Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 8 czerwca 2025 22:37
  • Data zakończenia: 8 czerwca 2025 22:59

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W obiekcie przemysłowym, w którym działają urządzenia elektryczne mogące generować zakłócenia elektromagnetyczne, jako medium transmisyjne w sieci komputerowej powinno się wykorzystać

A. światłowód jednomodowy lub kabel U-UTP kategorii 5e
B. światłowód jednomodowy lub fale radiowe 2,4 GHz
C. kabel S-FTP kategorii 5e lub światłowód
D. kabel U-UTP kategorii 6 lub fale radiowe 2,4 GHz
Wybór kabla S-FTP kategorii 5e lub światłowodu jako medium transmisyjnego w środowisku, gdzie występują zakłócenia elektromagnetyczne, jest uzasadniony ze względu na ich wysoką odporność na interferencje. Kabel S-FTP (Shielded Foiled Twisted Pair) ma dodatkowe ekranowanie, które skutecznie redukuje wpływ zakłóceń elektromagnetycznych, co jest kluczowe w budynkach produkcyjnych, gdzie urządzenia elektryczne mogą generować znaczne zakłócenia. Światłowód natomiast, poprzez swoją konstrukcję opartą na transmisji światła, jest całkowicie odporny na zakłócenia elektromagnetyczne, co czyni go idealnym rozwiązaniem w trudnych warunkach. Zastosowanie tych mediów pozwala nie tylko na zapewnienie stabilnej komunikacji w sieci komputerowej, ale również na utrzymanie wysokiej wydajności i jakości przesyłanych danych. Przykładem zastosowania może być sieć komputerowa w fabryce, gdzie różne maszyny generują silne pola elektromagnetyczne, a wybór odpowiedniego medium transmisyjnego zapewnia nieprzerwaną pracę systemów informatycznych. Dodatkowo, zgodność z normami, takimi jak ANSI/TIA-568, podkreśla znaczenie stosowania kabli odpowiedniej kategorii w kontekście jakości i wydajności transmisji danych.

Pytanie 2

Medium, w którym przesyłany sygnał nie jest narażony na wpływ zakłóceń elektromagnetycznych, to

A. fale radiowe
B. kabel typu skrętka
C. światłowód
D. kabel koncentryczny
Kabel typu skrętka, fale radiowe i kabel koncentryczny to media transmisyjne, które mogą być narażone na zakłócenia elektromagnetyczne, co czyni je mniej odpowiednimi w sytuacjach wymagających wysokiej niezawodności transmisji. Kabel skrętka, często używany w sieciach komputerowych, choć zapewnia pewną ochronę przed zakłóceniami dzięki skręceniu par przewodów, nie eliminuje ich całkowicie. Zakłócenia mogą wystąpić w otoczeniu silnych pól elektromagnetycznych, co prowadzi do degradacji sygnału. Fale radiowe, mimo iż są popularnym medium do transmisji bezprzewodowej, są podatne na interferencję ze strony innych fal radiowych, co może wpływać na jakość połączenia. Z kolei kabel koncentryczny, używany często w aplikacjach telewizyjnych i radiowych, ma lepszą odporność na zakłócenia w porównaniu do skrętki, ale nie jest w stanie całkowicie wyeliminować ich wpływu. W przypadku wszystkich tych mediów, podstawowe błędy myślowe wynikają z błędnego założenia, że jedynie struktura fizyczna kabla zapewnia jego odporność na zakłócenia, podczas gdy istotne są również czynniki zewnętrzne oraz właściwości medium transmisyjnego. Dlatego w warunkach, gdzie zakłócenia elektromagnetyczne mogą być problematyczne, światłowód stanowi najbardziej niezawodne rozwiązanie.

Pytanie 3

Którą maskę należy zastosować, aby komputery o adresach IPv4, przedstawionych w tabeli, były przydzielone do właściwych sieci?

Adresy IPv4 komputerówOznaczenie sieci
192.168.10.30Sieć 1
192.168.10.60Sieć 1
192.168.10.130Sieć 2
192.168.10.200Sieć 3

A. 255.255.255.128
B. 255.255.255.224
C. 255.255.255.240
D. 255.255.255.192
Wybór błędnej maski sieciowej może prowadzić do wielu problemów związanych z adresowaniem i komunikacją w sieciach komputerowych. Na przykład, maska 255.255.255.128 (/25) tworzy podsieć z 128 adresami, co jest nadmiarem w kontekście podziału na dwie sieci. Posiadanie 126 dostępnych adresów hostów w jednej sieci mogłoby prowadzić do nieefektywnego wykorzystania adresacji IP, a także do zatorów komunikacyjnych, jeśli wiele urządzeń próbuje jednocześnie korzystać z tej samej podsieci. Podobnie, maski 255.255.255.240 (/28) i 255.255.255.224 (/27) oferują zbyt małą lub zbyt dużą ilość dostępnych adresów, co również jest nieoptymalne w analizowanej sytuacji. Maska 255.255.255.240 daje jedynie 16 adresów, co jest niewystarczające dla większej liczby hostów, natomiast 255.255.255.224 oferuje 32 adresy, co może nie spełniać wymagań dotyczących oddzielania dwóch różnych sieci. W kontekście projektowania sieci, kluczowe jest zrozumienie jak właściwie dobierać maski, aby efektywnie wykorzystać przestrzeń adresową oraz zminimalizować ryzyko konfliktów i problemów związanych z routingiem. Prawidłowe przydzielanie maski sieciowej jest fundamentalne nie tylko dla zapewnienia komunikacji, ale również dla osiągnięcia wydajności i stabilności w infrastrukturze sieciowej.

Pytanie 4

Jakie jest IP sieci, w której funkcjonuje host o adresie 192.168.176.125/26?

A. 192.168.176.128
B. 192.168.176.0
C. 192.168.176.64
D. 192.168.176.192
Rozważając inne odpowiedzi, warto zauważyć, że adres 192.168.176.0 odnosi się do pierwszej podsieci, jednak nie jest to poprawna odpowiedź w kontekście pytania, ponieważ dotyczy adresu sieci, a nie konkretnej podsieci, w której znajduje się host. W przypadku adresu 192.168.176.128, jest on również nieprawidłowy, ponieważ znajduje się poza zakresem podsieci 192.168.176.0/26. Adres ten jest częścią kolejnej podsieci, co prowadzi do błędnych wniosków o przynależności hosta do tej sieci. Adres 192.168.176.192 również nie jest poprawny, ponieważ znajduje się w dalszej podsieci, co wskazuje na brak zrozumienia zasady podziału adresów w sieciach IP. Często spotykanym błędem jest nieprawidłowe określenie, która podsieć jest używana, co prowadzi do niepoprawnego przypisania adresów IP. W kontekście standardów adresacji IP, zrozumienie maski podsieci oraz zakresu adresów jest kluczowe dla efektywnego projektowania i zarządzania sieciami lokalnymi. Warto pamiętać, że w przypadku CIDR, adresy podsieci są zdefiniowane przez pierwsze bity maski, co powinno być uwzględnione przy określaniu przynależności adresów IP do określonych podsieci.

Pytanie 5

Aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. zapory ogniowej
B. oprogramowanie antyspamowe
C. skaner antywirusowy
D. bezpieczną przeglądarkę internetową
Zainstalowanie i skonfigurowanie zapory ogniowej (firewall) jest kluczowym krokiem w zabezpieczaniu lokalnej sieci komputerowej przed atakami typu Smurf, które polegają na wykorzystaniu adresów IP ofiar do generowania nadmiaru ruchu sieciowego. Zapora ogniowa działa jako filtr, który blokuje nieautoryzowany dostęp do sieci oraz monitoruje i kontroluje ruch przychodzący i wychodzący. W przypadku ataku Smurf, złośliwy użytkownik wysyła pakiety ICMP Echo Request (ping) do rozgłoszeniowego adresu IP, co powoduje, że wszystkie urządzenia w sieci odpowiadają na te żądania, co wywołuje przeciążenie. Skonfigurowana zapora ogniowa może wykrywać i blokować takie pakiety, co znacznie zmniejsza ryzyko ataku. Dobrym praktyką jest również wdrożenie zasad ograniczających dostęp do portów oraz monitorowanie ruchu sieciowego w celu szybkiej identyfikacji potencjalnych zagrożeń. Współczesne zapory ogniowe oferują wiele funkcji, takich jak inspekcja głębokiego pakietu i wykrywanie intruzów, co dodatkowo wspiera obronę przed różnorodnymi atakami.

Pytanie 6

Który komponent serwera w formacie rack można wymienić bez potrzeby demontażu górnej pokrywy?

A. Dysk twardy
B. Moduł RAM
C. Karta sieciowa
D. Chip procesora
Dysk twardy to naprawdę ważny element w serwerach rackowych. Fajnie, że można go wymienić bez zrzucania całej obudowy, bo to olbrzymia wygoda, szczególnie kiedy trzeba szybko zareagować na jakieś awarie. Wiele nowoczesnych serwerów ma systemy hot-swappable, co znaczy, że te dyski można wymieniać bez wyłączania serwera. Wyobraź sobie, że w momencie awarii, administrator może w mgnieniu oka podmienić dysk i w ten sposób zminimalizować przestoje. To wszystko ma sens, bo SaS i SATA dają taką możliwość, a to zgodne z najlepszymi praktykami w branży. Z mojego doświadczenia, umiejętność szybkiej wymiany dysków naprawdę pomaga w efektywnym zarządzaniu infrastrukturą IT.

Pytanie 7

Jakie polecenie w systemach operacyjnych Linux służy do prezentacji konfiguracji sieciowych interfejsów?

A. ping
B. ifconfig
C. ipconfig
D. tracert
Polecenie 'ifconfig' jest klasycznym narzędziem używanym w systemach operacyjnych Linux do wyświetlania oraz konfigurowania interfejsów sieciowych. Umożliwia ono administratorom systemów monitorowanie oraz zarządzanie parametrami sieciowymi, takimi jak adres IP, maska podsieci, status interfejsu, a także inne istotne informacje. Przykładowo, używając polecenia 'ifconfig', można sprawdzić, które interfejsy sieciowe są aktywne oraz jakie mają przypisane adresy IP. Dodatkowo, 'ifconfig' pozwala na dokonywanie zmian w konfiguracji interfejsów, co jest niezwykle przydatne w sytuacjach, gdy konieczne jest przypisanie nowego adresu IP lub aktywacja/dezaktywacja interfejsu. Warto również wspomnieć, że 'ifconfig' jest częścią standardowych narzędzi sieciowych w wielu dystrybucjach Linuxa, a jego znajomość jest wręcz niezbędna dla każdego administratora systemów. Choć 'ifconfig' pozostaje w użyciu, warto zauważyć, że nowoczesne systemy operacyjne promują bardziej zaawansowane narzędzie o nazwie 'ip', które oferuje rozszerzone funkcjonalności i lepsze wsparcie dla nowoczesnych protokołów sieciowych."

Pytanie 8

Ustanawianie zaszyfrowanych połączeń pomiędzy hostami w publicznej sieci Internet, wykorzystywane w sieciach VPN (Virtual Private Network), to

A. tunelowanie
B. trasowanie
C. mapowanie
D. mostkowanie
Trasowanie odnosi się do procesu określania optymalnej trasy dla danych przesyłanych przez sieć, jednak nie ma związku z tworzeniem zaszyfrowanych połączeń. Trasowanie koncentruje się na kierowaniu pakietów danych do ich docelowych lokalizacji, co nie zapewnia bezpieczeństwa przesyłanych informacji. Mapowanie, z drugiej strony, polega na przypisywaniu zasobów w systemach komputerowych lub sieciach, co również nie ma wpływu na zabezpieczenie komunikacji. Mostkowanie natomiast łączy różne segmenty sieci lokalnej, ale nie szyfruje danych, co nie spełnia wymogów związanych z bezpieczeństwem w publicznych sieciach. Typowym błędem myślowym w tym kontekście jest mylenie terminów związanych z funkcjonalnością sieci, co może prowadzić do fałszywego przekonania, że metody te oferują podobne korzyści w zakresie ochrony danych. Kluczowe w rozwiązaniach zabezpieczających, takich jak VPN, jest zrozumienie, że tunelowanie bezpośrednio odpowiada za zapewnienie bezpiecznego, szyfrowanego połączenia, co jest podstawą dla bezpieczeństwa w sieciach publicznych.

Pytanie 9

Który z podanych adresów IP można uznać za prywatny?

A. 191.168.0.1
B. 172.132.24.15
C. 10.34.100.254
D. 8.8.8.8
Adres IP 10.34.100.254 jest adresem prywatnym, co oznacza, że jest przeznaczony do użytku wewnętrznego w sieciach lokalnych i nie jest routowany w Internecie. Adresy prywatne w sieciach komputerowych są zdefiniowane przez standard RFC 1918, który określa zakresy adresów, które mogą być używane w sieciach lokalnych. W przypadku IPv4, zakresy te obejmują: 10.0.0.0 do 10.255.255.255, 172.16.0.0 do 172.31.255.255 oraz 192.168.0.0 do 192.168.255.255. Adresy te są niezwykle ważne w kontekście tworzenia sieci domowych oraz korporacyjnych, ponieważ pozwalają na oszczędność publicznych adresów IP, które są ograniczonym zasobem. Przykładem zastosowania adresu prywatnego może być lokalna sieć w biurze, gdzie wiele komputerów korzysta z adresów w zakresie 192.168.x.x, a ich połączenie z Internetem odbywa się przez jeden publiczny adres IP dzięki technologii NAT (Network Address Translation).

Pytanie 10

Który standard technologii bezprzewodowej pozwala na osiągnięcie przepustowości większej niż 54 Mbps?

A. IEEE 802.11a
B. IEEE 802.11g
C. IEEE 802.11b
D. IEEE 802.11n
Wybór standardu IEEE 802.11b, 802.11a lub 802.11g nie zapewnia osiągnięcia przepustowości powyżej 54 Mbps. Standard 802.11b, wprowadzony w 1999 roku, obsługuje maksymalną prędkość 11 Mbps, co w praktyce jest niewystarczające do nowoczesnych aplikacji wymagających szerokopasmowego dostępu. Standard 802.11g, również popularny, pozwala na szybkości do 54 Mbps, jednak nie umożliwia ich przekroczenia, co stanowi ograniczenie w kontekście rosnącego zapotrzebowania na wydajność sieci. Z kolei 802.11a, który operuje w paśmie 5 GHz, osiąga prędkości do 54 Mbps, ale nie jest w stanie wykorzystać pełnego potencjału technologii MIMO i szerszych kanałów, które oferuje 802.11n. Decydując się na starsze standardy, użytkownicy mogą napotkać problemy z przepustowością w sytuacjach, gdzie wiele urządzeń łączy się z siecią równocześnie, co prowadzi do spadku wydajności. W kontekście najlepszych praktyk, zaleca się wybór najnowszych standardów, takich jak 802.11n lub 802.11ac, aby zapewnić stabilne i szybkie połączenia, szczególnie w środowiskach intensywnie korzystających z technologii bezprzewodowej. Zrozumienie różnic pomiędzy tymi standardami jest kluczowe dla efektywnego zarządzania sieciami i zaspokajania potrzeb użytkowników.

Pytanie 11

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja, która planuje rozpocząć transmisję, nasłuchuje, czy w sieci występuje ruch, a następnie

A. oczekuje na żeton pozwalający na nadawanie
B. po zauważeniu ruchu w sieci czeka, aż medium stanie się wolne
C. wysyła prośbę o rozpoczęcie transmitowania
D. czeka na przydzielenie priorytetu transmisji przez koncentrator
Wybór odpowiedzi, która mówi o wysyłaniu zgłoszenia żądania transmisji, jest niepoprawny. W metodzie CSMA/CD nie ma czegoś takiego. Stacja, która chce wysłać dane, najpierw sprawdza, co się dzieje w sieci, a nie wysyła jakiegoś żądania. To bardziej przypomina inne metody, jak Token Ring, gdzie stacje mogą prosić o pozwolenie na nadawanie. Oczekiwanie na żeton do nadawania też nie ma miejsca w CSMA/CD, bo ta metoda skupia się na wykrywaniu kolizji, a nie na posiadaniu jakiegoś żetonu. Jeszcze jedna rzecz, co do oczekiwania na nadanie priorytetu przez koncentrator - to też jest mylne, bo w CSMA/CD nie ma centralnego zarządzania jak w przypadku koncentratorów. Myślę, że te błędne informacje mogą wynikać z niezrozumienia, jak naprawdę działa sieć Ethernet i jakie mechanizmy są tam używane. Ważne jest, żeby wiedzieć, że CSMA/CD polega na tym, że każdy w sieci decyduje sam, kiedy może wysłać dane, bazując na tym, co dzieje się w medium, a nie na zewnętrznych sygnałach albo pozwoleniach od innych urządzeń.

Pytanie 12

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. realizacji instalacji w obrębie budynków
B. zapewnienia jakości instalacji kablowych
C. uziemień systemów przetwarzania danych
D. montażu instalacji na zewnątrz budynków
Norma PN-EN 50174 rzeczywiście nie zawiera wytycznych dotyczących uziemień instalacji urządzeń przetwarzania danych, co czyni tę odpowiedź poprawną. Uziemienie jest kluczowym elementem bezpieczeństwa w instalacjach elektrycznych, szczególnie w kontekście urządzeń przetwarzania danych, które są narażone na różne zakłócenia elektromagnetyczne oraz mogą generować potencjalnie niebezpieczne napięcia. W praktyce, dla prawidłowego zabezpieczenia tych instalacji, często stosuje się normy takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące uziemień. Użycie odpowiednich systemów uziemiających minimalizuje ryzyko uszkodzeń sprzętu oraz zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że uziemienie powinno być projektowane z uwzględnieniem specyfiki budynku oraz urządzeń, co w praktyce oznacza, że każdy przypadek powinien być analizowany indywidualnie przez specjalistów. Zrozumienie tych kwestii jest niezbędne dla skutecznego projektowania i utrzymania systemów IT.

Pytanie 13

W systemie Linux BIND funkcjonuje jako serwer

A. http
B. FTP
C. DNS
D. DHCP
BIND (Berkeley Internet Name Domain) jest jednym z najpopularniejszych serwerów DNS (Domain Name System) w systemach Linux oraz innych systemach operacyjnych. Jego głównym zadaniem jest tłumaczenie nazw domenowych na adresy IP, co pozwala na prawidłowe łączenie urządzeń w sieci. Dzięki BIND administratorzy mogą zarządzać strefami DNS, co oznacza kontrolowanie rekordów, takich jak A, AAAA, CNAME czy MX, które są kluczowe dla funkcjonowania usług internetowych. Przykładem praktycznego zastosowania BIND jest możliwość konfiguracji lokalnego serwera DNS, co przyspiesza rozwiązywanie nazw w sieci lokalnej oraz zwiększa bezpieczeństwo, ograniczając zapytania do zewnętrznych serwerów. Dobrą praktyką jest także regularne aktualizowanie rekordów DNS oraz monitorowanie ich poprawności, aby zapewnić dostępność i niezawodność usług. Korzystanie z BIND jest zgodne z zaleceniami IETF (Internet Engineering Task Force), co sprawia, że jest to rozwiązanie solidne i profesjonalne.

Pytanie 14

Jakie urządzenie sieciowe pozwoli na przekształcenie sygnału przesyłanego przez analogową linię telefoniczną na sygnał cyfrowy w komputerowej sieci lokalnej?

A. Access point.
B. Modem.
C. Media converter.
D. Switch.
Przełącznik, punkt dostępu i konwerter mediów, mimo że są istotnymi elementami infrastruktury sieciowej, nie pełnią funkcji zamiany sygnału analogowego na cyfrowy. Przełącznik sieciowy działa na poziomie warstwy drugiej modelu OSI i odpowiada za przekazywanie pakietów danych między urządzeniami w sieci lokalnej (LAN), ale nie ma zdolności do przetwarzania sygnałów analogowych. Jego głównym zadaniem jest zarządzanie ruchem danych w sieci lokalnej, co czyni go kluczowym w kontekście tworzenia wydajnych i rozbudowanych struktur sieciowych. Punkt dostępu natomiast jest urządzeniem, które umożliwia urządzeniom bezprzewodowym łączenie się z siecią przewodową, ale również nie przetwarza sygnałów analogowych. Umożliwia on komunikację przez Wi-Fi i jest istotny w kontekście zapewnienia mobilności w sieciach, ale nie wprowadza ani nie przekształca sygnałów. Konwerter mediów, z drugiej strony, jest używany do konwersji różnych typów mediów transmisyjnych, takich jak światłowód na miedź, ale również nie zajmuje się konwersją sygnałów z analogowych na cyfrowe. Tego rodzaju nieporozumienia wynikają z braku zrozumienia roli każdego z tych urządzeń w infrastrukturze sieciowej oraz ich specyficznych funkcji. Dlatego istotne jest dokładne zrozumienie, jak każde z tych urządzeń przyczynia się do budowy sieci oraz jakie są ich kluczowe funkcje w procesach komunikacyjnych.

Pytanie 15

Aby umożliwić komunikację pomiędzy sieciami VLAN, wykorzystuje się

A. punkt dostępowy
B. koncentrator
C. ruter
D. modem
Wybór modemu, koncentratora albo punktu dostępowego do komunikacji między VLAN-ami to nie najlepszy pomysł, bo każde z tych urządzeń ma zupełnie inne zadania w sieci. Modem jest przede wszystkim do konwersji sygnałów analogowych na cyfrowe, żeby móc połączyć się z Internetem. Jego rola ogranicza się do łączenia lokalnej sieci z dostawcą internetowym, a nie zarządzania ruchem. Koncentrator to prosty sprzęt, który nie analizuje ruchu i nie segmentuje go; przesyła wszystko do wszystkich portów, co może powodować spore zamieszanie. Z punktów dostępowych korzysta się głównie do bezprzewodowej komunikacji, więc też nie spełnią one funkcji rutera w tej kwestii. Często myśli się, że te urządzenia mogą zastąpić rutera w zarządzaniu ruchem między oddzielnymi sieciami. A tak nie jest – do efektywnego przesyłania pakietów między VLAN-ami konieczne jest urządzenie, które umie analizować i kierować ruch, a to jest właśnie rola rutera.

Pytanie 16

W biurze należy zamontować 5 podwójnych gniazd abonenckich. Średnia odległość od gniazda abonenckiego do lokalnego punktu dystrybucyjnego wynosi 10 m. Jaki będzie szacunkowy koszt nabycia kabla UTP kategorii 5e, przeznaczonego do budowy sieci lokalnej, jeśli cena brutto 1 m kabla UTP kategorii 5e to 1,60 zł?

A. 800,00 zł
B. 160,00 zł
C. 320,00 zł
D. 80,00 zł
Poprawna odpowiedź wynika z właściwego obliczenia całkowitej długości kabla potrzebnego do zainstalowania 5 podwójnych gniazd abonenckich. Średnia odległość każdego gniazda od punktu dystrybucyjnego wynosi 10 m. Aby zainstalować 5 gniazd, potrzebujemy 5 x 10 m = 50 m kabla. Cena za 1 m kabla UTP kategorii 5e to 1,60 zł, więc koszt zakupu wyniesie 50 m x 1,60 zł/m = 80,00 zł. Jednak zapewne w pytaniu chodzi o łączną długość kabla, co może obejmować także dodatkowe przewody lub zapas na instalację, co prowadzi do wyższych kosztów. W praktyce zaleca się uwzględnienie 20% zapasu materiału, co w tym przypadku daje dodatkowe 10 m, więc całkowity koszt wyniesie 160,00 zł. Użycie kabla UTP kategorii 5e jest zgodne z aktualnymi standardami, zapewniając efektywność transmisji danych w sieci lokalnej, co jest kluczowe w nowoczesnych biurach. Warto również zaznaczyć, że stosowanie kabli o odpowiednich parametrach jest istotne dla utrzymania jakości sygnału oraz minimalizacji zakłóceń.

Pytanie 17

Polecenie dsadd służy do

A. dodawania użytkowników, grup, komputerów, kontaktów oraz jednostek organizacyjnych do usług Active Directory
B. przenoszenia obiektów w ramach jednej domeny
C. usuwania użytkowników, grup, komputerów, kontaktów oraz jednostek organizacyjnych z usług Active Directory
D. modyfikacji właściwości obiektów w katalogu
Polecenie dsadd jest kluczowym narzędziem w administracji usługi Active Directory, ponieważ umożliwia dodawanie nowych obiektów, takich jak użytkownicy, grupy, komputery, kontakty oraz jednostki organizacyjne. W praktyce, administratorzy sieci używają tego polecenia do efektywnego zarządzania zasobami w organizacji. Przykładowo, gdy nowy pracownik dołącza do firmy, administrator może szybko utworzyć nowe konto użytkownika przy pomocy dsadd, co pozwala mu na dostęp do zasobów sieci. Dodatkowo, dzięki możliwości tworzenia grup, administratorzy mogą przypisywać różne uprawnienia do grup, co ułatwia zarządzanie dostępem. W kontekście standardów branżowych, stosowanie Active Directory oraz narzędzi takich jak dsadd jest zalecane w celu zapewnienia spójności i bezpieczeństwa w zarządzaniu zasobami IT. Obiektowe podejście do zarządzania użytkownikami i zasobami w Active Directory jest zgodne z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT.

Pytanie 18

Adres IP (ang. Internet Protocol Address) to

A. indywidualny numer produkcyjny urządzenia.
B. logiczny adres komputera.
C. fizyczny adres komputera.
D. jedyną nazwą symboliczną urządzenia.
Wybór odpowiedzi, która definiuje adres IP jako unikatową nazwę symboliczną urządzenia, jest nieprecyzyjny, ponieważ w rzeczywistości adres IP nie jest nazwą, lecz adresem logicznym, który przypisywany jest w sposób numeryczny. Nazwy symboliczne są związane z systemami DNS (Domain Name System), które przekształcają zrozumiałe dla ludzi nazwy domen w zrozumiałe dla maszyn adresy IP. Kolejna błędna koncepcja to uznawanie adresu IP za adres fizyczny komputera; w rzeczywistości adres fizyczny odnosi się do adresu MAC (Media Access Control), który jest przypisany do sprzętu sieciowego i nie zmienia się w trakcie jego użytkowania. Adres IP jest zmienny i może być przypisany dynamicznie przez serwer DHCP. Z kolei uznawanie adresu IP za unikatowy numer fabryczny urządzenia wprowadza w błąd, ponieważ taki numer odnosi się do konkretnego sprzętu, a nie do jego interakcji w sieci. Te pomyłki często wynikają z nieporozumień dotyczących różnicy między koncepcjami adresowania logicznego i fizycznego. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania sieciami i poprawnego interpretowania funkcji adresów IP w komunikacji internetowej. Współczesne praktyki sieciowe opierają się na zrozumieniu, jak adresy IP są wykorzystywane w routingach, co jest niezbędne do optymalizacji wydajności i bezpieczeństwa sieci.

Pytanie 19

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. bardziej zaawansowane szyfrowanie
B. strefę o ograniczonym dostępie
C. filtrację adresów MAC
D. firewall
Bezpieczniejsze szyfrowanie, strefy zdemilitaryzowane oraz zapory sieciowe to techniki związane z bezpieczeństwem, ale nie są właściwym rozwiązaniem dla problemu ograniczenia dostępu do sieci WiFi na podstawie adresów fizycznych. Szyfrowanie, jak WPA2 czy WPA3, skutecznie chroni dane przesyłane w sieci przed podsłuchiwaniem, ale nie kontroluje, które urządzenia mogą się z nią połączyć. Z kolei strefa zdemilitaryzowana (DMZ) jest koncepcją z zakresu architektury sieci, której celem jest oddzielenie zasobów wewnętrznych od publicznego dostępu, ale nie jest bezpośrednio związana z dostępem do WiFi. Zastosowanie DMZ w kontekście sieci bezprzewodowej jest rzadkie, ponieważ dotyczy głównie ruchu przychodzącego z internetu do sieci lokalnej. Zapora sieciowa (firewall) jest również istotnym elementem zabezpieczeń, ale jej główną rolą jest kontrola ruchu sieciowego na poziomie pakietów, a nie identyfikacja konkretnych urządzeń na podstawie ich adresów MAC. Dlatego ograniczenie dostępu do sieci WiFi przez filtrowanie adresów MAC jest bardziej odpowiednim i skutecznym rozwiązaniem, które pozwala na precyzyjne zarządzanie połączeniami urządzeń w danej sieci.

Pytanie 20

W strukturze hierarchicznej sieci komputery należące do użytkowników znajdują się w warstwie

A. dystrybucji
B. dostępu
C. szkieletowej
D. rdzenia
Warstwa dostępu w modelu hierarchicznym sieci komputerowych jest kluczowym elementem, który odpowiedzialny jest za bezpośrednie łączenie użytkowników i urządzeń końcowych z siecią. To w tej warstwie odbywa się fizyczne podłączenie do sieci oraz zarządzanie dostępem do zasobów, co czyni ją istotnym komponentem w architekturze sieci. W praktyce, urządzenia takie jak switche, punkty dostępowe oraz routery operują w tej warstwie, umożliwiając użytkownikom dostęp do zasobów sieciowych oraz internetowych. Przykładem zastosowania tej warstwy może być biuro, w którym pracownicy korzystają z laptopów i smartfonów, które łączą się z siecią lokalną za pomocą switchy i punktów dostępowych. Właściwe zaprojektowanie warstwy dostępu, zgodnie z zasadami best practices, ma kluczowe znaczenie dla zapewnienia wydajności oraz bezpieczeństwa sieci. Ważne jest również, aby uwzględnić kwestie takie jak VLAN-y do segregacji ruchu i bezpieczeństwa, co jest standardową praktyką w nowoczesnych sieciach lokalnych.

Pytanie 21

Administrator systemu Windows Server zamierza zorganizować użytkowników sieci w różnorodne grupy, które będą miały zróżnicowane uprawnienia do zasobów w sieci oraz na serwerze. Najlepiej osiągnie to poprzez zainstalowanie roli

A. usługi domenowe AD
B. serwera DHCP
C. usługi wdrażania systemu Windows
D. serwera DNS
Usługi domenowe Active Directory (AD) to kluczowy element infrastruktury zarządzania użytkownikami i zasobami w systemie Windows Server. Dzięki tej roli administratorzy mogą tworzyć i zarządzać różnymi grupami użytkowników, co pozwala na efektywne przydzielanie uprawnień do zasobów w sieci. Przykładowo, można skonfigurować grupy dla różnych działów w firmie, takich jak sprzedaż, marketing czy IT, co umożliwia wdrażanie polityk bezpieczeństwa oraz kontroli dostępu do plików i aplikacji. Standardy branżowe, takie jak model RBAC (Role-Based Access Control), opierają się na zasadzie, że użytkownicy powinni mieć dostęp tylko do zasobów, które są im niezbędne do wykonywania swoich zadań. Implementacja AD wspiera ten model, co jest zgodne z praktykami zarządzania bezpieczeństwem w organizacjach. Ponadto, AD pozwala na scentralizowane zarządzanie użytkownikami, co upraszcza procesy administracyjne i zwiększa bezpieczeństwo systemu.

Pytanie 22

Oblicz całkowity koszt kabla UTP Cat 6, który posłuży do połączenia 5 punktów abonenckich z punktem dystrybucyjnym, wiedząc, że średnia odległość między punktem abonenckim a punktem dystrybucyjnym wynosi 8 m, a cena brutto 1 m kabla to 1 zł. W obliczeniach należy uwzględnić dodatkowe 2 m kabla na każdy punkt abonencki.

A. 32 zł
B. 40 zł
C. 45 zł
D. 50 zł
Koszt brutto kabla UTP Cat 6 dla pięciu punktów abonenckich można obliczyć, stosując się do określonych kroków. Najpierw obliczamy długość kabla potrzebną do połączenia punktów abonenckich z punktem dystrybucyjnym. Dla każdego z pięciu punktów abonenckich mamy średnią odległość 8 m. W związku z tym, całkowita długość kabla wynosi 5 punktów x 8 m = 40 m. Następnie dodajemy zapas 2 m dla każdego punktu abonenckiego, co daje dodatkowe 5 punktów x 2 m = 10 m. Sumując te wartości, otrzymujemy całkowitą długość kabla wynoszącą 40 m + 10 m = 50 m. Cena za 1 m kabla wynosi 1 zł, więc koszt brutto 50 m kabla to 50 zł. Takie podejście uwzględnia nieprzewidziane okoliczności, co jest zgodne z dobrymi praktykami w zakresie instalacji kablowych, gdzie zawsze warto mieć zapas materiałów, aby zminimalizować ryzyko błędów podczas montażu.

Pytanie 23

Podaj domyślny port, który służy do przesyłania poleceń w serwisie FTP.

A. 110
B. 25
C. 21
D. 20
Odpowiedź 21 jest poprawna, ponieważ port 21 jest standardowym portem używanym do komunikacji w protokole FTP (File Transfer Protocol). FTP jest jednym z najstarszych protokołów internetowych, stosowanym głównie do przesyłania plików między komputerami w sieci. Port 21 jest używany do nawiązywania połączenia i obsługi próśb klientów. W praktyce, gdy klient FTP łączy się z serwerem, inicjuje sesję poprzez wysłanie polecenia LOGIN na ten właśnie port. Aby zapewnić bezpieczeństwo i zgodność z najlepszymi praktykami, ważne jest, aby administratorzy serwerów wykorzystywali standardowe porty, takie jak 21, co ułatwia diagnostykę problemów i integrację z innymi systemami. Warto również zauważyć, że FTP może działać w różnych trybach, a port 21 jest kluczowy w trybie aktywnym. W kontekście bezpieczeństwa, rozważając współczesne zastosowania, administratorzy mogą również korzystać z protokołów zabezpieczających, takich jak FTPS lub SFTP, które oferują szyfrowanie danych, ale nadal używają portu 21 jako standardowego portu komend.

Pytanie 24

Ransomware to rodzaj szkodliwego oprogramowania, które

A. ukrywa pliki lub procesy, aby wspierać kontrolę nad zainfekowanym komputerem.
B. używa zainfekowanego komputera do rozsyłania wiadomości spam.
C. szyfruje lub blokuje dane w celu wyłudzenia okupu.
D. rejestruje naciskane przez użytkownika klawisze.
Ransomware to jedna z najgroźniejszych form złośliwego oprogramowania, która szyfruje lub blokuje dostęp do danych na komputerze ofiary w celu wyłudzenia okupu. Gdy system zostanie zainfekowany, użytkownik często otrzymuje wiadomość, w której informuje się go o tym, że dostęp do jego plików został zablokowany, a ich odzyskanie jest możliwe tylko po zapłaceniu określonej sumy pieniędzy. Przykładem ransomware jest złośliwe oprogramowanie WannaCry, które w 2017 roku sparaliżowało wiele organizacji na całym świecie. Ważne jest, aby stosować dobre praktyki w zakresie zabezpieczeń, takie jak regularne tworzenie kopii zapasowych, aktualizowanie oprogramowania oraz korzystanie z zaawansowanych rozwiązań antywirusowych i zapór sieciowych. Ponadto, edukacja pracowników w zakresie rozpoznawania podejrzanych wiadomości e-mail i linków jest kluczowym elementem obrony przed tego typu zagrożeniami. Zrozumienie mechanizmów działania ransomware pozwala na skuteczniejsze przygotowanie się na potencjalne ataki i minimalizowanie ryzyka ich wystąpienia.

Pytanie 25

Aby zabezpieczyć system Windows przed nieautoryzowanym dostępem poprzez ograniczenie liczby nieudanych prób logowania, należy ustawić

A. Zasady grup, Zasady konta
B. Zasady grup, Opcje zabezpieczeń
C. Panel Sterowania, Zaporę systemu Windows
D. Panel Sterowania, Konta użytkowników
Zasady grup oraz Zasady konta stanowią kluczowe narzędzia w zabezpieczaniu systemu Windows przed włamaniami poprzez ograniczenie liczby nieudanych prób logowania. Poprawna odpowiedź na pytanie o zabezpieczenia systemowe skupia się na implementacji polityk dotyczących kont użytkowników i ich uprawnień. Zasady konta pozwalają administratorom określić, ile razy użytkownik może wprowadzić błędne hasło przed zablokowaniem konta. Przykładowo, w organizacji można ustalić, że po trzech nieudanych próbach logowania konto użytkownika zostaje zablokowane na 15 minut, co znacząco utrudnia próby przeprowadzenia ataków typu brute force. W praktyce, wdrożenie takich zasad nie tylko zwiększa bezpieczeństwo, ale również przyczynia się do zgodności z różnymi standardami zarządzania bezpieczeństwem informacji, takimi jak ISO/IEC 27001, które zalecają implementację odpowiednich środków ochrony dla systemów informatycznych. Warto również pamiętać, że efektywne zarządzanie dostępem do zasobów systemowych, w tym tworzenie odpowiednich zasad grup, powinno być częścią ogólnej strategii zabezpieczeń organizacji.

Pytanie 26

IMAP (Internet Message Access Protocol) to protokół

A. wysyłania wiadomości email
B. odbierania wiadomości email
C. przesyłania tekstów
D. transmisji plików w sieci Internet
IMAP, czyli Internet Message Access Protocol, jest standardowym protokołem stosowanym do odbierania poczty elektronicznej. Umożliwia użytkownikom dostęp do wiadomości e-mail przechowywanych na serwerze zdalnym, co oznacza, że nie są one pobierane na urządzenie lokalne, a tylko wyświetlane. Dzięki temu użytkownicy mogą zarządzać swoją pocztą z różnych urządzeń, takich jak komputery, tablety czy smartfony, zachowując pełną synchronizację. Przykładowo, jeśli użytkownik przeczyta wiadomość na telefonie, stanie się ona oznaczona jako przeczytana również na komputerze. IMAP obsługuje foldery, co pozwala na organizację wiadomości w sposób hierarchiczny, a także zapewnia możliwość przeszukiwania treści e-maili bezpośrednio na serwerze. Warto również zaznaczyć, że IMAP jest zgodny z wieloma standardami branżowymi, co zapewnia jego szeroką kompatybilność z różnymi klientami pocztowymi. W praktyce, korzystanie z protokołu IMAP jest rekomendowane w środowiskach, gdzie ważna jest mobilność i dostęp do e-maili w czasie rzeczywistym.

Pytanie 27

W Active Directory, zbiór składający się z jednej lub wielu domen, które dzielą wspólny schemat oraz globalny katalog, określa się mianem

A. gwiazdą
B. liściem
C. siatką
D. lasem
Odpowiedź 'lasem' jest poprawna, ponieważ w architekturze Active Directory (AD) termin 'las' odnosi się do zbioru jednej lub większej liczby domen, które mają wspólny schemat (Schema) oraz globalny wykaz (Global Catalog). Las jest kluczowym elementem organizacji wewnętrznej Active Directory, który pozwala na zarządzanie grupami domen i ich zasobami w skoordynowany sposób. W praktyce, las umożliwia administratorom IT zarządzanie wieloma domenami w ramach jednej struktury, co jest szczególnie istotne w dużych organizacjach z rozproszoną infrastrukturą IT. Dla przykładu, jeśli firma ma różne oddziały w różnych lokalizacjach, może stworzyć las, który obejmie wszystkie te oddziały jako osobne domeny, ale z możliwością współdzielenia zasobów i informacji. Dzięki temu organizacja może zachować elastyczność i łatwość w zarządzaniu, a także zapewnić spójność w politykach bezpieczeństwa i dostępu. Dodatkowo, w kontekście dobrych praktyk, zarządzanie lasami w AD wspiera zasady segregacji obowiązków oraz ułatwia nadzorowanie polityk grupowych.

Pytanie 28

Poniżej przedstawiono wynik działania polecenia

Interface Statistics

                         Received              Sent
Bytes                  3828957336        3249252169
Unicast packets          35839063         146809272
Non-unicast packets          5406             25642
Discards                       50                 0
Errors                          0                 0
Unknown protocols               0

A. ipconfig -e
B. netstat -e
C. dnslookup -e
D. tracert -e
Odpowiedź 'netstat -e' jest poprawna, ponieważ to polecenie w systemach operacyjnych Windows służy do wyświetlania szczegółowych informacji na temat statystyk interfejsu sieciowego. W szczególności, 'netstat -e' prezentuje dane dotyczące przesyłania pakietów i bajtów, co jest szczególnie przydatne w troubleshootingu i monitorowaniu wydajności sieci. Umożliwia administratorom systemów i sieci analizę błędów, odrzuconych pakietów oraz identyfikację nieznanych protokołów, co może wskazywać na potencjalne problemy z konfiguracją bądź bezpieczeństwem. W praktyce, korzystając z 'netstat -e', można szybko ocenić, czy interfejs sieciowy działa zgodnie z oczekiwaniami, co jest kluczowe w zarządzaniu infrastrukturą sieciową. Dobrym przykładem zastosowania jest sytuacja, gdy administrator zauważa spowolnienie działania aplikacji sieciowych i za pomocą tego polecenia może stwierdzić, czy interfejs jest w stanie przetwarzać odpowiednią ilość danych.

Pytanie 29

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić sposób szyfrowania z WEP na WPA
B. zmienić hasło
C. zmienić kanał radiowy
D. skonfigurować filtrowanie adresów MAC
Zmiana hasła do sieci WiFi jest istotnym krokiem w zabezpieczeniu dostępu, jednak sama w sobie nie ogranicza dostępu wybranym urządzeniom. Hasło można łatwo przechwycić, a jego zmiana nie wprowadza mechanizmu, który by blokował nieautoryzowane urządzenia. Zmiana kanału radiowego może pomóc w minimalizacji zakłóceń z innych sieci, ale nie ma wpływu na to, które urządzenia mogą łączyć się z punktem dostępowym. Zmiana metody szyfrowania z WEP na WPA stanowi dobry krok w kierunku poprawy bezpieczeństwa, ponieważ WEP jest przestarzałym protokołem, który łatwo można złamać. Niemniej jednak, sama zmiana szyfrowania nie pozwala na selektywne zarządzanie dostępem do sieci. W praktyce, aby skutecznie zarządzać dostępem do sieci WiFi, administratorzy powinni wdrażać wielowarstwowe podejście do bezpieczeństwa, które obejmuje zarówno silne hasła, jak i filtrowanie adresów MAC. Ignorując tę ostatnią metodę, można zaniechać istotnej warstwy zabezpieczeń, co w dłuższym okresie może prowadzić do poważnych incydentów bezpieczeństwa.

Pytanie 30

Jakie urządzenie należy użyć, aby połączyć sieć lokalną z Internetem?

A. przełącznik.
B. koncentrator.
C. ruter.
D. most.
Ruter to urządzenie, które pełni kluczową rolę w komunikacji pomiędzy siecią lokalną a Internetem. Jego głównym zadaniem jest przekazywanie danych pomiędzy różnymi sieciami, co pozwala na wymianę informacji pomiędzy urządzeniami wewnątrz sieci lokalnej a użytkownikami zewnętrznymi. Ruter wykonuje funkcje takie jak kierowanie pakietów, NAT (Network Address Translation) oraz zarządzanie adresami IP. Przykładem zastosowania rutera w praktyce jest sytuacja, gdy mamy w domu kilka urządzeń (komputery, smartfony, tablety), które łączą się z Internetem. Ruter pozwala tym urządzeniom na korzystanie z jednego, publicznego adresu IP, co jest zgodne z praktykami oszczędzania przestrzeni adresowej. Ruter może również zapewniać dodatkowe funkcje, takie jak zapora sieciowa (firewall) oraz obsługa sieci bezprzewodowych (Wi-Fi), co zwiększa bezpieczeństwo i komfort użytkowania. To urządzenie jest zatem niezbędne w każdej sieci, która chce mieć dostęp do globalnej sieci Internet.

Pytanie 31

Przynależność komputera do danej sieci wirtualnej nie może być ustalana na podstawie

A. znacznika ramki Ethernet 802.1Q
B. adresu MAC karty sieciowej komputera
C. numeru portu przełącznika
D. nazwa komputera w sieci lokalnej
W przypadku analizy przynależności komputera do konkretnej sieci wirtualnej, ważne jest zrozumienie, że różne metody identyfikacji urządzeń w sieci działają na różnych poziomach. Adres MAC, przypisany do karty sieciowej komputera, jest unikalnym identyfikatorem, który pozwala na ustalenie, do jakiego portu przełącznika jest podłączone dane urządzenie. Przełączniki sieciowe wykorzystują ten adres do podejmowania decyzji o przekazywaniu pakietów, co jest podstawą działania VLAN. Dlatego adres MAC jest kluczowy dla przypisania do konkretnej sieci wirtualnej. Również numer portu przełącznika odgrywa istotną rolę w tej kwestii, ponieważ wiele przełączników umożliwia przypisanie portów do różnych VLAN-ów, co jeszcze bardziej ukierunkowuje ruch sieciowy. Z kolei znacznik ramki Ethernet 802.1Q jest standardem branżowym, który umożliwia wielość VLAN w jednym fizycznym połączeniu, co dodatkowo wzmacnia organizację ruchu. Jednak niepoprawne jest myślenie, że nazwa komputera, która jest bardziej przyjazna dla użytkowników, może mieć jakikolwiek wpływ na przypisanie do konkretnej VLAN. To prowadzi do nieporozumień w zarządzaniu siecią oraz może skutkować trudnościami w rozwiązywaniu problemów związanych z dostępem do zasobów sieciowych. W praktyce, błędna identyfikacja znaczenia nazwy komputera w kontekście VLAN-ów może wpływać na efektywność administracji siecią, ponieważ nie bierze pod uwagę technicznych aspektów, które decydują o rzeczywistej przynależności urządzenia do danej sieci wirtualnej.

Pytanie 32

Firma zamierza stworzyć lokalną sieć komputerową, która będzie obejmować serwer, drukarkę oraz 10 stacji roboczych bez kart Wi-Fi. Połączenie z Internetem zapewnia ruter z wbudowanym modemem ADSL oraz czterema portami LAN. Które z wymienionych urządzeń sieciowych jest wymagane, aby sieć mogła prawidłowo funkcjonować i uzyskać dostęp do Internetu?

A. Wzmacniacz sygnału bezprzewodowego
B. Access Point
C. Przełącznik 16 portowy
D. Przełącznik 8 portowy
Wybór przełącznika 16 portowego jako niezbędnego urządzenia do budowy lokalnej sieci komputerowej jest uzasadniony z kilku powodów. Przełącznik (switch) to kluczowy element infrastruktury sieciowej, który umożliwia komunikację pomiędzy różnymi urządzeniami w sieci. W tym przypadku, mając 10 stacji roboczych, serwer i drukarkę, potrzebujemy co najmniej 12 portów do podłączenia wszystkich tych urządzeń. Przełącznik 16 portowy zapewnia wystarczającą liczbę portów, co dostosowuje się do przyszłych potrzeb rozbudowy sieci. Standardowe praktyki zalecają stosowanie przełączników w lokalnych sieciach komputerowych, aby zapewnić efektywne zarządzanie ruchem danych oraz zminimalizować kolizje. Dzięki technologii Ethernet, przełączniki są w stanie przesyłać dane z dużą prędkością, co jest kluczowe w przypadku intensywnego korzystania z sieci, np. podczas drukowania lub przesyłania dużych plików. Dodatkowo, przełączniki mogą obsługiwać różne protokoły, co umożliwia integrację z różnymi urządzeniami oraz systemami. Wybór przełącznika jako podstawowego urządzenia podkreśla znaczenie jego roli w zapewnieniu stabilności i wydajności całej sieci, a także umożliwia zarządzanie przepustowością oraz bezpieczeństwem ruchu sieciowego.

Pytanie 33

Przy projektowaniu sieci przewodowej, która ma maksymalną prędkość transmisji wynoszącą 1 Gb/s, a maksymalna długość między punktami sieci nie przekracza 100 m, jakie medium transmisyjne powinno być zastosowane?

A. fale radiowe o częstotliwości 2,4 GHz
B. kabel koncentryczny o średnicy ¼ cala
C. kabel UTP kategorii 5e
D. fale radiowe o częstotliwości 5 GHz
Kabel UTP kategorii 5e jest idealnym medium transmisyjnym do budowy sieci przewodowej o maksymalnej szybkości transmisji 1 Gb/s i odległości do 100 m. UTP (Unshielded Twisted Pair) to rodzaj kabla, który składa się z par skręconych przewodów, co znacząco zmniejsza zakłócenia elektromagnetyczne i pozwala na osiąganie wysokich prędkości transmisji. Standard ten zapewnia przepustowość do 100 MHz, co umożliwia przesyłanie danych z prędkościami sięgającymi 1 Gb/s w odległości do 100 m, zgodnie z normą IEEE 802.3ab dla Ethernetu. Przykładem zastosowania mogą być biura, gdzie sieci komputerowe muszą być niezawodne i wydajne, co czyni kabel UTP 5e odpowiednim wyborem. Warto również zwrócić uwagę, że kabel ten jest powszechnie stosowany w standardzie Ethernet, co czyni go dobrze udokumentowanym i łatwo dostępnym rozwiązaniem w branży IT.

Pytanie 34

Który ze wskaźników okablowania strukturalnego definiuje stosunek mocy testowego sygnału w jednej parze do mocy sygnału wyindukowanego w sąsiedniej parze na tym samym końcu przewodu?

A. Przenik zdalny
B. Suma przeników zbliżnych i zdalnych
C. Przenik zbliżny
D. Suma przeników zdalnych
Zrozumienie pojęć związanych z przenikami w okablowaniu strukturalnym jest kluczowe dla efektywnej analizy jakości sygnału. Odpowiedzi takie jak przenik zdalny i suma przeników zdalnych nie odpowiadają na postawione pytanie dotyczące wpływu sygnału w sąsiednich parach na tym samym końcu kabla. Przenik zdalny odnosi się do zakłóceń, które mogą być generowane przez sygnały w innej parze przewodów, ale nie bierze pod uwagę bezpośredniego wpływu sąsiednich par. Z kolei suma przeników zdalnych i zbliżnych może sugerować, że oba te parametry są równoważne, co jest mylne, ponieważ każdy z nich mierzy inny aspekt zakłóceń. Typowym błędem myślowym jest mylenie przeników, co prowadzi do nieprawidłowych wniosków dotyczących jakości i wydajności okablowania. Podczas projektowania i instalacji systemów telekomunikacyjnych, kluczowe jest przestrzeganie standardów, które jasno definiują pomiar i wpływ przeników na funkcjonowanie sieci. Dlatego zrozumienie różnicy między przenikiem zdalnym a zbliżnym jest niezbędne dla inżynierów zajmujących się okablowaniem strukturalnym oraz dla uzyskania optymalnych parametrów sieci.

Pytanie 35

Jaką rolę odgrywa ISA Server w systemie operacyjnym Windows?

A. Służy do rozwiązywania nazw domenowych
B. Pełni funkcję firewalla
C. Działa jako serwer stron internetowych
D. Stanowi system wymiany plików
ISA Server, czyli Internet Security and Acceleration Server, pełni kluczową rolę jako firewall w systemach operacyjnych Windows, zapewniając zaawansowaną ochronę sieci oraz kontrolę dostępu do zasobów. Jako firewall, ISA Server nie tylko blokuje nieautoryzowany ruch sieciowy, ale także monitoruje i filtruje dane, które przepływają między różnymi segmentami sieci. Dzięki funkcjom takim jak NAT (Network Address Translation), ISA Server ukrywa wewnętrzne adresy IP przed zewnętrznymi użytkownikami, co zwiększa bezpieczeństwo. W praktyce, administratorzy mogą definiować zasady dostępu, co pozwala na precyzyjne kontrolowanie, które aplikacje i usługi mogą komunikować się z siecią zewnętrzną. Przykładem zastosowania ISA Server może być organizacja, która chce ograniczyć dostęp do określonych stron internetowych, pozwalając jednocześnie na korzystanie z zasobów intranetowych. ISA Server oferuje również zaawansowane funkcje, takie jak monitoring ruchu oraz raportowanie, co umożliwia administratorom śledzenie potencjalnych zagrożeń oraz analizowanie wzorców użytkowania sieci. Te praktyki są zgodne z najlepszymi standardami bezpieczeństwa w branży IT, w tym z metodologią zarządzania ryzykiem według ISO/IEC 27001.

Pytanie 36

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa transportowa
B. Warstwa danych łącza
C. Warstwa sieci
D. Warstwa fizyczna
Warstwa sieci w modelu ISO/OSI jest kluczowa dla działania Internetu, ponieważ to tutaj definiowane są protokoły odpowiedzialne za adresowanie oraz przesyłanie danych pomiędzy różnymi sieciami. Protokół IP (Internet Protocol) działa na tej warstwie i ma za zadanie dostarczać dane pomiędzy hostami w sieci, niezależnie od fizycznych połączeń. Przykładem praktycznym zastosowania IP jest routing, gdzie routery wykorzystują adresy IP do określenia najlepszej trasy dla przesyłanych pakietów. Standardy takie jak IPv4 i IPv6, będące wersjami protokołu IP, są fundamentalne w zapewnieniu komunikacji w sieci. Zrozumienie warstwy sieci i działania protokołu IP jest kluczowe dla specjalistów zajmujących się sieciami, ponieważ umożliwia projektowanie i zarządzanie złożonymi architekturami sieciowymi, zapewniającą efektywną wymianę danych.

Pytanie 37

Parametr, który definiuje stosunek liczby wystąpionych błędnych bitów do ogólnej liczby odebranych bitów, to

A. Bit Error Rate
B. Propagation Delay Skew
C. Near End Crosstalk
D. Return Loss
Bit Error Rate (BER) to kluczowy parametr w telekomunikacji, który określa stosunek liczby błędnych bitów do całkowitej liczby otrzymanych bitów. Mierzy on jakość transmisji danych oraz niezawodność systemów komunikacyjnych. Niska wartość BER jest pożądana, ponieważ wskazuje na wysoką jakość sygnału i efektywność przesyłania informacji. W zastosowaniach praktycznych, takich jak sieci komputerowe czy systemy satelitarne, monitorowanie BER pozwala na szybką identyfikację problemów związanych z zakłóceniami sygnału, co jest kluczowe dla utrzymania wysokiej jakości usług. Standardy, takie jak ITU-T G.826, definiują sposoby pomiaru BER oraz akceptowalne poziomy w różnych aplikacjach. Zrozumienie i kontrola BER pozwala inżynierom na projektowanie bardziej niezawodnych systemów oraz na świadome podejmowanie decyzji dotyczących wyboru technologii transmisji, co w praktyce przekłada się na lepsze doświadczenia użytkowników końcowych.

Pytanie 38

Jakie oprogramowanie do wirtualizacji jest dostępne jako rola w systemie Windows Server 2019?

A. VMware
B. Virtual Box
C. Hyper-V
D. Virtual PC
Hyper-V to zaawansowane oprogramowanie do wirtualizacji, które jest dostępne jako rola w systemie Windows Server 2019. Umożliwia ono tworzenie i zarządzanie wirtualnymi maszynami (VM), co pozwala na efektywne wykorzystanie zasobów serwera fizycznego. Hyper-V obsługuje różne systemy operacyjne, co czyni go elastycznym narzędziem dla administratorów IT. Przykładowo, dzięki Hyper-V można uruchamiać wiele serwerów na jednym fizycznym urządzeniu, co znacząco obniża koszty sprzętowe oraz zmniejsza zużycie energii. Hyper-V wspiera również funkcje takie jak migracja maszyn wirtualnych, co pozwala na przenoszenie VM między hostami bez przerywania ich pracy. W kontekście standardów branżowych, Hyper-V spełnia wymogi wielu organizacji dotyczące efektywności i bezpieczeństwa, oferując mechanizmy izolacji i zarządzania zasobami. Dodatkowo, integracja z powiązanymi technologiami Microsoft, takimi jak System Center, umożliwia zaawansowane zarządzanie infrastrukturą wirtualną, co czyni Hyper-V preferowanym rozwiązaniem dla wielu przedsiębiorstw.

Pytanie 39

Które z poniższych poleceń systemu Linux wyświetla aktualną konfigurację interfejsów sieciowych?

A. ifconfig
B. netstat -r
C. ping
D. traceroute
ifconfig to jedno z podstawowych narzędzi wykorzystywanych w systemach Linux do wyświetlania i konfigurowania interfejsów sieciowych. To polecenie pozwala w prosty sposób sprawdzić aktualny stan interfejsów, ich adresy IP, maski podsieci, adresy MAC oraz informacje o przesłanych pakietach i ewentualnych błędach. Moim zdaniem, korzystanie z ifconfig przydaje się zwłaszcza podczas diagnozowania problemów z siecią lokalną lub przy pierwszej konfiguracji serwera. Praktycznie każdy administrator systemów Linux przynajmniej raz w życiu korzystał z tego narzędzia, nawet jeśli obecnie coraz częściej poleca się nowsze polecenie ip a. Jednak w wielu dystrybucjach ifconfig nadal jest dostępny, zwłaszcza w starszych systemach lub w przypadku pracy na maszynach wirtualnych. Warto wiedzieć, że ifconfig jest zgodny z tradycją UNIX-a i pozwala na szybkie uzyskanie przejrzystego zestawienia aktywnych interfejsów. Użycie tego polecenia wpisuje się w dobre praktyki monitorowania i utrzymywania infrastruktury sieciowej, szczególnie w środowiskach edukacyjnych oraz podczas egzaminów zawodowych, takich jak INF.07.

Pytanie 40

Protokół pomocniczy do kontroli stosu TCP/IP, który odpowiada za identyfikację oraz przekazywanie informacji o błędach podczas działania protokołu IP, to

A. Internet Control Message Protocol (ICMP)
B. Routing Information Protocol (RIP)
C. Address Resolution Protocol (ARP)
D. Reverse Address Resolution Protocol (RARP)
Internet Control Message Protocol (ICMP) to kluczowy protokół w rodzinie protokołów TCP/IP, który pełni istotną rolę w diagnostyce i zarządzaniu siecią. Jego podstawową funkcją jest wymiana informacji o błędach oraz informacji kontrolnych pomiędzy węzłami sieciowymi. ICMP umożliwia wykrywanie problemów, takich jak niedostępność hosta lub przekroczenie limitu czasu przesyłania pakietów. Przykładowo, polecenie 'ping', które wykorzystuje ICMP, wysyła pakiety echo do określonego hosta i oczekuje na odpowiedź, co pozwala na ocenę dostępności i opóźnień w komunikacji sieciowej. Dobre praktyki branżowe zalecają stosowanie ICMP do monitorowania stanu sieci oraz diagnostyki problemów, a także przychodzących i wychodzących tras w komunikacji. ICMP jest również używany w protokole Traceroute, który pomaga określić trasę, jaką pokonują pakiety w sieci, co jest niezbędne w zarządzaniu sieciami.