jest, aby wszystkie parametry były dostosowane do rzeczywistych warunków pracy, co jest zgodne z zasadami projektowania systemów automatyki. Ostatecznie, kluczowe jest posługiwanie się danymi technicznymi oraz standardami branżowymi, aby zapewnić najwyższy poziom bezpieczeństwa i niezawodności w działaniu systemów.

Pytanie 4

Aby umożliwić niezależny odbiór sygnałów satelitarnych przez dwa odbiorniki satelitarne, używa się konwertera

A. Twin
B. Quad
C. Unicable
D. Monoblock
Odpowiedź "Twin" jest jak najbardziej na miejscu! Konwerter typu Twin ma to do siebie, że pozwala na odbieranie sygnałów satelitarnych przez dwa odbiorniki w tym samym czasie. Ma dwa wyjścia, co znaczy, że każdy odbiornik działa niezależnie. To super sprawa w sytuacjach, gdzie potrzebujemy różnych kanałów w różnych pokojach. Dzięki temu jeden może oglądać jeden program, a drugi zupełnie coś innego. To naprawdę wygodne! W domach, gdzie telewizja satelitarna jest popularna, konwerter Twin jest częstym wyborem. Co więcej, nie musimy używać rozdzielaczy, które mogą osłabiać sygnał. Dobrze jest też wybierać konwertery zgodne z normami EN 50494, bo to zapewnia lepszą jakość sygnału i mniejsze zakłócenia. Pamiętajmy, że konwertery Twin są też świetne w systemach, gdzie sygnał jest ograniczony, więc to istotny element nowoczesnych instalacji satelitarnych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Założenie opaski uziemiającej na nadgarstek jest niezbędne przed rozpoczęciem wymiany

A. procesora w komputerze PC
B. bezpiecznika topikowego w zasilaczu
C. rozgałęźnika sygnału w sieci telewizji kablowej
D. sygnalizatora akustycznego w systemie alarmowym
Założenie opaski uziemiającej na rękę przed wymianą procesora w komputerze PC jest kluczowym krokiem w celu zapewnienia bezpieczeństwa oraz ochrony delikatnych komponentów. Uziemienie ma na celu zminimalizowanie ryzyka wystąpienia wyładowań elektrostatycznych (ESD), które mogą uszkodzić wrażliwe obwody elektroniczne procesora. Procesory są szczególnie wrażliwe na takie zjawiska, a ich uszkodzenia mogą prowadzić do poważnych problemów z funkcjonowaniem systemu komputerowego. Zgodnie z najlepszymi praktykami w zakresie serwisowania sprzętu, zawsze należy stosować środki ochrony elektrostatycznej, takie jak opaski uziemiające, maty antyelektrostatyczne oraz unikać dotykania styków procesora. Przykładem może być sytuacja, w której użytkownik wymienia procesor w swoim komputerze stacjonarnym; przy użyciu opaski uziemiającej zapewnia sobie i sprzętowi maksymalne bezpieczeństwo, co jest zgodne z normami IEC 61340-5-1 dotyczącymi ochrony przed ESD.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Wyładowania elektryczne w atmosferze mogą prowadzić do powstawania niepożądanych napięć, które oddziałują na parametry anteny, skutkując

A. zmniejszeniem impedancji wejściowej
B. zmianą długości oraz powierzchni efektywnej
C. obniżeniem rezystancji promieniowania
D. zniekształceniem charakterystyki kierunkowej
Odpowiedzi sugerujące zmniejszenie rezystancji promieniowania, zmniejszenie impedancji wejściowej czy zmianę długości i powierzchni skutecznej anteny opierają się na błędnych założeniach dotyczących wpływu wyładowań atmosferycznych na parametry anteny. Zmniejszenie rezystancji promieniowania nie jest związane z działaniem piorunów, ponieważ rezystancja ta jest właściwością anteny i opisuje jej zdolność do efektywnego promieniowania energii. Zmiany te są bardziej związane z konstrukcją anteny niż z wpływem zewnętrznych zakłóceń. Podobnie, zmniejszenie impedancji wejściowej nie jest bezpośrednio efektem działania wyładowania atmosferycznego. Impedancja wejściowa anteny jest determinowana przez jej geometrię i materiał, z którego jest wykonana, a nie przez indukowane napięcia. Co więcej, zmiana długości i powierzchni skutecznej anteny także nie następuje w wyniku zjawisk atmosferycznych, ale raczej w wyniku mechanicznych lub elektrycznych modyfikacji samej anteny. Dlatego kluczowe jest zrozumienie, że wyładowania atmosferyczne mają bardziej wpływ na dynamiczne zniekształcenia charakterystyki anteny, a nie na jej podstawowe parametry fizyczne. W kontekście ochrony anten przed wyładowaniami wskazane jest, aby stosować odpowiednie metody i technologie zapobiegające uszkodzeniom, co jest zgodne z najlepszymi praktykami inżynieryjnymi w dziedzinie telekomunikacji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. ołowiu
B. kalafonii
C. cyny
D. pasty lutowniczej
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 11

Która z podanych metod łączenia radiatora z obudową procesora gwarantuje najwyższą efektywność w odprowadzaniu ciepła?

A. Między radiatorem a obudową znajduje się przekładka mikowa
B. Powierzchnia styku jest pokryta warstwą pasty termoprzewodzącej
C. Radiator został zamocowany bez użycia żadnych przekładek oraz past
D. Powierzchnie styku pokrywane są warstwami pasty termoprzewodzącej oraz oddzielone przekładką mikową
Pasta termoprzewodząca jest kluczowym elementem w efektywnym odprowadzaniu ciepła z obudowy procesora do radiatora. Jej głównym zadaniem jest wypełnienie mikroskopijnych szczelin pomiędzy powierzchniami styku, co w znaczący sposób zwiększa powierzchnię wymiany ciepła. Standardowe metody montażu radiatorów często nie zapewniają idealnego przylegania, a pasta pomaga zminimalizować opór termiczny. Zastosowanie pasty termoprzewodzącej jest powszechną praktyką w branży komputerowej, gdzie dąży się do jak najskuteczniejszego chłodzenia procesorów. Warto również wspomnieć, że wybór odpowiedniej pasty, jej właściwości termiczne oraz sposób aplikacji mają istotny wpływ na efektywność całego systemu chłodzenia. Dobrą praktyką jest także regularna konserwacja, która polega na wymianie pasty w okresowych odstępach czasu, aby zapewnić optymalne parametry pracy sprzętu.

Pytanie 12

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. zmniejszeniem stabilności układu
B. brakiem zmian w czasie regulacji
C. wzrostem amplitudy oscylacji
D. wydłużeniem czasu regulacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Instalacja sieci komputerowej z wykorzystaniem kabla U/UTP jest instalacją

A. światłowodową
B. nieekranowaną
C. ekranowaną podwójnie
D. ekranowaną
Kabel U/UTP (Unshielded Twisted Pair) to popularny typ kabla sieciowego, który jest powszechnie stosowany w instalacjach Ethernetowych. Odpowiedź 'nieekranowana' jest poprawna, ponieważ kable U/UTP nie mają dodatkowego ekranu, który mógłby chronić je przed zakłóceniami elektromagnetycznymi. Z tego powodu są one bardziej elastyczne i tańsze w porównaniu do kabli ekranowanych (np. S/UTP, F/UTP). U/UTP stosuje się najczęściej w lokalnych sieciach komputerowych (LAN) w biurach oraz domach, gdzie zasięg zakłóceń jest ograniczony, a koszty instalacji są kluczowe. W praktyce, instalacje te działają w standardzie Ethernet 10BASE-T, 100BASE-TX czy nawet 1000BASE-T. W standardach IEEE 802.3 podano, że kable U/UTP mogą osiągać prędkości do 1 Gbps na odległości do 100 metrów, co czyni je odpowiednimi dla większości zastosowań biurowych. Ogólnie, wykorzystanie kabli U/UTP jest zgodne z najlepszymi praktykami w branży, szczególnie w środowiskach o niskim poziomie zakłóceń.

Pytanie 15

Po uruchomieniu komputera na monitorze wyświetlił się komunikat "CMOS battery failed". Co to oznacza?

A. pamięć CMOS nie została ustawiona.
B. bateria zasilająca pamięć CMOS jest na wyczerpaniu.
C. wystąpił problem z sumą kontrolną BIOS-u.
D. pamięć podręczna cache procesora jest uszkodzona.
Odpowiedź, którą zaznaczyłeś, o wyczerpaniu się baterii CMOS, jest jak najbardziej trafna. Pamięć CMOS, czyli ten tajemniczy Complementary Metal-Oxide-Semiconductor, to taka mała pamięć, która trzyma ważne ustawienia Twojego komputera, jak data czy godzina, a także różne parametry BIOS-u. Jeśli bateria zacznie siadać, Twój komputer nie zapamięta tych danych po wyłączeniu. I wtedy pojawia się ten komunikat 'CMOS battery failed'. Wymiana baterii to prosta sprawa, naprawdę każdy może to zrobić, a nowa bateria sprawi, że wszystko wróci do normy. Tak przy okazji, dobrze jest raz na jakiś czas zerknąć na stan tej baterii i wymieniać ją co kilka lat. To jak część dbania o sprzęt – taki mały krok, a często zapominany. W ogóle, myślę, że jeśli chcesz mieć sprawny komputer, to taką wymianę warto włączyć do swojego planu konserwacji sprzętu, bo to z pewnością pomoże uniknąć nieprzyjemnych niespodzianek.

Pytanie 16

Jaką zaciskarkę oznaczoną należy zastosować do zaciśnięcia końcówek RJ-11 na przewodzie telefonicznym?

A. 10P10C
B. 6P2C
C. 4P4C
D. 8P8C
Odpowiedź 6P2C jest prawidłowa, ponieważ oznaczenie to odnosi się do specyfikacji końcówek stosowanych w telefonii, a konkretnie do złącza RJ-11. W terminologii 6P2C oznacza to, że złącze posiada 6 pinów, z czego 2 są aktywne w przypadku transmisji. W praktyce RJ-11 jest szeroko stosowane do podłączania telefonów do linii telefonicznych w domach oraz biurach. Użycie zaciskarki 6P2C zapewnia prawidłowe i niezawodne połączenie, co jest kluczowe dla jakości przesyłanego sygnału. Standardy, takie jak TIA/EIA-568, określają właściwe procedury instalacji i zaciśnięcia, co przekłada się na lepszą funkcjonalność urządzeń. Właściwe podejście do zaciśnięcia końcówek gwarantuje, że sygnał będzie przesyłany bez zakłóceń, co ma kluczowe znaczenie w przypadku komunikacji głosowej oraz transmisji danych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 146,40 zł
B. 122,00 zł
C. 117,60 zł
D. 100,00 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką rolę w systemie automatyki przemysłowej odgrywa przetwornik?

A. Kontroluje pracę siłownika
B. Rejestruje działanie sieci
C. Wizualizuje procesy przemysłowe
D. Przekształca sygnał z czujnika
Przetwornik w sieci automatyki przemysłowej pełni kluczową rolę w przekształcaniu sygnałów z czujników na formaty odpowiednie do analizy i dalszego przetwarzania. Przykładem może być przetwornik temperatury, który konwertuje sygnał analogowy z czujnika na sygnał cyfrowy, który może być następnie interpretowany przez systemy sterowania. Takie przetworniki są standardowym elementem w systemach SCADA oraz w projektach związanych z monitorowaniem i kontrolą procesów przemysłowych. Dobre praktyki w zakresie użycia przetworników obejmują ich odpowiedni dobór do rodzaju sygnału oraz zastosowanie w kontekście wymaganych norm, takich jak IEC 61131-9, która definiuje standardy dla systemów automatyki. Oprócz przekształcania sygnałów, przetworniki często posiadają dodatkowe funkcje, takie jak filtracja szumów, co zwiększa dokładność pomiarów. Zrozumienie tej funkcji jest kluczowe dla efektywnego projektowania systemów automatyki, gdzie precyzyjne dane są fundamentem dla podejmowania decyzji operacyjnych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Tłumi i zmienia częstotliwość sygnału antenowego.
B. Zwiększa i przekształca częstotliwość sygnału z anteny.
C. Dostarcza antenie napięcie przemienne.
D. Dostarcza antenie napięcie stałe.
Konwerter w instalacji antenowej TV-SAT pełni kluczową rolę, polegającą na wzmacnianiu i przetwarzaniu sygnału. Odbiera sygnały mikrofalowe z satelity, które są na bardzo wysokich częstotliwościach, a następnie przekształca je na niższe częstotliwości, które mogą być przesyłane przez kable do odbiornika. Zmiana ta jest niezbędna, ponieważ kable stosowane w instalacjach satelitarnych, takie jak kabel koncentryczny, mają ograniczenia dotyczące długości i pasma, co sprawia, że wyższe częstotliwości nie mogą być przesyłane efektywnie. W praktyce konwerter działa na zasadzie wzmocnienia sygnału, co zapewnia lepszą jakość odbioru. Dobre praktyki w instalacji konwertera obejmują jego właściwe umiejscowienie na antenie, co minimalizuje straty sygnału oraz użycie wysokiej jakości kabli, aby zredukować tłumienie. Warto również zwrócić uwagę na dobór konwertera, który odpowiada standardom DVB-S lub DVB-S2, aby zapewnić zgodność z nowoczesnymi systemami odbioru telewizyjnego.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 0,4
B. p = 0,8
C. p = 1,0
D. p = 0,6
Wartości współczynnika prostokątności p, które są mniejsze niż 1,0, wskazują na ograniczoną selektywność wzmacniacza, co może prowadzić do problemów w odbiorze sygnału. Odpowiedź p = 0,6 sugeruje, że wzmacniacz potrafi oddzielić sygnały, ale nie w sposób optymalny. W praktyce oznacza to, że wzmacniacz może wprowadzać zniekształcenia i szumy, co wpływa na jakość końcowego sygnału. Wartości takie jak p = 0,4 czy p = 0,8 również sugerują, że wzmacniacz nie pracuje w pełni efektywnie. Prowadzi to do typowych błędów myślowych związanych z interpretacją parametrów urządzeń elektronicznych. Niektórzy mogą sądzić, że niższe wartości p pozwalają na lepsze odbieranie sygnałów, jednak w rzeczywistości jest odwrotnie — oznaczają one mniejszą zdolność do selekcji pożądanych sygnałów oraz większą podatność na zakłócenia z innych źródeł. W kontekście inżynierii dźwięku czy telekomunikacji, zrozumienie znaczenia współczynnika prostokątności jest kluczowe dla projektowania efektywnych systemów, które muszą działać w złożonym środowisku pełnym różnych sygnałów. Dlatego zawsze warto dążyć do uzyskania wartości p jak najbliższej 1,0, aby zapewnić najlepszą jakość przenoszenia sygnału.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 2 320 zł
B. 4 160 zł
C. 2 160 zł
D. 4 320 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. kablowej
B. przemysłowej
C. satelitarnej
D. naziemnej
DVB-T, czyli Digital Video Broadcasting - Terrestrial, to tak naprawdę standard, który pozwala nam na odbiór telewizji cyfrowej przez nadajniki na ziemi. Nie trzeba tu kombinować z żadnymi satelitami czy kablówkami. W praktyce oznacza to, że możesz cieszyć się różnymi kanałami w fajnej jakości, bez dodatkowych opłat za usługi kablowe. W Polsce ten standard jest dość popularny i daje nam dostęp do zarówno publicznych, jak i komercyjnych programów. Co więcej, mamy też DVB-T2, który wprowadza jeszcze lepszą jakość obrazu, a nawet 4K. Fajnie, że teraz możemy mieć lepsze wrażenia wizualne, a nie musi to wiązać się z dużymi wydatkami. Również w innych krajach korzystają z DVB-T, co pokazuje, że ten standard działa i ludzie go lubią. Aha, warto dodać, że DVB-T pozwala też na przesyłanie różnych ciekawych dodatków, jak interaktywne dane czy EPG (Electronic Program Guide).

Pytanie 34

Termin "licznik mikrorozkazów" odnosi się do

A. pętli PLL
B. oscyloskopu cyfrowego
C. systemu mikroprocesorowego
D. manipulatora
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 35

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. LgY
B. DY
C. YDY
D. YDYp
Odpowiedź LgY jest poprawna, ponieważ oznaczenie to odnosi się do linki o zwiększonej giętkości, która jest wykonana z wielu drobnych drucików miedzianych. W kontekście zastosowań elektrycznych i elektronicznych, linki te charakteryzują się wysoką elastycznością i odpornością na złamania, co jest kluczowe w przypadku aplikacji, gdzie ruch lub wibracje mogą prowadzić do uszkodzenia materiałów. Przykłady zastosowania obejmują połączenia w instalacjach audio, gdzie jakość przewodzenia sygnału jest istotna, a także w urządzeniach przenośnych, gdzie elastyczność przewodów pozwala na swobodę ruchu. Oznaczenie LgY jest powszechnie stosowane w branży kablowej, a jego zastosowanie jest zgodne z normami IEC 60228, które dotykają klasy przewodników oraz ich właściwości mechanicznych. Przewody LgY są również zgodne z normami jakości ISO, co potwierdza ich przydatność w zastosowaniach o wysokich wymaganiach technicznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie urządzenia pomiarowe powinno się zastosować do pomiaru częstotliwości z wykorzystaniem krzywych Lissajous?

A. Generator i oscyloskop
B. Watomierz i amperomierz
C. Omomierz oraz amperomierz
D. Woltomierz oraz oscyloskop
Wybór innego zestawu przyrządów pomiarowych wskazuje na nieprawidłowe zrozumienie zasad działania krzywych Lissajous oraz ich zastosowania. Oscyloskop jest kluczowym narzędziem do obserwacji sygnałów elektrycznych, jednak bez generatora sygnałowego nie można uzyskać krzywych Lissajous, które wymagają porównania dwóch sygnałów o różnych częstotliwościach. Na przykład, wybór woltomierza i oscyloskopu nie jest odpowiedni, ponieważ woltomierz mierzy tylko wartość napięcia, a nie jest w stanie wytworzyć ani analizować sygnałów o różnych częstotliwościach. Z kolei omomierz i amperomierz są narzędziami pomocniczymi do pomiaru oporności oraz natężenia prądu, które również nie mają zastosowania w analizie sygnałów o zmiennej częstotliwości. Wykorzystanie watomierza z amperomierzem również nie odpowiada na potrzeby eksperymentu, gdyż te urządzenia służą do pomiaru mocy w obwodach, co jest zupełnie innym zagadnieniem. Kluczowym błędem myślowym jest założenie, że pomiar częstotliwości można przeprowadzić bez odpowiednich narzędzi do generowania i analizy sygnałów, co prowadzi do niewłaściwych wniosków na temat metodologii pomiarowej w elektronice.

Pytanie 39

System RDS (Radio Data System) pozwala na

A. odbiór cyfrowych danych poprzez emisję UKF FM
B. odsłuch z zaawansowanym efektem przestrzennym stereo
C. transmisję informacji tekstowych przez emisję UKF FM
D. zdalne włączanie i wyłączanie odbiornika radiowego
Nieprawidłowe odpowiedzi sugerują mylne zrozumienie funkcji systemu RDS. Zdalne włączenie i wyłączenie odbiornika radiofonicznego, jak również odsłuch z pogłębionym przestrzennym efektem stereofonicznym, są funkcjami, które nie są częścią specyfikacji RDS. RDS nie służy ani do zdalnego sterowania odbiornikiem, ani do poprawy jakości dźwięku w sensie przestrzennym. W rzeczywistości, system RDS jest narzędziem do transmisji informacji, które jest zintegrowane z analogowym sygnałem radiowym, a jego głównym celem jest dostarczanie danych tekstowych oraz innych informacji do słuchaczy. Ponadto, odpowiedzi, które sugerują nadawanie informacji słownych, mylą funkcję RDS z innymi systemami komunikacyjnymi. RDS nie nadawcza informacji w postaci dźwiękowej; zamiast tego, przesyła metadane, które są odbierane przez radioodbiorniki. Te nieporozumienia mogą wynikać z braku znajomości podstawowych zasad działania RDS oraz jego ograniczeń. Właściwe zrozumienie tego systemu pozwala uniknąć typowych błędów myślowych i lepiej ocenić jego zastosowania w kontekście współczesnych technologii radiowych.

Pytanie 40

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 80 V
B. 160 V
C. 120 V
D. 40 V
W przypadku podanych odpowiedzi, wiele pomyłek wynika z niewłaściwego zrozumienia skali oraz sposobu przeliczania wartości. Na przykład, odpowiedź 80 V sugeruje, że użytkownik mógł błędnie uznać, że wskazówka wskazuje bezpośrednio wartość napięcia bez uwzględnienia skali. Możliwe, że rozumowanie opierało się na założeniu, że 80 działek to po prostu 80 V, co jest niezgodne z zasadami działania woltomierza, który wyskalowany jest w odniesieniu do maksymalnej wartości zakresu. Inną często spotykaną pomyłką jest odpowiedź 40 V, gdzie użytkownik mógł błędnie przypuszczać, że woltomierz działa na zasadzie prostego podziału zakresu, co prowadzi do pominięcia kluczowego elementu, jakim jest przeliczanie wartości działek na rzeczywiste napięcie. Odpowiedź 120 V również pokazuje nieporozumienie, w którym użytkownik mógł zakładać, że 80 działek to 2/3 z maksymalnych 200 V, co jednak nie jest poprawnym podejściem w kontekście wyliczania wartości na analogowej skali. Kluczowe jest, aby użytkownicy zrozumieli mechanizm działania analogowych woltomierzy oraz zasady przeliczania wartości, aby unikać błędnych interpretacji wyników pomiarów. W praktyce, dokładność pomiarów jest fundamentem bezpieczeństwa w instalacjach elektrycznych, dlatego znajomość zasad jego działania jest niezbędna.