Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 17 kwietnia 2025 16:21
  • Data zakończenia: 17 kwietnia 2025 16:41

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z podanych prac geodezyjnych nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej?

A. Inwentaryzacja po zakończeniu budowy
B. Podział działki
C. Pomiar ilości mas ziemnych
D. Zaktualizowanie mapy zasadniczej
Pomiar objętości mas ziemnych to proces, który nie wymaga zgłoszenia do Ośrodka Dokumentacji Geodezyjnej i Kartograficznej (ODGiK), ponieważ nie jest to praca geodezyjna, która zmienia stan nieruchomości w sposób wymagający aktualizacji dokumentacji publicznej. W praktyce, taki pomiar ma zastosowanie głównie w budownictwie i inżynierii lądowej, gdzie wykonuje się go w celu określenia ilości ziemi do wykopania lub nasypania podczas budowy. Przykładem może być budowa drogi, gdzie dokładne oszacowanie mas ziemnych jest kluczowe dla kosztorysowania oraz planowania dalszych prac. Warto podkreślić, że takie pomiary często są wykonywane zgodnie z normami PN-EN 1991-1-1 i są integralną częścią procesu projektowego, ale nie wymagają formalnego zgłoszenia do organów administracyjnych, co upraszcza procedury dla wykonawców.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakiej z wymienionych zasad <u><strong>nie wolno zastosować</strong></u> podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
B. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
C. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
D. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 4

Jaki typ błędu mógł wystąpić podczas pomiaru długości w kierunku powrotnym, jeśli osoba dokonująca pomiaru niepoprawnie określiła liczbę pełnych odłożeń taśmy, ponieważ zgubiła jedną szpilkę?

A. Systematyczny
B. Gruby
C. Przypadkowy
D. Losowy
Błędy klasyfikowane jako systematyczne, przypadkowe czy losowe, choć mogą występować w pomiarach, nie są odpowiednie w tym kontekście. Błąd systematyczny to błąd, który ma stały charakter i powtarza się w każdym pomiarze, co prowadzi do systematycznego zawyżenia lub zaniżenia wyników. W przypadku zgubienia szpilki, nie można mówić o takim charakterze błędu, ponieważ skutki są bardziej losowe i zależne od konkretnej sytuacji pomiarowej. Z drugiej strony, błąd przypadkowy odnosi się do nieprzewidywalnych fluktuacji w procesie pomiarowym, które mogą być spowodowane różnorodnymi czynnikami, takimi jak zmiany temperatury czy drgania. Wreszcie, pojęcie błędu losowego nie jest adekwatne do opisanego przypadku, ponieważ odnosi się do całkowicie nieprzewidywalnych błędów, które nie są wynikiem konkretnej pomyłki pomiarowej. W praktyce pomiarowej kluczowe znaczenie ma precyzyjne określenie liczby odłożeń oraz monitorowanie używanego sprzętu, aby unikać błędów, które mogą wprowadzać nieścisłości w wynikach, a w efekcie prowadzić do znacznych kosztów w procesach produkcyjnych i budowlanych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Długość boku kwadratowej działki a = 100,00 m została zmierzona z średnim błędem m<sub>a</sub> = ±5 cm. Jaką wartość ma średni błąd m<sub>p</sub> w obliczeniu pola P tej działki?

A. mp = ±10 m2
B. mp = ±20 m2
C. mp = ±5 m2
D. mp = ±1 m2
Niepoprawne odpowiedzi są rezultatem błędnych interpretacji zależności między błędami pomiarowymi a obliczanym polem. Wartości błędów przedstawione w odpowiedziach, takie jak mp = ±20 m2, mp = ±5 m2 czy mp = ±1 m2, nie są zgodne z zasadami propagacji błędów. Na przykład, mp = ±20 m2 sugeruje, że błąd pomiarowy jest większy niż rzeczywisty wpływ błędu długości boku na pole, co jest sprzeczne z logiką obliczeń. Taki błąd myślowy może wynikać z nieprawidłowego zastosowania wzoru na błąd średni lub nieuwzględnienia, że pole jest funkcją kwadratową. Odpowiedź mp = ±5 m2 z kolei nie uwzględnia całkowitego wpływu błędu pomiarowego na pole, co ogranicza dokładność obliczeń. Wydaje się, że w tym przypadku nie zrozumiano, że należy pomnożyć długość boku przez 2, aby uwzględnić wpływ błędu w obliczeniach. Z kolei mp = ±1 m2 jest zdecydowanie zaniżonym wynikiem, który również ignoruje zasadnicze zasady propagacji błędów. W praktyce, przy obliczeniach inżynieryjnych, niedoszacowanie błędów może prowadzić do poważnych konsekwencji, stąd tak istotne jest stosowanie odpowiednich wzorów i metod w celu uzyskania precyzyjnych wyników. Warto również pamiętać o standardach metrologicznych, które kładą nacisk na odpowiednie traktowanie błędów pomiarowych w każdym etapie pracy. Wysoka dokładność obliczeń jest kluczowa w wielu dziedzinach, w tym w budownictwie, geodezji i inżynierii, gdzie błędy mogą wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Wysokość osi celowej to 213,100 m. Na jakim pomiarze powinna być umieszczona łatę, aby osiągnięta wysokość punktu wyniosła 212,800?

A. 0030 mm
B. 0300 mm
C. 3000 mm
D. 1300 mm
Aby obliczyć, na jakim odczycie należy ustawić łatę, aby wysokość realizowanego punktu wyniosła 212,800 m, musimy skorzystać z pojęcia różnicy wysokości. Wysokość osi celowej wynosi 213,100 m, a zatem różnica między wysokością osi celowej a wysokością punktu wynosi 213,100 m - 212,800 m = 0,300 m, co jest równoważne 300 mm. Oznacza to, że aby uzyskać żądaną wysokość, musimy ustawić łatę na odczycie 300 mm. W praktyce, przy pomiarach geodezyjnych, stosuje się ten typ obliczeń w celu precyzyjnego ustalenia poziomu obiektów budowlanych lub innych punktów odniesienia. Tego rodzaju obliczenia są kluczowe w geodezji i budownictwie, gdzie precyzyjne pomiary wysokościowe są niezbędne do zapewnienia stabilności i poprawności konstrukcji budowlanych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Na precyzję pomiarów niwelacyjnych nie wpływa

A. odległość między niwelatorem a łatami
B. kolejność dokonywanych pomiarów
C. poziomowanie libelli niwelacyjnej
D. wyważenie łat niwelacyjnych
Kolejność wykonywanych odczytów w niwelacji nie ma wpływu na dokładność pomiarów, ponieważ kluczowe są inne aspekty techniczne, takie jak poziomowanie i spionizowanie instrumentu oraz prawidłowe ustawienie łat. W praktyce niwelacyjnym, jeżeli wszystkie pomiary są wykonywane zgodnie z wymaganiami i standardami, to niezależnie od kolejności odczytów wynik końcowy będzie taki sam, pod warunkiem, że nie popełniono błędów w innych etapach procesu. Standardy takie jak PN-EN 17123-1:2018 określają procedury, które minimalizują błędy pomiarowe. Przykładowo, jeżeli niwelator jest starannie spoziomowany, a łatka jest poprawnie ustawiona w pionie, uzyskane wyniki będą wiarygodne niezależnie od tego, w jakiej kolejności zrealizujemy pomiary. To podejście może być stosowane w różnych projektach budowlanych i inżynieryjnych, co podkreśla znaczenie rzetelności technicznej nad subiektywną interpretacją kolejności działań.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Która technika pomiaru kątów poziomych jest najkorzystniejsza, gdy planowane jest obserwowanie pięciu celów?

A. Sektorowa
B. Repetycyjna
C. Reiteracyjna
D. Kierunkowa
Metoda kierunkowa jest najbardziej korzystna w przypadku, gdy obserwacji podlega pięć celowych, ponieważ pozwala na precyzyjne pomiary kątów poziomych z zachowaniem dużej efektywności. Ta technika polega na pomiarze kąta w odniesieniu do wybranego kierunku, co minimalizuje błędy pomiarowe, które mogą wystąpić przy wielokrotnych pomiarach. W praktyce, metoda kierunkowa umożliwia szybkie i dokładne zbieranie danych, co jest kluczowe w geodezji i inżynierii lądowej. W sytuacji, gdy mamy do czynienia z wieloma celami, jak w tym przypadku, podejście kierunkowe przyczynia się do optymalizacji procesu pomiarowego poprzez ograniczenie liczby pomiarów niezbędnych do uzyskania wymaganej precyzji. Warto również zaznaczyć, że ta metoda jest zgodna z normami lokacyjnymi oraz standardami pomiarów geodezyjnych, co stanowi dodatkowy atut w kontekście profesjonalnych aplikacji inżynieryjnych i budowlanych. Stosując metodę kierunkową, praktycy mogą skutecznie zarządzać czasem i zasobami, co jest szczególnie ważne w projektach o ograniczonym budżecie i czasie realizacji.

Pytanie 15

Na nakładce U mapy zasadniczej zaznacza się kolorem żółtym przewód sieciowy

A. gazowej
B. wodociągowej
C. kanalizacyjnej
D. telekomunikacyjnej
Wybór odpowiedzi związanych z przewodami kanalizacyjnymi, telekomunikacyjnymi lub wodociągowymi może prowadzić do nieporozumień dotyczących oznaczeń na mapach zasadniczych. Przewody kanalizacyjne zazwyczaj oznaczone są kolorem niebieskim lub zielonym, co ma na celu wyraźne odróżnienie ich od innych instalacji. Tego rodzaju błędne podejście może wynikać z mylnego skojarzenia kolorów z funkcjami sieci, co jest powszechnym błędem, szczególnie wśród osób, które nie mają doświadczenia w pracy z mapami zasadniczymi. Podobnie, przewody telekomunikacyjne są zazwyczaj oznaczane innymi kolorami, co jest zgodne z regulacjami branżowymi mającymi na celu minimalizację ryzyka uszkodzeń podczas prac budowlanych. W przypadku przewodów wodociągowych, te są zwykle oznaczane niebieskim kolorem. Prawidłowe rozpoznawanie i interpretacja kolorów na mapach zasadniczych są kluczowe, aby uniknąć poważnych wypadków. W praktyce, nieprzestrzeganie tych standardów może prowadzić do poważnych konsekwencji, takich jak zakłócenia w dostawie mediów czy uszkodzenia infrastruktury. Dlatego tak ważne jest, aby każdy, kto pracuje w obszarze budownictwa lub inżynierii, miał solidne podstawy teoretyczne oraz praktyczne dotyczące oznaczeń i ich znaczenia w kontekście bezpieczeństwa publicznego.

Pytanie 16

Jakie znaczenie ma oznaczenie mz1 1 na mapie zasadniczej?

A. Budynek mieszkalny.
B. Jednorodzinny dom.
C. Wieżowiec.
D. Dom w zabudowie szeregowej
Zrozumienie zapisów na mapie zasadniczej jest kluczowe dla poprawnego odczytywania i interpretacji danych dotyczących przestrzeni miejskiej. Odpowiedzi sugerujące, że zapis 'mz1 1' odnosi się do kamienicy, domu jednorodzinnego lub domu w zabudowie szeregowej, bazują na nieprawidłowej interpretacji klasyfikacji obiektów budowlanych. Kamienice, które są zazwyczaj niskimi lub średniowysokimi budynkami mieszkalnymi, mają zupełnie inną charakterystykę, często związaną z zabudową miejską sprzed XX wieku, co nie pasuje do klasyfikacji wieżowców. Domy jednorodzinne i domy w zabudowie szeregowej są z kolei typowymi przykładami zabudowy niskiej, co również wyklucza je z tej klasyfikacji. Ważne jest, aby uniknąć stereotypowego myślenia, które może prowadzić do błędnych założeń o charakterystyce i przeznaczeniu obiektów budowlanych. Kluczowym błędem w rozumieniu tego zapisu jest zlekceważenie różnic w wysokości i przeznaczeniu budynków, które są podstawowymi kryteriami klasyfikacji. W kontekście planowania przestrzennego, nieprawidłowe przypisanie typów budynków może prowadzić do nieefektywnego zagospodarowania terenu, co w konsekwencji wpływa na jakość życia mieszkańców oraz funkcjonalność obszarów miejskich. Zrozumienie, że 'mz1 1' odnosi się do wieżowca, a nie do innych typów zabudowy, jest kluczowe dla właściwej analizy planów urbanistycznych i projektów architektonicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W przypadku wykonania pomiaru niwelacyjnego, jeżeli wartość odczytu z łaty niwelacyjnej kreską górną wynosi g = 2000 mm, a kreską dolną d = 1500 mm, to odczyt z łaty kreską środkową powinien być równy

A. s = 1750 mm
B. s = 1500 mm
C. s = 1250 mm
D. s = 2000 mm
Aby obliczyć wartość odczytu z łaty niwelacyjnej kreską środkową, należy skorzystać z zasady, że odczyt kreską środkową jest średnią arytmetyczną odczytów kreską górną i dolną. W tym przypadku mamy odczyt górny g = 2000 mm oraz odczyt dolny d = 1500 mm. Możemy zatem obliczyć s jako: s = (g + d) / 2 = (2000 mm + 1500 mm) / 2 = 1750 mm. Taki sposób obliczania odczytów jest standardową praktyką w pomiarach niwelacyjnych, ponieważ pozwala na uzyskanie precyzyjnych wyników poprzez eliminację błędów związanych z odczytem z jednego punktu. W praktyce stosowane są różne metody niwelacji, a dobrym przykładem są pomiary geodezyjne, w których precyzja i dokładność są kluczowe. Dzięki temu można zapewnić rzetelność danych, co jest istotne w inżynierii budowlanej czy topografii. Poprawne interpretowanie odczytów z łaty jest więc nie tylko zadaniem teoretycznym, ale także praktycznym, wymagającym znajomości zasad niwelacji i umiejętności ich zastosowania w rzeczywistych pomiarach.

Pytanie 19

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. dokumentacyjny
B. podstawowy
C. tachimetryczny
D. przeglądowy
Odpowiedzi "podstawowy", "dokumentacyjny" i "tachimetryczny" nie są właściwe w kontekście wskazania szkicu, który ma służyć do łatwego odnalezienia pomierzonych szczegółów fragmentu terenu. Szkic podstawowy to dokument, który zazwyczaj zawiera dane referencyjne używane do opracowywania bardziej szczegółowych planów oraz projektów. Jego zakres i dokładność są często niewystarczające do przedstawienia ogólnego układu terenu. Z kolei szkic dokumentacyjny służy do archiwizacji zdarzeń geodezyjnych i jest bardziej szczegółowy, ale jego celem nie jest ułatwienie bieżącej orientacji w terenie, lecz raczej dokumentacja stanu na dany moment. Natomiast szkic tachimetryczny jest narzędziem wykorzystywanym do bardziej precyzyjnych pomiarów, w tym obliczeń kątów i odległości, co jest istotne w geodezji, jednak nie odpowiada on na potrzeby szybkiego odnalezienia danych w terenie. Wybór odpowiedniego rodzaju szkicu jest kluczowy; niewłaściwe podejście do tej kwestii może prowadzić do nieefektywności w procesie zbierania i analizowania danych. Ważne jest zrozumienie, że każdy z tych szkiców ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie bez uwzględnienia kontekstu operacyjnego.

Pytanie 20

W skład dokumentacji technicznej, która jest przekazywana do Państwowego Zasobu Geodezyjnego i Kartograficznego po zakończeniu pracy geodezyjnej, między innymi wchodzi

A. sprawozdanie techniczne
B. kopia zawodowych uprawnień geodety
C. faktura za zrealizowane zlecenie
D. oświadczenie o przeprowadzeniu pracy zgodnie z obowiązującymi normami
Sprawozdanie techniczne jest kluczowym elementem dokumentacji przekazywanej do Państwowego Zasobu Geodezyjnego i Kartograficznego po wykonaniu prac geodezyjnych. Dokument ten ma na celu szczegółowe przedstawienie wykonanej pracy, jej metod, zastosowanych narzędzi oraz wyników pomiarów. Sprawozdanie powinno zawierać informacje o lokalizacji terenów, charakterystyce wykonanych pomiarów oraz wszelkich odchyleniach od przyjętych norm i standardów. Przykładem praktycznego zastosowania sprawozdania technicznego jest jego wykorzystanie przy weryfikacji dokładności wykonanych pomiarów przez instytucje kontrolujące, co jest niezbędne w kontekście realizacji projektów budowlanych czy infrastrukturalnych. Dodatkowo, zgodnie z ustawą o geodezji i kartografii, sprawozdanie powinno być sporządzone zgodnie z określonymi wytycznymi, co zapewnia wysoką jakość i zaufanie do danych geodezyjnych. Takie dokumenty stanowią również istotne źródło informacji dla dalszych prac planistycznych oraz rozwoju lokalnych baz danych geodezyjnych.

Pytanie 21

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Nanośnika biegunowego
B. Nanośnika prostokątnego
C. Współrzędnika
D. Koordynatografu
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 5 cm
B. 2,5 cm
C. 25 cm
D. 50 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Mapa zasadnicza to rodzaj map

A. społecznych
B. fizjologicznych
C. gospodarczych
D. sozologicznych
Mapa zasadnicza to, krótko mówiąc, bardzo ważny element, jak chodzi o systemy informacji geograficznej. Jest to mapa, która pokazuje najistotniejsze cechy terenu, takie jak granice administracyjne, różne rodzaje dróg czy nawet ukształtowanie powierzchni. Moim zdaniem, to niesamowite, jak wiele zastosowań ma ta mapa. Od planowania miast po rolnictwo – wszędzie się przydaje. Dla inwestycji infrastrukturalnych to wręcz niezbędne narzędzie, bo pomaga zrozumieć, gdzie i jakie tereny są dostępne. Warto też wiedzieć, że takie standardy jak ISO 19101 i wytyczne GUGIK podkreślają znaczenie map zasadniczych. One są jak fundament dla innych, bardziej szczegółowych map. Bez nich trudno by było mówić o jakiejkolwiek mapie w kontekście gospodarczym.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie jest wartość błędu względnego pomiaru długości odcinka wynoszącego 120 m, przy średnim błędzie pomiaru równym ±2 cm?

A. 1:4000
B. 1:6000
C. 1:8000
D. 1:2000
Błąd względny pomiaru jest istotnym wskaźnikiem precyzji w inżynierii, jednak jego obliczenie wymaga prawidłowego zrozumienia proporcji między błędem pomiarowym a wartością mierzoną. Odpowiedzi, które wskazują inne wartości błędu względnego, mogą wynikać z błędnych obliczeń lub niewłaściwego rozumienia definicji błędu względnego. Na przykład, gdy ktoś pomyli jednostki, mogą obliczyć błąd w niewłaściwy sposób, traktując długość w metrach zamiast w centymetrach, co prowadzi do poważnych nieporozumień. Ponadto, niektóre z tych błędnych odpowiedzi mogą wynikać z założenia, że błąd pomiaru jest znacznie większy, niż w rzeczywistości, co jest powszechnym błędem myślowym. W praktyce, nieprawidłowe przyjęcie wartości błędu pomiaru wpływa na dalsze analizy i decyzje, które zależą od precyzyjnych danych. Prawidłowe obliczenie błędu względnego jest kluczowe w kontekście zgodności z normami branżowymi, takimi jak ASTM E2659, które regulują metody pomiarowe. Dlatego ważne jest, aby w tej dziedzinie zachować skrupulatność i dokładność w każdym kroku procesu pomiarowego.

Pytanie 31

Jeśli azymut A<sub>1-2</sub> wynosi 327°12’35’’, to jaki jest azymut odwrotny A<sub>2-1</sub>?

A. 527°12’35’’
B. 127°12’35’’
C. 147°12’35’’
D. 507°12’35’’
Widać, że przy obliczaniu azymutu odwrotnego pojawił się pewien bałagan. Niektórzy mogą nie zauważyć, że jak A<sub>1-2</sub> to 327°12’35’’, to dodanie 180° do tego nie kończy sprawy, zwłaszcza jak wynik wychodzi 507°12’35’’. Takie wartości nie mogą być przyjmowane ot tak, bo azymut powinien być w granicach 0°-360°. Kiedy przekroczymy tę granicę, trzeba odjąć 360°, by wszystko się zgadzało. No i jeśli poszło 127°12’35’’, to tu z kolei wkradł się błąd w dodawaniu, ale pewnie też nie do końca dobrze zrozumiano zasady. Pamiętaj, że azymuty zawsze bierzemy od północy i trzymamy się tych konwencji. Typowe błędy to brak korekty wartości azymutów i nielogiczne przekształcenia. W praktyce nawigacyjnej dla precyzyjnych wyników musisz znać zasady obliczeń azymutów i ich odwrotności.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Która z map przedstawia rozmieszczenie infrastruktury terenu?

A. Zasadnicza
B. Sozologiczna
C. Ewidencyjna
D. Topograficzna
Mapa zasadnicza jest kluczowym narzędziem w inżynierii i planowaniu przestrzennym, które przedstawia szczegółowe informacje o przestrzennym usytuowaniu sieci uzbrojenia terenu, takich jak drogi, sieci wodociągowe, kanalizacyjne i energetyczne. Mapa ta bazuje na normach i standardach geodezyjnych, takich jak PN-ISO 19131, które określają sposób przedstawiania i gromadzenia danych przestrzennych. Przykładem zastosowania mapy zasadniczej może być projektowanie nowych osiedli mieszkalnych, gdzie dokładna wiedza o już istniejącej infrastrukturze jest niezbędna do uniknięcia kolizji z istniejącymi sieciami. Mapa zasadnicza umożliwia także planowanie urbanistyczne oraz prowadzenie działań związanych z ochroną środowiska, ponieważ dostarcza ważnych informacji na temat lokalizacji istniejącej zabudowy oraz infrastruktury, co jest zgodne z dobrą praktyką w zakresie zrównoważonego rozwoju i planowania przestrzennego.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Co wpływa na wysokości opisów w mapie głównej?

A. Od opisywanej treści i skali mapy
B. Od typu i stylu pisma
C. Od metody wykonania opisu
D. Od wartości skalarnej mapy
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 39

Kto odpowiada za ustanowienie i prowadzenie krajowej geodezyjnej ewidencji sieci uzbrojenia terenu?

A. geodeta uprawniony
B. główny geodeta kraju
C. starosta
D. wojewoda
Wybór wojewody jako osoby odpowiedzialnej za prowadzenie Krajowej geodezyjnej ewidencji sieci uzbrojenia terenu jest błędny, ponieważ wojewoda pełni funkcje administracyjne na poziomie województwa, ale nie ma kompetencji do zarządzania ewidencją geodezyjną na poziomie krajowym. Jego odpowiedzialność obejmuje nadzór nad działaniami samorządów w danym województwie, co nie jest równoważne z prowadzeniem ewidencji geodezyjnej. Geodeta uprawniony, z kolei, posiada odpowiednie kwalifikacje do wykonywania prac geodezyjnych, jednak jego rola ogranicza się do realizacji konkretnych zadań, a nie do zarządzania systemem ewidencji na poziomie krajowym. Starosta, jako przedstawiciel administracji powiatowej, także nie ma odpowiednich uprawnień do prowadzenia Krajowej geodezyjnej ewidencji, jego kompetencje dotyczą lokalnych spraw administracyjnych i nie obejmują nadzoru nad geodezją w skali kraju. Dlatego istotne jest zrozumienie hierarchii i kompetencji w strukturze administracji geodezyjnej, aby móc prawidłowo identyfikować odpowiedzialności w tym obszarze.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.