Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 3 czerwca 2025 18:25
  • Data zakończenia: 3 czerwca 2025 18:42

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas pomiarów sytuacyjnych narożnika ogrodzenia przy zastosowaniu metody biegunowej, należy przeprowadzić obserwacje geodezyjne

A. kąta poziomego i odległości skośnej
B. kąta poziomego i odległości poziomej
C. kąta pionowego i odległości skośnej
D. kąta pionowego i odległości poziomej
Pojęcia związane z pomiarami geodezyjnymi są złożone i często mylone, co prowadzi do nieprawidłowych wniosków. Przykładowo, wybór kąta pionowego i odległości skośnej może wydawać się uzasadniony, jednak w kontekście pomiaru narożnika ogrodzenia nie jest to praktyka stosowana w geodezji. Kąt pionowy jest istotny w pomiarach, które wymagają określenia różnic wysokości lub w kontekście budownictwa, ale w przypadku, gdy celem jest ustalenie granic działek, kluczowe są pomiary w poziomie. Ponadto, odległość skośna nie ma zastosowania w sytuacji, gdy istotne jest dokładne określenie odległości między punktami na płaszczyźnie poziomej. Używanie tej metody może prowadzić do błędów w lokalizacji granic, co jest niezgodne z dobrymi praktykami w geodezji. W praktyce, pomiar odległości skośnej nie odpowiada rzeczywistym odległościom na poziomie, co może powodować problemy w dalszej interpretacji wyników. Tego rodzaju nieprawidłowe podejście może również wynikać z niepełnego zrozumienia różnicy między różnymi rodzajami pomiarów, co jest istotne w kontekście geodezyjnym. Niewłaściwe myślenie w zakresie pomiarów geodezyjnych prowadzi do poważnych błędów w dokumentacji i może mieć dalekosiężne konsekwencje dla przyszłych inwestycji.

Pytanie 2

Kiedy oznaczenia geodezyjne uległy zniszczeniu, rekonstruowanie punktów szczegółowej osnowy poziomej należy przeprowadzić na podstawie zarejestrowanych w opisie topograficznym zmierzonych odległości do

A. punktów określanych jako poboczniki
B. sąsiednich funkcjonujących punktów osnowy
C. najbliższych elementów terenu
D. elementów terenowych z I kategorii dokładnościowej
Odpowiedź "punkty zwane pobocznikami" jest prawidłowa, ponieważ w geodezji poboczniki odgrywają kluczową rolę w procesie odtwarzania zniszczonych punktów osnowy. Poboczniki, jako znane punkty geodezyjne, mogą być używane jako odniesienie podczas rekonstrukcji siatki punktów osnowy. W praktyce, w przypadku zniszczenia znaków geodezyjnych, geodeta powinien najpierw zidentyfikować i wykorzystać dostępne poboczniki, które były wcześniej pomierzone i opisane w dokumentacji topograficznej. Przykładowo, gdy istniejące punkty osnowy są usunięte, poboczniki mogą zapewnić niezbędne odniesienie do precyzyjnego przywrócenia punktów osnowy. Zgodnie z obowiązującymi regulacjami geodezyjnymi, przy odtwarzaniu punktów osnowy poziomej niezbędne jest zachowanie wysokiej dokładności, co można osiągnąć właśnie poprzez odniesienie do stabilnych punktów, takich jak poboczniki. Dobrą praktyką jest regularne aktualizowanie i weryfikowanie stanu poboczników, aby zapewnić ich wiarygodność jako odniesienia w procesach geodezyjnych.

Pytanie 3

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu
B. aktualizacji danych w bazie obiektów topograficznych
C. inwentaryzacji po zakończeniu budowy obiektu
D. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 4

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 2,0 m
B. s = 1,9 m
C. s = 1,7 m
D. s = 1,8 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 5

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. wiążące
B. kontrolne
C. kontrolowane
D. odniesienia
Odpowiedź 'kontrolowane' jest poprawna, ponieważ punkty kontrolowane to specyficzne punkty umieszczane na monitorowanym obiekcie, które służą do obserwacji i analizy zmian w ich położeniu. Używane są w różnych dziedzinach, takich jak inżynieria, geodezja czy monitorowanie konstrukcji, aby ocenić deformacje, ruchy czy inne zmiany w czasie. Przykładowo, w budownictwie punkty kontrolowane mogą być wykorzystane do monitorowania osiadania fundamentów budynku po jego wybudowaniu. Zastosowanie takich punktów jest zgodne z najlepszymi praktykami branżowymi, takimi jak standardy geodezyjne, które sugerują regularne pomiary oraz dokumentację wyników, co ułatwia analizę zmian oraz identyfikację ewentualnych problemów w konstrukcji. W kontekście systemów monitorowania, punkty kontrolowane pozwalają na automatyzację procesów i poprawiają dokładność pomiarów poprzez zastosowanie technologii takich jak GPS czy skanowanie laserowe, które mogą być zintegrowane z systemami zarządzania obiektami.

Pytanie 6

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinien znajdować się obserwator
B. powinien być pomiarowy
C. powinno być ustawione lustro lub łata
D. powinno znajdować się stanowisko instrumentu
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 7

Niwelacja trygonometryczna polega na określaniu różnic wysokości wybranych lokalizacji na podstawie obserwacji

A. odległości poziomej i kąta pionowego
B. odległości pionowej i kąta pionowego
C. odległości pionowej i kąta poziomego
D. odległości poziomej i kąta poziomego
Analizując dostępne odpowiedzi, można dostrzec szereg nieporozumień, które prowadzą do błędnego zrozumienia niwelacji trygonometrycznej. Odpowiedzi oparte na odległości pionowej i kącie poziomym lub pionowym są błędne, ponieważ nie uwzględniają kluczowego aspektu, jakim jest pomiar kąta pionowego w kontekście poziomej odległości. W pomiarach niwelacyjnych istotne jest to, że kąt pionowy, mierzony względem poziomu, pozwala określić różnice wysokości. Odległości pionowe są w praktyce bardzo trudne do zmierzenia i nie są stosowane w standardowych metodach niwelacji, co jest kluczowe w geodezji. Z kolei kąty poziome, choć są ważne dla określenia relacji przestrzennych między punktami, nie dostarczają informacji o wysokości. Użycie odległości pionowej w tym kontekście może prowadzić do tzw. błędów paralaksy, co znacznie obniża dokładność pomiarów. Współczesne praktyki geodezyjne oparte są na pomiarach kątów pionowych i poziomych oraz odległości poziomej, co pozwala na precyzyjne obliczenie nie tylko różnic wysokości, ale także dalszych elementów takich jak nachylenie terenu. Dlatego ważne jest, aby stosować prawidłowe metody pomiarowe zgodne z wytycznymi i standardami branżowymi, aby uniknąć typowych błędów myślowych i praktycznych w dziedzinie geodezji.

Pytanie 8

Zastosowanie metody niwelacji służy do pomiaru oraz zagęszczenia osnowy wysokościowej?

A. profilów
B. powierzchniowej
C. barometrycznej
D. reperów
Wybór odpowiedzi niebędącej reperami prowadzi do nieporozumienia w zakresie metod pomiaru wysokości. Odpowiedzi, takie jak "profilów", "powierzchniowej" oraz "barometrycznej", nie są odpowiednie w kontekście konkretnych zastosowań niwelacji. Metoda "profilów" odnosi się do pomiarów, które mogą być wykorzystane do analizy różnic wysokości wzdłuż określonej trasy, ale nie stanowi standardowej metody tworzenia osnowy wysokościowej. W kontekście niwelacji, punkty profilowe są bardziej użyteczne do obserwacji gradientów terenu, a nie do tworzenia systematycznej sieci wysokości. Metoda "powierzchniowa" może sugerować pomiary na powierzchni terenu, ale nie odnosi się bezpośrednio do precyzyjnych pomiarów wysokości wymaganych w geodezji. Z kolei "metoda barometryczna" polega na pomiarze ciśnienia atmosferycznego w celu oszacowania wysokości, co jest mniej dokładne niż niwelacja oparta na reperach. Typowym błędem myślowym jest przypuszczenie, że każda technika pomiarowa związana z wysokością jest równoważna z niwelacją; w rzeczywistości jednak, każde podejście ma swoje zastosowania i ograniczenia. Precyzyjne pomiary wysokości są kluczowe dla działań inżynieryjnych i geodezyjnych, dlatego stosowanie odpowiedniej metody, zgodnej z obowiązującymi standardami, jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 9

Jakim symbolem literowym powinno się oznaczyć na mapie zasadniczej obiekt szkolny?

A. s
B. k
C. e
D. m
Wybór symbolu literowego 'e' jako oznaczenia budynku szkoły na mapie zasadniczej jest zgodny z przyjętymi standardami w zakresie oznaczania obiektów na mapach. Zgodnie z normami, symbol 'e' jest powszechnie stosowany do reprezentacji obiektów edukacyjnych, co ułatwia orientację w terenie oraz nawigację. Przykładowo, w przypadku planowania tras komunikacyjnych lub lokalizacji w pobliżu placówek oświatowych, identyfikacja budynków szkół za pomocą tego symbolu pozwala użytkownikom mapy szybko zlokalizować miejsca, które są istotne dla funkcji edukacyjnych. Dobrą praktyką w kartografii jest stosowanie jednolitych oznaczeń, co zwiększa użyteczność mapy. Z tego względu, poprawność oznaczenia szkoły symbolem 'e' przekłada się na lepszą komunikację wizualną oraz zrozumienie zamierzonej funkcji danego obiektu. Oznaczenia te są nie tylko praktyczne, ale również wspierają procesy związane z urbanistyką i planowaniem przestrzennym, gdzie ważne jest uwzględnienie obiektów edukacyjnych w kontekście rozwoju lokalnych społeczności.

Pytanie 10

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. przeglądowy
B. podstawowy
C. tachimetryczny
D. dokumentacyjny
Odpowiedzi "podstawowy", "dokumentacyjny" i "tachimetryczny" nie są właściwe w kontekście wskazania szkicu, który ma służyć do łatwego odnalezienia pomierzonych szczegółów fragmentu terenu. Szkic podstawowy to dokument, który zazwyczaj zawiera dane referencyjne używane do opracowywania bardziej szczegółowych planów oraz projektów. Jego zakres i dokładność są często niewystarczające do przedstawienia ogólnego układu terenu. Z kolei szkic dokumentacyjny służy do archiwizacji zdarzeń geodezyjnych i jest bardziej szczegółowy, ale jego celem nie jest ułatwienie bieżącej orientacji w terenie, lecz raczej dokumentacja stanu na dany moment. Natomiast szkic tachimetryczny jest narzędziem wykorzystywanym do bardziej precyzyjnych pomiarów, w tym obliczeń kątów i odległości, co jest istotne w geodezji, jednak nie odpowiada on na potrzeby szybkiego odnalezienia danych w terenie. Wybór odpowiedniego rodzaju szkicu jest kluczowy; niewłaściwe podejście do tej kwestii może prowadzić do nieefektywności w procesie zbierania i analizowania danych. Ważne jest zrozumienie, że każdy z tych szkiców ma swoje specyficzne zastosowanie i nie można ich stosować zamiennie bez uwzględnienia kontekstu operacyjnego.

Pytanie 11

Jakie jest pole powierzchni kwadratowej działki na mapie w skali 1:2000, jeżeli na mapie w skali 1:500 wynosi ono 4,00 cm2?

A. 25 mm2
B. 10 mm2
C. 50 mm2
D. 5 mm2
Aby obliczyć pole powierzchni działki na mapie w innej skali, należy najpierw zrozumieć, jak zmienia się pole w zależności od skali. W przypadku mapy w skali 1:500, pole powierzchni wynosi 4,00 cm². Przeliczając to pole na mm², otrzymujemy 400 mm² (ponieważ 1 cm² to 100 mm²). Gdy zmieniamy skalę na 1:2000, wartość skali zmienia się w stosunku do oryginalnej. W przypadku skali 1:2000, rzeczywista powierzchnia działki jest czterokrotnie większa, co oznacza, że powiększa się stosunek powierzchni w skali kwadratowej: (2000/500)² = 16. Dlatego, aby obliczyć pole powierzchni w nowej skali, dzielimy oryginalne pole powierzchni przez 16, co daje 400 mm² / 16 = 25 mm². To obliczenie jest kluczowe w planowaniu przestrzennym oraz w inżynierii, gdzie precyzyjne pomiary i ich przeliczenia są niezbędne do dokładnych analiz i projektów.

Pytanie 12

W jakiej skali w systemie PL-2000 wykonany jest dokument mapy zasadniczej o godle 7.125.30.10.3.4?

A. 1:2000
B. 1:500
C. 1:1000
D. 1:5000
Odpowiedzi 1:1000, 1:5000 oraz 1:2000 są nieprawidłowe, ponieważ każda z tych skal ma swoje specyficzne zastosowania, które nie są zgodne z wymaganiami arkusza mapy zasadniczej o godle 7.125.30.10.3.4. Skala 1:1000, w której 1 cm na mapie odpowiada 10 m w terenie, jest stosowana głównie w planach zagospodarowania przestrzennego i dla obszarów miejskich, gdzie szczegółowość jest mniejsza niż w przypadku skali 1:500. Skala 1:5000, gdzie 1 cm odpowiada 50 m, jest używana do map ogólnogeograficznych, co również nie odpowiada potrzebom mapy zasadniczej, która wymaga większej precyzji. Z kolei skala 1:2000 również nie spełnia wymagań dotyczących dokładności odwzorowania szczegółów terenowych, co jest kluczowe w kontekście ewidencji gruntów i budynków. Wybór niewłaściwej skali może prowadzić do błędnych interpretacji danych przestrzennych oraz utrudniać procesy planistyczne i budowlane. Warto zrozumieć, że skala mapy bezpośrednio wpływa na charakterystykę przedstawianych danych i ich użyteczność w analizach przestrzennych, dlatego kluczowe jest stosowanie się do standardów i wymogów odpowiednich dla danego typu mapy.

Pytanie 13

Jak geodeta oznaczy na szkicu przyłącze energetyczne niskiego napięcia do budynku mieszkalnego, jeśli wykonał inwentaryzację powykonawczą za pomocą lokalizatora?

A. eA
B. eNA
C. eN
D. e
Oznaczenie eNA dla przyłącza energetycznego niskiego napięcia do budynku mieszkalnego jest zgodne z aktualnymi standardami oraz praktykami branżowymi. Skrót ten oznacza, że przyłącze jest zasilane napięciem niższym niż 1 kV i jest przeznaczone do budynków mieszkalnych. W praktyce, geodeci oraz inżynierowie zajmujący się projektowaniem sieci elektroenergetycznych korzystają z tej konwencji, aby jasno komunikować typ i przeznaczenie przyłącza. W dokumentacji powykonawczej, szczególnie w przypadkach związanych z inwentaryzacją, jasne oznaczenie przyłącza jest kluczowe dla późniejszej analizy oraz oceny stanu technicznego instalacji. Przykładem zastosowania może być sytuacja, w której różne typy przyłączy są oznaczane w sposób ujednolicony na mapach oraz szkicach, co umożliwia sprawniejszą identyfikację i zarządzanie siecią elektroenergetyczną. Oznaczenie eNA jest również zgodne z wytycznymi Komisji Europejskiej oraz krajowymi normami, co pomaga w zapewnieniu bezpieczeństwa oraz efektywności energetycznej w budynkach mieszkalnych.

Pytanie 14

Na rysunku osnowy pomiarowej nie należy zamieszczać

A. numerów punktów osnowy
B. uśrednionych długości linii pomiarowych
C. wyrównanych kątów poziomych
D. rzędnych oraz odciętych dotyczących szczegółów sytuacyjnych
Odpowiedź wskazująca na brak umieszczania rzędnych i odciętych do szczegółów sytuacyjnych na szkicu pomiarowej osnowy sytuacyjnej jest prawidłowa. Szkic osnowy sytuacyjnej ma na celu przedstawienie relacji pomiędzy punktami geodezyjnymi, ich numerami oraz geometrią układu, a nie szczegółów dotyczących elewacji czy innych informacji topograficznych. Umieszczanie rzędnych i odciętych na takim szkicu mogłoby prowadzić do zamieszania i nieczytelności, ponieważ podstawowym celem jest ukazanie układu punktów w płaszczyźnie poziomej. W praktyce, taki szkic powinien być bezpośrednim odzwierciedleniem wyników pomiarów, co wymaga skupienia się na podstawowych informacjach, takich jak długości linii pomiarowych czy wyrównane wartości kątów. Stosowanie się do tej zasady jest zgodne z normami geodezyjnymi, co zapewnia klarowność i spójność dokumentacji geodezyjnej. W praktyce, w przypadku prowadzenia pomiarów sytuacyjnych, geodeci często tworzą osobne rysunki lub wykresy, w których przedstawiają rzędne, co pozwala na precyzyjne odwzorowanie terenu i szczegółów topograficznych.

Pytanie 15

Mapy zasadniczej nie sporządza się w skali

A. 1:5000
B. 1:1000
C. 1:2000
D. 1:10000
Odpowiedź 1:10000 jest prawidłowa, ponieważ mapy zasadnicze są tworzone w skali 1:10000, co jest zgodne ze standardami określonymi w przepisach dotyczących geodezji i kartografii. Ta skala jest optymalna dla prezentacji lokalnych szczegółów w terenie, co czyni ją niezwykle przydatną w działaniach związanych z urbanistyką, planowaniem przestrzennym oraz w procesach inwestycyjnych. Właściwe odwzorowanie terenu w tej skali umożliwia dokładne pomiary i analizy, które są niezbędne w planowaniu budynków, dróg oraz infrastruktury. Mapy w tej skali są zazwyczaj wykorzystywane w projektach budowlanych, gdzie precyzyjne odwzorowanie elementów terenu, takich jak granice działek, sieci uzbrojenia terenu oraz istniejące obiekty, jest kluczowe dla skutecznego zarządzania inwestycją. Zgodność z normami, takimi jak PN-ISO 19110, podkreśla znaczenie jakości danych w procesach geoinformacyjnych, co sprawia, że skala 1:10000 jest szeroko uznawana jako standardowa w polskiej geodezji.

Pytanie 16

Jak wielki jest maksymalny dopuszczalny średni błąd lokalizacji punktu w pomiarowej osnowie wysokościowej w odniesieniu do najbliższych punktów wysokościowej osnowy geodezyjnej?

A. 0,01 m
B. 0,05 m
C. 0,07 m
D. 0,03 m
Największy dopuszczalny średni błąd położenia punktu pomiarowej osnowy wysokościowej względem najbliższych punktów wysokościowej osnowy geodezyjnej wynosi 0,05 m. To wartość, która została ustalona na podstawie norm i standardów stosowanych w geodezji, których celem jest zapewnienie wysokiej dokładności pomiarów. W praktyce oznacza to, że każdy punkt pomiarowy musi być zlokalizowany z odpowiednią precyzją, aby gwarantować wiarygodność danych wysokościowych. Na przykład, przy pomiarach związanych z budową infrastruktury, takich jak drogi czy mosty, zachowanie tej tolerancji jest kluczowe dla prawidłowego projektowania i wykonawstwa. Wysokiej jakości osnowa wysokościowa umożliwia również prowadzenie dalszych pomiarów, takich jak monitoring osuwisk czy deformacji terenu. Zastosowanie się do tych standardów nie tylko wspiera poprawność wyników, ale także podnosi ogólną jakość prac geodezyjnych i zaufanie do wyników pomiarowych.

Pytanie 17

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 1,0 cm2
B. 0,1 cm2
C. 10,0 cm2
D. 100,0 cm2
Odpowiedź 1,0 cm2 jest poprawna, ponieważ aby obliczyć pole powierzchni kwadratu na mapie w skali 1:1000, najpierw należy obliczyć jego rzeczywistą powierzchnię. Bok kwadratu ma długość 10 m, więc jego pole powierzchni wynosi 10 m x 10 m = 100 m2. Następnie przelicza się to pole na jednostki odpowiadające skali mapy, co oznacza, że 1 cm na mapie odpowiada 10 m w terenie (1:1000). Zatem 100 m2 w rzeczywistości przekłada się na jednostki mapowe, co daje 100 m2 = 10000 cm2. W skali 1:1000, powierzchnia mapowa wynosi 10000 cm2 / (1000^2) = 1,0 cm2. To pokazuje, jak ważne jest rozumienie przeliczeń skali w kontekście geodezji oraz kartografii, gdzie precyzja jest kluczowa. W praktyce, takie obliczenia są niezbędne przy tworzeniu map i planów zagospodarowania przestrzennego, a także w inżynierii i budownictwie, gdzie dokładne odwzorowanie rzeczywistości ma ogromne znaczenie.

Pytanie 18

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Niwelatora i łaty
B. Dalmierza i łaty
C. Teodolitu i tyczki
D. Taśmy i tyczki
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 19

Jaką długość ma odcinek na mapie o skali 1:40 000, jeśli na mapie w skali 1:20 000 jego długość wynosi 50 cm?

A. 5 cm
B. 25 cm
C. 2,5 cm
D. 50 cm
Odpowiedź 25 cm jest poprawna, ponieważ aby przeliczyć długość odcinka na mapie w nowej skali, należy uwzględnić relację między skalami. W skali 1:20 000, 50 cm na mapie odpowiada 10 000 m w rzeczywistości (50 cm * 20 000). W skali 1:40 000 ten sam 10 000 m w rzeczywistości odpowiada 25 cm na mapie (10 000 m / 40 000). Dlatego długość odcinka w skali 1:40 000 wynosi 25 cm. Praktycznym zastosowaniem tej wiedzy jest umiejętność przeliczania długości odcinków na mapach w różnych skalach, co jest kluczowe w geodezji, kartografii i planowaniu przestrzennym. W wielu zastosowaniach, takich jak projektowanie infrastruktury lub analiza lokalizacji, precyzyjne przeliczenie długości i powierzchni w różnych skalach jest niezbędne, aby zapewnić zgodność z rzeczywistością i precyzję planów. Warto również dodać, że znajomość konwersji skali jest istotna dla osób pracujących z mapami, które muszą interpretować dane w kontekście różnych zastosowań terenowych.

Pytanie 20

Jakie urządzenie umożliwia przeprowadzenie odczytu szacunkowego z dokładnością do 0,1 najmniejszej działki limbusa?

A. Mikroskop wskaźnikowy
B. Noniusz
C. Mikroskop skalowy
D. Mikrometr
Noniusz jest urządzeniem pomiarowym, które pozwala na dokonywanie precyzyjnych odczytów, ale nie osiąga takiej dokładności jak mikroskop wskaźnikowy. Najczęściej stosowany jest w połączeniu z suwmiarkami lub innymi narzędziami, co umożliwia pomiar długości z dokładnością do 0,1 mm, a nie 0,1 najmniejszej działki limbusa, co jest wymagane w tym przypadku. Mikrometr, z kolei, to narzędzie skonstruowane do precyzyjnych pomiarów grubości i średnic, jednak jego dokładność, choć wysoka, nie jest wystarczająca do zadania związanego z szacunkowym odczytem najmniejszej działki limbusa. Mikroskop skalowy, choć również użyteczny w precyzyjnych pomiarach, to w praktyce nie ma takiej samej funkcjonalności jak mikroskop wskaźnikowy i często nie jest wykorzystywany do oceny szacunkowej. Typowym błędem myślowym przy wyborze narzędzia pomiarowego jest skupianie się na ogólnej precyzji zamiast na specyficznych parametrach wymaganych w danym zastosowaniu. Użytkownicy często nie zdają sobie sprawy, że różne urządzenia mają swoje specyficzne obszary zastosowania, co prowadzi do wyboru narzędzi, które są nieodpowiednie do wymaganej dokładności pomiarów.

Pytanie 21

Zbieranie, rejestrowanie, przechowywanie, udostępnianie oraz zabezpieczanie materiałów pochodzących z państwowego zasobu geodezyjnego i kartograficznego, odbywa się przy użyciu systemu

A. ewidencyjnego
B. informacyjnego
C. teleinformatycznego
D. komunikacyjnego
Wybór ewidencyjnego systemu w kontekście pozyskiwania i przechowywania materiałów geodezyjnych nie uwzględnia pełnej funkcjonalności, jaką zapewnia system teleinformatyczny. Systemy ewidencyjne skupiają się głównie na rejestrowaniu danych oraz ich formalnej dokumentacji, co nie pokrywa się z wymaganiami dynamicznego przetwarzania i udostępniania informacji. Użytkownicy mogą mylnie sądzić, że ewidencja wystarczy do zarządzania danymi, nie dostrzegając rosnącej potrzeby szybkiego dostępu do tych informacji oraz ich analizy w kontekście przestrzennym. Wykorzystanie systemu informacyjnego również nie spełni wszystkich wymagań, gdyż koncentruje się na przechowywaniu danych, a nie na integracji z różnymi źródłami informacji i interakcji użytkownika z danymi na poziomie GIS. Z kolei systemy komunikacyjne, jakkolwiek istotne w wymianie danych, nie zapewniają niezbędnych funkcji do zabezpieczania i zarządzania złożonymi zbiorami danych geodezyjnych. W praktyce, brak odpowiednich technologii teleinformatycznych prowadzi do nieefektywnego zarządzania zasobami, utrudniając dostęp do informacji oraz ich analizę przez zainteresowane strony. Rozumienie tych różnic jest kluczowe dla wdrożenia właściwych rozwiązań w obrębie geodezji i kartografii, co podkreślają liczne standardy branżowe oraz wytyczne dotyczące zarządzania danymi przestrzennymi.

Pytanie 22

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z państwowego zasobu geodezyjnego i kartograficznego
B. z urzędu wojewódzkiego
C. z ewidencji gruntów oraz budynków
D. z urzędu miasta
Wybór danych z ewidencji gruntów i budynków, urzędu wojewódzkiego czy urzędu miasta jako źródła do aktualizacji mapy zasadniczej jest nieprawidłowy, ponieważ każda z tych instytucji dysponuje informacjami o innej specyfice, które nie są wystarczające do pełnej aktualizacji mapy zasadniczej. Ewidencja gruntów i budynków, chociaż zawiera informacje o statusie prawnym nieruchomości, nie dostarcza danych geodezyjnych dotyczących topografii terenu, co jest kluczowe dla mapy zasadniczej. Ponadto, dane uzyskiwane z urzędów wojewódzkich i miejskich mają często ograniczenia terytorialne i mogą nie być kompletnymi zbiorami danych geodezyjnych, przez co mogą prowadzić do nieścisłości i błędów w przedstawieniu rzeczywistości. Na przykład, urzędnicy miejscy mogą nie być na bieżąco z aktualizacją danych, co w praktyce prowadzi do sytuacji, gdzie mapa zasadnicza oparta na takich informacjach może być nieaktualna i nieodzwierciedlająca rzeczywistego stanu terenu. Ponadto, z punktu widzenia dobrych praktyk w geodezji, korzystanie z wyczerpującego i oficjalnego państwowego zasobu geodezyjnego i kartograficznego jest standardem, który zapewnia spójność i zgodność danych, co jest kluczowe dla planowania i zarządzania przestrzenią. Ignorowanie tego zasobu może skutkować poważnymi konsekwencjami w zakresie planowania przestrzennego oraz naruszeniem przepisów prawa geodezyjnego.

Pytanie 23

Punkt, w którym niweleta styka się z powierzchnią terenu, nazywany jest punktem

A. hektometrowym
B. charakterystycznym
C. zerowym robót ziemnych
D. zmiany kierunku trasy
Punkt zerowy robót ziemnych to kluczowy element w projektach budowlanych, który odnosi się do miejsca, w którym niweleta, czyli linia pozioma określająca wysokość terenu, przecina się z naturalnym poziomem gruntu. Ten punkt stanowi punkt odniesienia dla dalszych prac ziemnych i budowlanych. W praktyce oznacza to, że wszelkie pomiary wysokości i głębokości są dokonywane względem tego punktu, co umożliwia precyzyjne wykonanie wykopów, nasypów oraz układanie nawierzchni. Zastosowanie punktu zerowego pozwala na uniknięcie błędów w pomiarach, które mogłyby prowadzić do poważnych problemów w późniejszych etapach budowy, takich jak osiadanie konstrukcji czy nieprawidłowe ukształtowanie terenu. Zgodnie z dobrą praktyką inżynieryjną, punkt zerowy powinien być ustalany na etapie planowania inwestycji, a jego lokalizacja powinna być dokładnie zaznaczona na dokumentacji projektowej. Współczesne technologie, takie jak skanowanie 3D czy GPS, również wspierają precyzyjne wyznaczanie punktu zerowego, co zwiększa dokładność i efektywność prac budowlanych.

Pytanie 24

Jeśli długość boku kwadratu zmierzonego w terenie wynosi 10 m, to pole powierzchni tego kwadratu na mapie w skali 1:1000 wynosi

A. 0,1 cm2
B. 100,0 cm2
C. 1,0 cm2
D. 10,0 cm2
Pole powierzchni kwadratu oblicza się za pomocą wzoru P = a², gdzie a to długość boku. W przypadku kwadratu o boku 10 m, pole wynosi P = 10 m × 10 m = 100 m². Jednak, aby obliczyć pole na mapie w skali 1:1000, musimy najpierw przeliczyć długości na jednostki mapy. W skali 1:1000, 1 m w terenie odpowiada 1 cm na mapie. Dlatego bok kwadratu, który wynosi 10 m, w skali mapy będzie miał długość 10 cm. Następnie stosując wzór na pole, obliczamy pole kwadratu na mapie: P = 10 cm × 10 cm = 100 cm². To pole powierzchni przedstawia obszar w skali, jednak w kontekście podanych odpowiedzi poprawna odpowiedź to 1,0 cm², ponieważ skala 1:1000 oznacza, że pole na mapie (100 cm²) musimy przedstawić w formie mniejszych jednostek odpowiadających skali, co prowadzi do 1,0 cm² jako poprawnej odpowiedzi. Tego typu przeliczenia są standardową praktyką w kartografii oraz w geodezji, gdzie zrozumienie skali jest kluczowe dla dokładnych pomiarów i reprezentacji danych na mapach.

Pytanie 25

W terenie odległość 100 m na mapie zasadniczej w skali 1:500 odpowiada długości odcinka wynoszącej

A. 20 cm
B. 20 mm
C. 50 cm
D. 50 mm
Odpowiedź '20 cm' jest jak najbardziej ok, bo w skali 1:500 to znaczy, że każdy 1 cm na mapie to 500 cm w rzeczywistości, czyli 5 metrów. Jak przeliczymy 100 metrów, to dzielimy przez 5, co daje 20 cm. Warto to wiedzieć przy robieniu planów zagospodarowania przestrzennego, bo tam precyzyjne odległości to podstawa. Takie obliczenia są zgodne z normami geodezyjnymi, które wymagają dokładnych informacji przestrzennych. Umiejętność przeliczania w różnych skalach jest potrzebna w wielu branżach, jak urbanistyka czy inżynieria lądowa, a także przy tworzeniu map. Zrozumienie, jak rzeczywistość wygląda w odwzorowaniu na mapie, pomaga w skutecznym planowaniu projektów wymagających precyzyjnych pomiarów i analiz.

Pytanie 26

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az1-2 – α + 200g
B. Az2-3 = Az2-1 + α - 200g
C. Az2-3 = Az2-1 – α + 200g
D. Az2-3 = Az1-2 + α - 200g
Wybór niewłaściwego wzoru do obliczeń azymutu kolejnego boku może wynikać z błędnego zrozumienia relacji między azymutami a pomierzonymi kątami. W przypadku wzorów, które dodają kąt lewy α do azymutu poprzedniego, ale nie uwzględniają odpowiedniej korekty wynikającej z kierunku pomiaru, dochodzi do istotnych błędów. Przykładowo, wzór Az2-3 = Az1-2 – α + 200g sugeruje, że kąt lewy powinien być odejmowany, co nie jest zgodne z kierunkiem pomiaru. To podejście prowadzi do fałszywych obliczeń, ponieważ kąt lewy oznacza ruch w kierunku przeciwnym do azymutu, a nie jego redukcję. Podobnie, pomyłkowe stosowanie wzorów, które mają na celu dodawanie lub odejmowanie wartości 200g w niewłaściwy sposób, może wprowadzać chaos w wynikach. Typowym błędem myślowym jest założenie, że każdy kąt lewy powinien być traktowany w ten sam sposób, niezależnie od kontekstu pomiarowego. Ważne jest, aby w praktyce geodezyjnej stosować się do standardów, które definiują, jak kąt lewy współdziała z azymutami, a także dokładnie przemyśleć każdy krok obliczeń, aby uniknąć nieścisłości.

Pytanie 27

Która z podanych czynności nie dotyczy aktualizacji mapy zasadniczej?

A. Wprowadzenie jedynie wybranych danych
B. Korekta zmian w nazewnictwie
C. Dodanie nowych elementów treści mapy
D. Usunięcie sytuacji, która już nie istnieje w terenie
Wszystkie pozostałe odpowiedzi sugerują działania, które są integralną częścią aktualizacji mapy zasadniczej. Naniesienie nowych elementów treści mapy jest kluczowym zadaniem, które zapewnia, że mapa odzwierciedla aktualny stan infrastruktury i zagospodarowania przestrzennego. W praktyce oznacza to, że nowe budynki, drogi czy inne obiekty muszą być wprowadzane do zasobów mapowych, aby mogły być wykorzystywane w planowaniu przestrzennym i decyzjach administracyjnych. Zmiany w nazewnictwie to kolejny istotny aspekt, ponieważ aktualizacja nazw ulic czy obiektów jest niezbędna dla poprawnego funkcjonowania systemów informacyjnych oraz dla użytkowników, którzy korzystają z tych danych w codziennym życiu. Usunięcie sytuacji nieistniejącej już w terenie, takie jak zlikwidowane budynki czy drogi, również jest ważne, ponieważ w przeciwnym razie użytkownicy mogą być wprowadzani w błąd przez nieaktualne informacje. Prowadzi to do typowego błędu myślowego, w którym użytkownicy mogą zakładać, że aktualizacja mapy nie wymaga pełnej weryfikacji danych, a jedynie fragmentarycznego podejścia. Taka strategia może skutkować powstawaniem nieścisłości oraz nieaktualności, co podważa wiarygodność mapy jako źródła informacji. Zastosowanie standardowych procedur aktualizacji, zgodnych z normami branżowymi, jest kluczowe dla zachowania rzetelności i użyteczności mapy zasadniczej.

Pytanie 28

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Koordynatografu
B. Współrzędnika
C. Nanośnika prostokątnego
D. Nanośnika biegunowego
Wybierając nanośnik biegunowy, współrzędnik lub nanośnik prostokątny, można wprowadzić do procesu opracowywania map błędne założenia dotyczące precyzji i dokładności. Nanośnik biegunowy, mimo iż potrafi wspierać pomiar na powierzchni, nie jest narzędziem zoptymalizowanym do tworzenia ramki sekcyjnej czy siatki na mapie. Jego zastosowanie jest bardziej związane z określaniem kierunków, a nie precyzyjnym nanoszeniem detali. W przypadku współrzędnika, jego konstrukcja może wprowadzać ograniczenia w dokładności pomiaru, co jest kluczowe w kontekście opracowywania map. Z kolei nanośnik prostokątny, choć bywa używany do wyznaczania obszarów, nie oferuje tego samego poziomu wsparcia w precyzyjnym nanoszeniu siatek, co koordynatograf. Często błędem jest mylenie funkcji tych narzędzi, co może prowadzić do poważnych nieścisłości w opracowywanych mapach. Profesjonalne podejście do kartografii wymaga zrozumienia, że każdy instrument ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może skutkować obniżeniem standardów jakościowych, co jest nieakceptowalne w branży, gdzie precyzja jest kluczowa.

Pytanie 29

W celu ustabilizowania punktu osnowy realizacyjnej można zastosować

A. drewniany palik
B. ceramiczną rurkę
C. narysowany znak
D. znak wykonany z kamienia
Znak z kamienia to naprawdę jedna z najlepszych opcji, jeśli chodzi o stabilizację punktu osnowy w geodezji. Kamień jest mega odporny na różne warunki pogodowe, co sprawia, że pomiary są bardziej precyzyjne i trwałe. W praktyce często wykorzystuje się je w miejscach, gdzie punkty odniesienia muszą być stabilne przez dłuższy czas, na przykład w sieciach geodezyjnych. Z tego co wiem, istotne jest, żeby umiejscowienie tych znaków było zgodne z normami, takimi jak PN-EN ISO 19152, które mówią, jak powinno się je zakupywać i instalować. Ważne, żeby były oznaczone tak, żeby łatwo je było znaleźć w przyszłości, co jest kluczowe dla dokładności pomiarów. W realnym świecie, użycie takiego znaku z kamienia ułatwia odnajdywanie punktów podczas kolejnych prac geodezyjnych. Naprawdę warto w to zainwestować.

Pytanie 30

Jakiego z wymienionych przyrządów należy użyć do pomiaru przemieszczeń w kierunku pionowym przęseł mostu?

A. Inklinometru
B. Tensometru
C. Niwelatora
D. Pionownika
Niwelator jest instrumentem pomiarowym, który doskonale nadaje się do pomiaru przemieszczeń pionowych przęseł mostów. Działa na zasadzie pomiaru różnicy wysokości pomiędzy dwoma lub więcej punktami, co umożliwia precyzyjne określenie zmian w poziomie konstrukcji, które mogą wystąpić w wyniku obciążeń, osiadania gruntu czy też wpływu warunków atmosferycznych. W praktyce, użycie niwelatora jest zgodne z normami budowlanymi, które wymagają regularnego monitorowania stabilności budowli. Na przykład, w przypadku mostów, gdzie zmiany w wysokości mogą prowadzić do niebezpiecznych sytuacji, niwelator umożliwia skuteczne wykrywanie oraz analizowanie przemieszczeń. Zastosowanie tej metody pomiarowej jest kluczowe w utrzymaniu bezpieczeństwa infrastruktury, dlatego inżynierowie regularnie korzystają z niwelacji podczas inspekcji oraz konserwacji mostów, aby zapewnić ich długotrwałą stabilność i funkcjonalność. Warto również dodać, że niwelatory są wykorzystywane w różnych aplikacjach budowlanych, w tym w geodezji i inżynierii lądowej, co czyni je uniwersalnym narzędziem w pomiarach geodezyjnych.

Pytanie 31

Zmierzoną odległość 120 m określono z błędem średnim ±3 cm. Jaki jest błąd względny tej pomierzonej odległości?

A. 1/2000
B. 1/1000
C. 1/4000
D. 1/5000
Błąd względny jest miarą niepewności pomiaru, określającą jaką część pomiaru stanowi błąd. W tym przypadku mamy pomiar odległości wynoszący 120 m oraz średni błąd pomiaru wynoszący ±3 cm, co w przeliczeniu na metry daje ±0,03 m. Aby obliczyć błąd względny, należy podzielić błąd pomiaru przez wartość zmierzoną. Zatem: błąd względny = błąd / wartość zmierzona = 0,03 m / 120 m = 0,00025. W przeliczeniu na ułamek, błąd względny wynosi 1/4000. Tego rodzaju obliczenia są niezbędne w inżynierii oraz naukach przyrodniczych, gdzie precyzyjne pomiary mają kluczowe znaczenie, zwłaszcza w kontekście kalibracji urządzeń pomiarowych i zapewnienia jakości w procesach produkcyjnych. Należy pamiętać, że błąd względny pozwala na porównanie dokładności różnych pomiarów i jest szeroko stosowany w badaniach naukowych oraz w przemyśle.

Pytanie 32

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 127g12c35cc
B. 527g12c35cc
C. 27g12c35cc
D. 227g12c35cc
Wartość azymutu odwrotnego do azymutu wynoszącego 327°12'35'' można obliczyć poprzez dodanie 180° do pierwotnego azymutu. W przypadku azymutów, które są wyrażane w stopniach, minutach i sekundach, dodanie 180° często wymaga konwersji, jeśli suma przekracza 360°. W tym przypadku dodajemy 180° do 327°, co daje 507°. Następnie, musimy odjąć 360°, aby uzyskać wynik w odpowiednim zakresie: 507° - 360° = 147°. Teraz pozostaje nam dodać pozostałe wartości minut i sekund. Ostatecznie zatem uzyskujemy azymut 127°12'35''. W kontekście nawigacji i geodezji, umiejętność obliczania azymutów odwrotnych jest kluczowa, ponieważ pozwala na dokładne śledzenie kierunków i nawigację w terenie. Takie umiejętności są niezbędne w różnych dziedzinach, od turystyki po inżynierię i architekturę.

Pytanie 33

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. tachimetrycznej
B. ortogonalnej
C. biegunowej
D. przedłużeń
Odpowiedź "biegunową" jest prawidłowa, ponieważ metoda biegunowa w niwelacji polega na określaniu położenia punktów na podstawie kątów i odległości od punktu odniesienia. W tym procesie wykorzystuje się teodolity lub tachimetry, które umożliwiają pomiar zarówno kątów poziomych, jak i pionowych. Metoda ta jest szczególnie efektywna w sytuacjach, gdy punkty do niwelacji są rozproszone w terenie, a ich jednoczesne mierzenie z jednego miejsca byłoby utrudnione. Przykład zastosowania to budowa infrastruktury, gdzie konieczne jest precyzyjne ustalenie poziomów różnych punktów, takich jak krawędzie dróg czy fundamenty budynków. Stosując metodę biegunową, inżynierowie mogą uzyskać dokładne dane, które są niezbędne do dalszych prac projektowych. W praktyce ważne jest, aby stosować odpowiednie instrumenty oraz przestrzegać standardów pomiarowych, co zapewnia wiarygodność i dokładność uzyskanych wyników.

Pytanie 34

Aby zmierzyć szczegóły sytuacyjne metodą ortogonalną, geodeta ustawił linię pomiarową AB, którą zmierzył ruletką pięć razy. Jeśli otrzymał następujące wyniki: 160,10 m; 160,12 m; 180,12 m; 160,11 m; 160,13 m, to długość boku AB jest obarczona błędem

A. systematycznym
B. grubym
C. pozornym
D. przypadkowym
Pomiar długości boku AB obarczony jest błędem grubym, ponieważ w dostarczonych wynikach pomiarów zauważalna jest jedna wartość znacznie odbiegająca od pozostałych. Wynik 180,12 m jest doskonale widocznym wyjątkiem, co sugeruje, że mógł być wynikiem pomyłki, na przykład błędnego odczytu, błędnego ustawienia ruletki, czy też nieprawidłowego pomiaru. W praktyce geodezyjnej, błędy grubym są najczęściej eliminowane przez powtarzanie pomiaru i porównywanie wyników, co może podnieść jakość danych. W takich przypadkach stosuje się również średnią arytmetyczną pozostałych pomiarów, aby uzyskać bardziej wiarygodny wynik. Ważne jest, by geodeci byli świadomi takich anomalii, ponieważ mogą one znacząco wpłynąć na późniejsze analizy geodezyjne i projektowe. Dobrą praktyką jest również stosowanie metod statystycznych do identyfikacji i eliminacji błędów grubych, co jest zgodne z normami ISO 17123 dotyczącymi pomiarów geodezyjnych.

Pytanie 35

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 55,50 m
B. 22,20 m
C. 5,55 m
D. 2,22 m
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 36

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. pionu optycznego
B. kolimacji
C. urządzenia odczytowego
D. libelli okrągłej
Wybór odpowiedzi dotyczącej "pionu optycznego" jest nietrafiony, ponieważ pion optyczny odnosi się do instrumentu, który wykorzystuje zjawisko grawitacji do ustalenia linii pionowej. Pomiary kątów nie są bezpośrednio związane z pionem optycznym, a jego użycie nie eliminuje błędów związanych z ustawieniem lunety. Używanie libelli okrągłej jest również niewłaściwe w tym kontekście. Libella służy do ustalania poziomu, ale nie ma zastosowania w eliminacji błędów pomiarowych związanych z kolimacją lunety. Kolejną błędną koncepcją jest wskazanie na "urządzenie odczytowe". To pojęcie odnosi się do mechanizmu do odczytu wyników pomiarowych, a jego poprawność nie wpływa na kolimację lunety, która jest kluczowym elementem w precyzyjnych pomiarach kątowych. Często błędne wnioski wynikają z mylnego zrozumienia funkcji różnych instrumentów pomiarowych oraz ich wzajemnych relacji. Ważne jest, aby właściwie rozumieć, w jaki sposób różnorodne narzędzia wspierają proces pomiarowy, aby uniknąć nieporozumień i błędnych interpretacji.

Pytanie 37

Jakiej czynności nie przeprowadza się na stanowisku przed zrealizowaniem pomiaru kątów poziomych?

A. Dokonania pomiaru wysokości teodolitu
B. Centrowania teodolitu
C. Regulacji ostrości obrazu
D. Regulacji ostrości krzyża kresek
Pomiar wysokości teodolitu przed rozpoczęciem pomiarów kątów poziomych nie jest czynnością standardowo wykonywaną na stanowisku. W rzeczywistości, pomiar wysokości teodolitu stosuje się w kontekście pomiarów wysokościowych, które są oddzielnym procesem. W praktyce, przed pomiarem kątów poziomych, kluczowymi działaniami są ustawienie teodolitu w odpowiedniej pozycji, centrowanie instrumentu nad punktem pomiarowym, ustawienie ostrości obrazu oraz ostrości krzyża kresek. Te czynności zapewniają dokładność i precyzję pomiarów kątowych, co jest szczególnie istotne w pracach geodezyjnych i inżynieryjnych, gdzie niewielkie błędy mogą prowadzić do istotnych nieprawidłowości. W dobrych praktykach geodezyjnych zawsze należy upewnić się, że instrument jest prawidłowo wypoziomowany i ustawiony, zanim przystąpi się do właściwych pomiarów. Przykładem może być pomiar kątów w celu ustalenia lokalizacji punktów w terenie, gdzie każda nieprecyzyjność może skutkować błędami w projekcie.

Pytanie 38

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Winkalk
B. Microstation
C. C-Geo
D. Mikro-Map
Wybór programów, które są niewłaściwe do wykreślania mapy zasadniczej, może wynikać z niepełnego zrozumienia ich funkcji i zastosowań. C-Geo i Mikro-Map są dedykowane geodezji, oferując możliwości, które są kluczowe dla tworzenia mapy zasadniczej. C-Geo umożliwia przetwarzanie danych geodezyjnych, jak również ich wizualizację, co jest niezbędne w kontekście map zasadniczych, które powinny odzwierciedlać rzeczywiste warunki terenowe. Mikro-Map, z kolei, pozwala na dokładne modelowanie danych przestrzennych i ich przekształcanie w formy, które są zgodne z wymaganiami prawnymi i standardami branżowymi. Microstation to również program, który, mimo że jest bardziej uniwersalny i stosowany w projektowaniu CAD, zawiera narzędzia do analizy przestrzennej, które mogą wspierać proces tworzenia map. Wybór Winkalk jako odpowiedzi mógłby wynikać z błędnego przeświadczenia, że wszystkie programy inżynieryjne mają zastosowanie w geodezji. W rzeczywistości Winkalk, koncentrując się na obliczeniach i analizy kosztorysowej, nie posiada odpowiednich funkcji potrzebnych do tworzenia map geodezyjnych. Dlatego istotne jest, aby przed podjęciem decyzji o wyborze oprogramowania do konkretnego celu, zrozumieć specyfikę jego zastosowania oraz zapewniane przez nie funkcjonalności.

Pytanie 39

Jakie informacje nie są umieszczane na szkicu polowym podczas pomiaru szczegółów terenowych przy użyciu metody ortogonalnej?

A. Domiary prostokątne
B. Wysokości punktów terenu
C. Sytuacyjne szczegóły terenowe
D. Numery obiektów budowlanych
Wysokości punktów terenu nie są zamieszczane na szkicu polowym z pomiaru szczegółów terenowych metodą ortogonalną, ponieważ ten rodzaj szkicu koncentruje się głównie na przedstawieniu szczegółów sytuacyjnych oraz relacji przestrzennych między obiektami. W praktyce, szkic polowy ma na celu odwzorowanie układu budynków, dróg oraz innych istotnych elementów terenu, co pozwala na ich identyfikację i późniejsze odtworzenie w dokumentacji technicznej. Przykładem zastosowania szkicu ortogonalnego może być sporządzanie planów zagospodarowania przestrzennego, gdzie kluczowe jest przedstawienie układu funkcjonalnego terenu, a nie jego wysokości. Dodatkowo, w standardach geodezyjnych, takich jak Zasady Techniki Geodezyjnej (PTG), wskazuje się, że szkice polowe powinny być zwięzłe i zawierać tylko najistotniejsze informacje, co wyklucza konieczność umieszczania danych o wysokościach."

Pytanie 40

Działanie, mające na celu zwiększenie dokładności kartometrycznej mapy poprzez eliminację deformacji z analogowego podkładu oraz błędów podczas skanowania, określamy jako

A. wektoryzacją
B. digitalizacją
C. transformacją
D. kalibracją
Kalibracja to proces, który ma kluczowe znaczenie w kontekście poprawy kartometryczności map, zwłaszcza tych, które zostały utworzone na podstawie podkładów analogowych lub skanowanych obrazów. Celem kalibracji jest eliminacja deformacji, które mogą pojawić się w wyniku błędów skanowania oraz różnic w skalach i perspektywie. Dzięki kalibracji można uzyskać precyzyjne odwzorowanie rzeczywistych współrzędnych geograficznych, co jest niezbędne w aplikacjach takich jak GIS (Geographic Information System) czy w kartografii. Przykładem zastosowania kalibracji jest proces georeferencji, w którym odnosi się punkty na mapie do znanych współrzędnych geograficznych. W praktyce kalibracja może obejmować użycie znanych punktów kontrolnych, które są wprowadzane do oprogramowania GIS, aby dostosować i poprawić błędy mapy. Standardy takie jak ISO 19130 definiują metody pomiaru i oceny dokładności danych przestrzennych, co jest istotne przy przeprowadzaniu kalibracji.