Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 27 maja 2025 22:51
  • Data zakończenia: 27 maja 2025 23:03

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Narzędzie służące do oceny wydajności systemu komputerowego to

A. benchmark
B. checkdisk
C. sniffer
D. exploit
Odpowiedź 'benchmark' jest poprawna, ponieważ odnosi się do narzędzi i procedur służących do oceny wydajności sprzętu komputerowego. Benchmarking jest kluczowym procesem, który pozwala na porównanie różnych systemów, komponentów lub konfiguracji pod kątem ich wydajności. Umożliwia to użytkownikom oraz specjalistom IT zrozumienie, jak dobrze ich sprzęt radzi sobie w różnych scenariuszach obciążeniowych. Przykładami zastosowania benchmarków mogą być testy wydajności procesora, karty graficznej lub dysku twardego, które dostarczają cennych informacji o ich możliwościach. W branży IT standardy takie jak SPEC, PassMark czy 3DMark dostarczają ustandaryzowanych metod testowych pozwalających na dokładne porównanie wyników. Używanie benchmarków jest powszechną praktyką w ocenie nowego sprzętu przed zakupem oraz w analizie aktualnych konfiguracji w celu wykrycia ewentualnych wąskich gardeł. Dzięki benchmarkom możliwe jest również monitorowanie postępu w wydajności sprzętowej na przestrzeni czasu oraz dostosowywanie strategii inwestycyjnych w IT.

Pytanie 2

Na którym schemacie znajduje się panel krosowniczy?

Ilustracja do pytania
A. Opcja C
B. Opcja A
C. Opcja B
D. Opcja D
Panel krosowniczy, znany również jako patch panel, to kluczowy element infrastruktury sieciowej stosowany w centrach danych i serwerowniach. Na rysunku B przedstawiona jest urządzenie, które umożliwia organizację kabli sieciowych przez połączenie wielu przewodów w jednym miejscu. Panel ten zawiera rzędy gniazd, do których podłącza się kable, co umożliwia łatwe zarządzanie i rekonfigurację połączeń sieciowych. W praktyce panele krosownicze ułatwiają utrzymanie porządku w okablowaniu oraz szybkie identyfikowanie i rozwiązywanie problemów z połączeniami. Standardy branżowe, takie jak TIA/EIA-568, definiują specyfikacje dla tych urządzeń, zapewniając kompatybilność i efektywność pracy. Panele te są niezwykle ważne w utrzymaniu elastyczności infrastruktury sieciowej i minimalizacji czasu przestoju dzięki możliwości szybkiej rekonfiguracji połączeń. Dobre praktyki obejmują oznaczanie kabli i użycie odpowiednich narzędzi do zaciskania kabli, co zwiększa niezawodność systemu.

Pytanie 3

Ile par przewodów miedzianej skrętki kategorii 5e jest używanych do transmisji danych w standardzie sieci Ethernet 100Base-TX?

A. 2
B. 4
C. 3
D. 1
Wybór jednej pary przewodów do transmisji danych w standardzie 100Base-TX jest błędny, ponieważ ten standard wymaga co najmniej dwóch par, aby umożliwić pełny dupleks. Użycie tylko jednej pary przewodów ograniczałoby komunikację do trybu półdupleksowego, co oznacza, że dane mogłyby być przesyłane lub odbierane, ale nie jednocześnie. To podejście stwarzałoby wąskie gardła w sytuacjach, gdy wiele urządzeń w sieci próbuje komunikować się jednocześnie. W kontekście standardów sieciowych, kluczowe jest zrozumienie, że pełny dupleks jest preferowany w nowoczesnych instalacjach, ponieważ znacznie zwiększa efektywność sieci. Odpowiedzi sugerujące trzy lub cztery pary również są niepoprawne, ponieważ takie połączenia są wymagane w innych standardach, takich jak 1000Base-T, gdzie wykorzystuje się wszystkie cztery pary do osiągnięcia prędkości 1 Gb/s. W praktyce, wiele organizacji stosuje standard 100Base-TX w połączeniach z urządzeniami, które nie wymagają wyższej przepustowości, jednak kluczowe jest, aby mieć świadomość, że wybór odpowiedniej liczby par przewodów zależy od wymagań konkretnej aplikacji i infrastruktury sieciowej.

Pytanie 4

Umowa, na podstawie której użytkownik ma między innymi dostęp do kodu źródłowego oprogramowania w celu jego analizy i ulepszania, to licencja

A. OLP
B. OEM
C. MOLP
D. GNU GPL
OLP i MOLP to programy licencjonowania, ale nie dają użytkownikom dostępu do kodu źródłowego. OLP to umowa, która skupia się na sprzedaży oprogramowania, ale użytkownik nie może go zmieniać. MOLP to coś od Microsoftu, gdzie można kupić licencje, ale też bez kodu źródłowego. A OEM to licencje, które producent sprzętu daje razem z jego urządzeniem. Te licencje są dość ograniczone i nie dają możliwości modyfikowania kodu. Dlatego, w porównaniu do GNU GPL, te programy są w zasadzie inne, bo GNU GPL promuje wolność dostępu do kodu i jego zmiany. Wybór złej licencji może prowadzić do kłopotów z rozwijaniem oprogramowania, co jest kluczowe w dzisiejszym świecie technologii, który szybko się zmienia.

Pytanie 5

W tabeli zaprezentowano parametry trzech dysków twardych w standardzie Ultra320 SCSI. Te dyski są w stanie osiągnąć maksymalny transfer wewnętrzny

Rotational Speed10,025 rpm
Capacity (Formatted)73.5GB147GB300GB
Number of Heads258
Number of Disks134
Internal Transfer RateUp to 132 MB/s
Interface Transfer RateNP/NC = 320MB/s, FC = 200MB/s
Buffer Size
Average Seek (Read/Write)4.5/5.0 ms
Track-to-Track Seek/Read/Write0.2ms/0.4ms
Maximum Seek (Read/Write)10/11 ms
Average Latency2.99 ms
Power Consumption (Idle)NP/NC = 9.5W, FC = 10.5W
Acoustic Noise3.4 bels
Shock - Operating/Non-Operating65G/225G 2ms

A. 200MB/S
B. 320 GB/s
C. 132 MB/s
D. 320MB/S
Odpowiedź 132 MB/s jest prawidłowa, ponieważ odnosi się do maksymalnego transferu wewnętrznego dysków standardu Ultra320 SCSI. Transfer wewnętrzny to prędkość, z jaką dysk twardy przesyła dane między talerzami a buforem dysku. Ważne jest, aby odróżnić transfer wewnętrzny od transferu interfejsu, który w przypadku Ultra320 SCSI wynosi do 320 MB/s, ale dotyczy komunikacji między dyskiem a kontrolerem. Transfer wewnętrzny jest zazwyczaj niższy, ponieważ zależy od fizycznych ograniczeń dysku, takich jak prędkość obrotowa talerzy i gęstość zapisu. Dyski o wyższym transferze wewnętrznym mogą być bardziej wydajne w stosunku do operacji odczytu i zapisu danych, co jest istotne w serwerach i systemach wymagających szybkiego dostępu do danych. Zrozumienie różnicy między transferem wewnętrznym a interfejsowym jest kluczowe dla optymalnego doboru dysków twardych do specyficznych zastosowań, takich jak bazy danych czy serwery plików, gdzie wydajność ma kluczowe znaczenie.

Pytanie 6

Jaką normę stosuje się w przypadku okablowania strukturalnego w sieciach komputerowych?

A. ISO/IEC 8859-2
B. PN-EN ISO 9001:2009
C. TIA/EIA-568-B
D. PN-EN 12464-1:2004
Norma TIA/EIA-568-B jest kluczowym standardem dotyczącym okablowania strukturalnego w sieciach komputerowych. Została opracowana przez Telecommunication Industry Association oraz Electronic Industries Alliance i definiuje wymagania dotyczące instalacji, testowania oraz wydajności systemów okablowania. Standard ten określa m.in. klasy okablowania, zalecane rodzaje kabli (np. kable miedziane i światłowodowe) oraz specyfikacje dotyczące złączy i gniazd. Przykładem zastosowania tej normy może być budowa nowego biura, w którym planuje się instalację sieci komputerowej. Zastosowanie TIA/EIA-568-B zapewnia, że sieć będzie spełniała określone standardy jakości i wydajności, co przekłada się na niezawodność przesyłania danych oraz zminimalizowanie problemów związanych z zakłóceniami elektromagnetycznymi. Norma ta jest również często przywoływana w kontekście certyfikacji instalacji okablowania, co potwierdza jej znaczenie w branży IT oraz telekomunikacyjnej.

Pytanie 7

Wskaż symbol umieszczany na urządzeniach elektrycznych przeznaczonych do sprzedaży i obrotu w Unii Europejskiej?

Ilustracja do pytania
A. Rys. D
B. Rys. C
C. Rys. B
D. Rys. A
Oznaczenie CE umieszczane na urządzeniach elektrycznych jest świadectwem zgodności tych produktów z wymogami bezpieczeństwa zawartymi w dyrektywach Unii Europejskiej. Znak ten nie tylko oznacza, że produkt spełnia odpowiednie normy dotyczące zdrowia ochrony środowiska i bezpieczeństwa użytkowania ale także jest dowodem, że przeszedł on odpowiednie procedury oceny zgodności. W praktyce CE jest niezbędne dla producentów którzy chcą wprowadzić swoje produkty na rynek UE. Na przykład jeśli producent w Azji chce eksportować swoje urządzenia elektryczne do Europy musi upewnić się że spełniają one dyrektywy takie jak LVD (dyrektywa niskonapięciowa) czy EMC (dyrektywa kompatybilności elektromagnetycznej). Istotnym aspektem jest to że CE nie jest certyfikatem jakości ale raczej minimalnym wymogiem bezpieczeństwa. Od konsumentów CE oczekuje się aby ufać że produkt jest bezpieczny w użyciu. Dodatkowym atutem tego oznaczenia jest ułatwienie swobodnego przepływu towarów w obrębie rynku wspólnotowego co zwiększa konkurencyjność i innowacyjność produktów na rynku.

Pytanie 8

Jakiej klasy adresów IPv4 dotyczą adresy, które mają dwa najbardziej znaczące bity ustawione na 10?

A. Klasy A
B. Klasy C
C. Klasy B
D. Klasy D
Adresy IPv4, których najbardziej znaczące dwa bity mają wartość 10, należą do klasy B. Klasa B obejmuje adresy, które zaczynają się od bitów 10 w pierwszym bajcie, co odpowiada zakresowi adresów od 128.0.0.0 do 191.255.255.255. Adresy tej klasy są wykorzystywane przede wszystkim w średnich i dużych sieciach, gdzie konieczne jest przydzielenie większej liczby hostów. W praktyce, klasa B pozwala na zaadresowanie do 65,534 hostów w jednej sieci, co czyni ją idealnym rozwiązaniem dla organizacji o większych potrzebach. W przypadku planowania sieci, administratorzy często korzystają z klasy B, aby zapewnić odpowiednią ilość adresów IP dla urządzeń w danej lokalizacji. Zrozumienie klas adresów IP jest kluczowe dla efektywnego zarządzania i przydzielania zasobów sieciowych oraz dla unikania kolizji adresowych. Warto również zauważyć, że klasy adresów IPv4 są coraz mniej stosowane w erze IPv6, jednak ich znajomość jest nadal istotna dla historycznego kontekstu i niektórych systemów.

Pytanie 9

W jakiej topologii sieci fizycznej każdy komputer jest połączony z dokładnie dwoma sąsiadującymi komputerami, bez użycia dodatkowych urządzeń aktywnych?

A. Siatki
B. Gwiazdy
C. Pierścienia
D. Magistrali
Wybór topologii gwiazdy jest powszechnie mylony z pierścieniem, jednak różni się ona fundamentalnie od omawianej struktury. W topologii gwiazdy wszystkie komputery są połączone z centralnym urządzeniem, takim jak switch czy hub. W tym modelu, awaria jednego z węzłów nie wpływa na działanie pozostałych, a wszystkie urządzenia komunikują się poprzez centralny punkt, co zwiększa niezawodność i łatwość zarządzania. Podobnie rzecz ma się z topologią magistrali, gdzie wszystkie urządzenia są połączone z jedną linią komunikacyjną. Tutaj jednak, awaria kabla skutkuje przerwaniem komunikacji w całej sieci, co czyni ją mniej odporną na usterki. Z kolei w topologii siatki, każdy węzeł jest połączony z wieloma innymi, co zwiększa redundancję i dostępność, ale jednocześnie podnosi koszty instalacji i złożoność zarządzania siecią. Kluczowym błędem jest zatem mylenie topologii z uwagi na sposób połączenia komputerów. W rzeczywistości, każda z tych topologii ma swoje specyficzne zastosowania i ograniczenia, a ich wybór powinien być oparty na analizie potrzeb, niezawodności i kosztów, a nie na przeświadczeniu o ich tożsamości z pierścieniem.

Pytanie 10

Które z poniższych stwierdzeń odnosi się do sieci P2P - peer to peer?

A. Komputer w tej sieci może jednocześnie działać jako serwer i klient
B. Wymaga centrali z dedykowanym oprogramowaniem
C. Ma charakter sieci hierarchicznej
D. Udostępnia jedynie zasoby dyskowe
Odpowiedź, że komputer w sieci może równocześnie pełnić rolę serwera i klienta, jest prawidłowa, ponieważ w architekturze P2P (peer-to-peer) każdy uczestnik sieci pełni równocześnie obie te funkcje. W przeciwieństwie do tradycyjnych modeli klient-serwer, w których istnieje wyraźny podział ról oraz centralny serwer, w sieciach P2P każdy węzeł może zarówno udostępniać zasoby (np. pliki, moc obliczeniową), jak i korzystać z tych zasobów oferowanych przez inne węzły. Przykłady zastosowań technologii P2P obejmują systemy wymiany plików, takie jak BitTorrent, gdzie każdy użytkownik pobiera i udostępnia dane, co zwiększa efektywność i szybkość transferu. P2P jest również stosowane w kryptowalutach, takich jak Bitcoin, gdzie każdy uczestnik sieci, zwany węzłem, ma pełne prawo do walidacji transakcji i uczestniczenia w procesie konsensusu. Z punktu widzenia bezpieczeństwa i decentralizacji, P2P eliminuje ryzyko pojedynczego punktu awarii, co jest kluczowe w nowoczesnych aplikacjach.

Pytanie 11

W technologii Ethernet protokół dostępu do medium CSMA/CD jest metodą z

A. przekazywaniem tokena
B. wykrywaniem kolizji
C. zapobieganiem kolizjom
D. priorytetami zgłoszeń
Wybór odpowiedzi dotyczącej unikaniu kolizji, priorytetów żądań lub przekazywaniem żetonu odzwierciedla błędne zrozumienie działania protokołu CSMA/CD oraz samej struktury sieci Ethernet. Unikanie kolizji sugerowałoby, że protokół jest w stanie w pełni zapobiec ich wystąpieniu, co nie jest zgodne z rzeczywistością. CSMA/CD nie eliminuje kolizji, lecz jedynie je wykrywa i stosuje mechanizm, który pozwala na ich rozwiązanie po wystąpieniu. Priorytety żądań odnoszą się raczej do bardziej zaawansowanych protokołów, takich jak token ring, gdzie urządzenia mają przypisane priorytety dostępu. Takie podejście nie obowiązuje w prostych sieciach Ethernet opartych na CSMA/CD, gdzie dostęp jest demokratyczny, a każda jednostka ma równe prawo do korzystania z medium. Przekazywanie żetonu również jest metodą stosowaną w innych typach sieci, ale nie w CSMA/CD. W rzeczywistości, myślenie o protokołach jako ścisłych metodach unikania kolizji prowadzi do nieprawidłowych wniosków dotyczących ich funkcji i zastosowania. CSMA/CD przekształca sieć lokalną w środowisko, w którym kolizje są nieuniknione, ale potrafi je szybko wykrywać i efektywnie obsługiwać, co jest kluczowe dla zapewnienia stabilności oraz wydajności komunikacji w sieci.

Pytanie 12

Który z standardów korzysta z częstotliwości 5 GHz?

A. 802.11 g
B. 802.11 a
C. 802.11
D. 802.11 b
Standard 802.11a jest jednym z pierwszych standardów sieci bezprzewodowych, który wprowadził obsługę pasma 5 GHz. Oferuje on maksymalną przepustowość do 54 Mb/s, co czyni go znacznie szybszym od wcześniejszych standardów działających w pasmie 2,4 GHz, takich jak 802.11b i 802.11g. Praca w paśmie 5 GHz pozwala na mniejsze zakłócenia, ponieważ to pasmo jest mniej zatłoczone, co jest szczególnie ważne w środowiskach o dużym natężeniu sygnałów, takich jak biura czy mieszkania. Standard ten jest szczególnie przydatny w aplikacjach wymagających dużych prędkości transmisji oraz krótszych czasów ping, takich jak transmisja wideo w wysokiej rozdzielczości czy gry online. Warto również zauważyć, że 802.11a, mimo iż ma zasięg mniejszy niż 802.11b czy 802.11g, zapewnia lepszą jakość połączenia w obrębie jego zasięgu, co czyni go odpowiednim do zastosowań w miejscach, gdzie prędkość jest kluczowa.

Pytanie 13

W klasycznym adresowaniu, adres IP 74.100.7.8 przyporządkowany jest do

A. klasy D
B. klasy B
C. klasy C
D. klasy A
Adres IP 74.100.7.8 należy do klasy A, ponieważ pierwsza okteta (74) mieści się w zakresie od 1 do 126. Klasa A jest zarezerwowana dla dużych sieci i pozwala na przydzielenie znacznej liczby adresów IP, co czyni ją idealną dla organizacji, które potrzebują dużej liczby hostów. W adresowaniu klasowym, pierwsza okteta definiuje klasę adresu: klasa A (1-126), klasa B (128-191), klasa C (192-223), klasa D (224-239) i klasa E (240-255). Przykładowo, organizacje takie jak duże korporacje czy dostawcy usług internetowych często korzystają z klasy A, aby przydzielić adresy IP dla swoich serwerów i urządzeń. Znajomość klasyfikacji adresów IP jest istotna w kontekście routingu i zarządzania sieciami, gdyż pozwala na efektywne planowanie i wdrażanie architektury sieciowej, a także na minimalizację problemów związanych z konfliktem adresów. Klasa A wspiera również możliwość zastosowania CIDR (Classless Inter-Domain Routing), co umożliwia bardziej elastyczne zarządzanie przestrzenią adresową.

Pytanie 14

Jakie właściwości topologii fizycznej sieci zostały przedstawione w poniższej ramce?

A. Magistrali
B. Siatki
C. Rozgłaszania
D. Gwiazdy
Zrozumienie błędnych odpowiedzi wymaga analizy każdej z topologii. Topologia rozgłaszania, chociaż może wydawać się podobna, polega na tym, że dane są rozsyłane do wszystkich urządzeń w sieci, co jest nieco inne od opisanego mechanizmu nasłuchiwania tylko na dane adresowane do konkretnego urządzenia. Ponadto, w przypadku topologii gwiazdy, każde urządzenie jest podłączone do centralnego przełącznika lub koncentratora, co umożliwia komunikację równoległą i eliminację problemów z jednoczesnymi transmisjami, a także upraszcza lokalizację ewentualnych uszkodzeń. W topologii siatki urządzenia są połączone ze sobą w sposób, który zapewnia dużą redundancję i niezawodność, co jest przeciwieństwem słabej odporności na awarie, jaką charakteryzuje się topologia magistrali. Przykłady myślowych błędów, które mogą prowadzić do takich nieprawidłowych wniosków, obejmują mylenie ogólnych zasad komunikacji w sieciach z konkretnymi mechanizmami działania. Wiedza na temat różnych topologii sieciowych oraz ich zastosowań w praktyce jest kluczowa dla projektowania efektywnych i niezawodnych systemów komunikacyjnych, co jest szczególnie ważne w kontekście obecnych standardów sieciowych oraz ich implementacji w nowoczesnych infrastrukturach IT.

Pytanie 15

Jaki adres IP został przypisany do hosta na interfejsie sieciowym eth0?

Ilustracja do pytania
A. 255.255.255.0
B. 128.171.104.255
C. 00:A0:c9:89:02:F8
D. 128.171.104.26
Adres IP 128.171.104.26 jest właściwie skonfigurowany na karcie sieciowej eth0, co można zweryfikować poprzez polecenie ifconfig w systemie Linux. Adresy IP są podstawowymi elementami identyfikującymi urządzenia w sieci i każde urządzenie musi mieć unikalny adres IP w danej podsieci. W tym przypadku, adres 128.171.104.26 jest adresem klasy B, co oznacza, że jego zakres to od 128.0.0.0 do 191.255.255.255. Adresy klasy B mają maskę podsieci domyślną 255.255.0.0, ale tutaj widzimy niestandardową maskę 255.255.255.0, co oznacza, że używana jest podsieć o mniejszych rozmiarach. W praktyce, takie adresowanie może być użyte do organizacji sieci firmowych, gdzie większe sieci są dzielone na mniejsze segmenty w celu lepszego zarządzania ruchem. Zasady dobrych praktyk zalecają, aby zawsze używać poprawnych adresów IP i masek podsieci, aby uniknąć konfliktów adresów i zapewnić prawidłowe przekazywanie danych w sieci. Zrozumienie tych podstawowych koncepcji jest kluczowe dla każdego administratora sieci.

Pytanie 16

Menedżer usług IIS (Internet Information Services) w systemie Windows stanowi graficzny interfejs do konfiguracji serwera

A. WWW
B. wydruku
C. terminali
D. DNS
Odpowiedź WWW jest poprawna, ponieważ Menedżer usług IIS (Internet Information Services) to narzędzie umożliwiające zarządzanie publikowaniem aplikacji i stron internetowych na serwerze. IIS jest serwerem WWW stworzonym przez firmę Microsoft, który obsługuje protokoły HTTP, HTTPS, FTP i inne, umożliwiając użytkownikom dostęp do treści internetowych. Menedżer usług IIS pozwala administratorom na konfigurację i monitorowanie serwera, zarządzanie witrynami internetowymi, a także konfigurowanie zabezpieczeń oraz wydajności. Praktycznym zastosowaniem IIS jest hostowanie stron internetowych dla firm, co może obejmować korzystanie z ASP.NET do tworzenia dynamicznych aplikacji webowych. Ponadto, IIS wspiera różnorodne technologie, takie jak PHP czy Node.js, co czyni go bardzo elastycznym narzędziem w kontekście serwerów. Stosowanie IIS w zgodzie z najlepszymi praktykami branżowymi obejmuje regularne aktualizacje oraz monitorowanie logów serwera w celu optymalizacji wydajności i bezpieczeństwa.

Pytanie 17

Jaką wartość ma największa liczba 16-bitowa?

A. 32767
B. 65536
C. -32767
D. 65535
Największa liczba 16-bitowa to 65535, co wynika z maksymalnej wartości, jaką można przechować w 16-bitowym systemie liczbowym bez znaku. W 16-bitowym systemie wszystkie bity są wykorzystywane do reprezentacji wartości liczbowych, co daje nam 2^16 możliwych kombinacji, czyli 65536. Jednakże, ponieważ liczby zaczynają się od zera, największa liczba wynosi 65535. Przykłady zastosowania tej wiedzy można znaleźć w programowaniu, gdzie liczby całkowite bez znaku są wykorzystywane do reprezentowania różnych wartości, jak na przykład w protokołach sieciowych, które wymagają precyzyjnych wartości liczbowych do reprezentacji danych. W kontekście dobrych praktyk, znajomość zakresów liczb całkowitych jest kluczowa przy projektowaniu systemów informatycznych, aby unikać przepełnienia oraz błędów w obliczeniach. Warto również zwrócić uwagę na standardy, takie jak IEEE 754, które definiują sposoby reprezentacji liczb w różnych systemach, w tym również liczby całkowite.

Pytanie 18

W zestawieniu przedstawiono istotne parametry techniczne dwóch typów interfejsów. Z powyższego wynika, że SATA w porównaniu do ATA charakteryzuje się

Table Comparison of parallel ATA and SATA
Parallel ATASATA 1.5 Gb/s
Bandwidth133 MB/s150 MB/s
Volts5V250 mV
Number of pins407
Cable length18 in. (45.7 cm)39 in. (1 m)

A. mniejszą przepustowością oraz większą liczbą pinów w złączu
B. mniejszą przepustowością oraz mniejszą liczbą pinów w złączu
C. większą przepustowością oraz mniejszą liczbą pinów w złączu
D. większą przepustowością oraz większą liczbą pinów w złączu
Interfejs SATA (Serial ATA) oferuje większą przepustowość niż jego poprzednik ATA (Parallel ATA). Przepustowość SATA 1.5 Gb/s wynosi około 150 MB/s, podczas gdy ATA oferuje 133 MB/s. Różnica związana jest z zastosowaniem sygnału szeregowego w SATA, co zwiększa efektywność przesyłu danych. Dzięki temu można osiągnąć lepszą wydajność we współczesnych systemach komputerowych. Co więcej SATA używa znacznie mniejszej liczby wyprowadzeń w złączu - tylko 7 pinów w porównaniu do 40 w ATA. To uproszczenie interfejsu zmniejsza jego złożoność i zwiększa niezawodność połączeń. Mniejsza liczba pinów pozwala na bardziej kompaktowe i elastyczne kable, co jest korzystne w kontekście organizacji przestrzeni wewnątrz obudowy komputera. Dodatkowo mniejsze napięcie zasilania w SATA (250 mV) w porównaniu do 5V w ATA pozwala na mniejsze zużycie energii co jest istotne w nowoczesnych laptopach i systemach oszczędzających energię. W praktyce wybór SATA nad ATA jest standardem, gdyż umożliwia on łatwiejszą instalację i lepszą wydajność w codziennym użytkowaniu.

Pytanie 19

Przed rozpoczęciem instalacji sterownika dla urządzenia peryferyjnego system Windows powinien weryfikować, czy dany sterownik ma podpis

A. zaufany
B. cyfrowy
C. elektroniczny
D. kryptograficzny
Odpowiedź 'cyfrowy' jest poprawna, ponieważ system operacyjny Windows wykorzystuje cyfrowe podpisy do weryfikacji integralności i autentyczności sterowników. Cyfrowy podpis jest formą kryptografii, która zapewnia, że dany plik pochodzi od zaufanego producenta i nie został zmodyfikowany po jego podpisaniu. Przykładem zastosowania cyfrowych podpisów jest proces instalacji sterowników: gdy użytkownik próbuje zainstalować nowy sterownik, Windows sprawdza jego podpis cyfrowy. Jeśli podpis jest ważny, system zezwala na instalację, a jeżeli nie, może zablokować instalację lub wyświetlić ostrzeżenie. Dobre praktyki w branży IT sugerują, aby zawsze korzystać z oficjalnych źródeł oprogramowania, gdzie podpisy cyfrowe są stosowane jako standard. Użycie podpisów cyfrowych zabezpiecza przed złośliwym oprogramowaniem i gwarantuje, że sterownik działa zgodnie z zamierzeniami producenta. W kontekście bezpieczeństwa, cyfrowe podpisy są kluczowym elementem ochrony systemów operacyjnych przed nieautoryzowanym dostępem oraz zapewnienia integralności komputera.

Pytanie 20

Ilustracja przedstawia rodzaj pamięci

Ilustracja do pytania
A. SIMM
B. DDR DIMM
C. SDRAM DIMM
D. Compact Flash
SDRAM DIMM czyli Synchronous Dynamic Random Access Memory jest rodzajem pamięci dynamicznej RAM, która synchronizuje się z magistralą systemową komputera co pozwala na większą wydajność przez zmniejszenie opóźnień. SDRAM DIMM jest szeroko stosowany w komputerach PC i serwerach. Jej architektura pozwala na równoczesne przetwarzanie wielu poleceń poprzez dzielenie pamięci na różne banki co zwiększa efektywność transmisji danych. Przykładowo SDRAM umożliwia lepsze zarządzanie danymi w systemach wymagających dużej przepustowości jak aplikacje multimedialne gry komputerowe czy systemy baz danych. Pamięć ta wspiera technologię burst mode co oznacza że może przetwarzać serie danych bez dodatkowego oczekiwania na kolejne sygnały zegarowe co jest kluczowe w zastosowaniach wymagających szybkiej transmisji danych. Standardy takie jak PC100 czy PC133 określają prędkości magistrali wyrażone w megahercach co dodatkowo ułatwia integrację z różnymi systemami komputerowymi. Wybór SDRAM DIMM jest zgodny z dobrymi praktykami branżowymi szczególnie w kontekście starszych systemów które nadal są w użyciu w wielu profesjonalnych środowiskach. Znajomość specyfikacji i kompatybilności SDRAM jest kluczowa przy modernizacji starszych jednostek komputerowych.

Pytanie 21

W tabeli przedstawiono numery podzespołów, które są ze sobą kompatybilne

Lp.PodzespółParametry
1.ProcesorINTEL COREi3-4350- 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
2.ProcesorAMD Ryzen 7 1800X, 3.60 GHz, 95W, s-AM4
3.Płyta głównaGIGABYTE ATX, X99, 4x DDR3, 4x PCI-E 16x, RAID, HDMI, D-Port, D-SUB, 2x USB 3.1, 8 x USB 2.0, S-AM3+
4.Płyta głównaAsus CROSSHAIR VI HERO, X370, SATA3, 4xDDR4, USB3.1, ATX, WI-FI AC, s- AM4
5.Pamięć RAMCorsair Vengeance LPX, DDR4 2x16GB, 3000MHz, CL15 black
6.Pamięć RAMCrucial Ballistix DDR3, 2x8GB, 1600MHz, CL9, black
?

A. 1, 4, 6
B. 2, 4, 5
C. 1, 3, 5
D. 2, 4, 6
Odpowiedź 2, 4, 5 jest prawidłowa, ponieważ wszystkie wymienione komponenty są ze sobą kompatybilne. Procesor AMD Ryzen 7 1800X (numer 2) jest zgodny z płytą główną Asus CROSSHAIR VI HERO (numer 4), która używa gniazda AM4, co jest wymagane do tego procesora. Płyta główna obsługuje pamięć RAM DDR4, co idealnie pasuje do Corsair Vengeance LPX (numer 5), która jest pamięcią DDR4 o odpowiednich parametrach, co zapewnia optymalną wydajność. Kiedy składamy komputer, kluczowe jest, aby wszystkie komponenty były ze sobą zgodne, co zapewnia ich prawidłowe działanie. Na przykład, kompatybilność pamięci RAM z płytą główną i procesorem wpływa na stabilność systemu oraz wydajność w intensywnych zastosowaniach. Dobranie odpowiednich komponentów, jak w tej odpowiedzi, zapewnia nie tylko wydajność, ale również przyszłościowość zestawu, pozwalając na ewentualne aktualizacje bez potrzeby wymiany całego sprzętu.

Pytanie 22

Na wyświetlaczu drukarki widnieje komunikat "PAPER JAM". Aby zlikwidować problem, należy w pierwszej kolejności

A. wymienić kartusz z materiałem drukującym
B. zamontować podajnik papieru w drukarce
C. zidentyfikować miejsce zacięcia papieru w drukarce
D. włożyć papier do podajnika
Aby skutecznie usunąć usterkę oznaczoną komunikatem 'PAPER JAM', kluczowym krokiem jest zlokalizowanie miejsca zacięcia papieru w drukarce. Zrozumienie, gdzie dokładnie doszło do zacięcia, pozwala na precyzyjne usunięcie przeszkody, co jest zgodne z najlepszymi praktykami w zakresie konserwacji sprzętu biurowego. W pierwszej kolejności warto sprawdzić obszary, takie jak podajnik papieru, strefa wyjścia oraz wnętrze drukarki, aby zidentyfikować zacięty papier. W przypadku braku wiedzy na temat lokalizacji elementów drukarki, można sięgnąć do instrukcji obsługi, która dostarcza niezbędnych informacji. Przykładem dobrego postępowania jest również systematyczne czyszczenie mechanizmów podających papier, co minimalizuje ryzyko zacięć. Pamiętaj także, aby podczas usuwania zacięcia delikatnie wyciągać zacięty papier, aby nie uszkodzić wnętrza urządzenia. Tego typu działania nie tylko zwiększają sprawność drukarki, ale również wydłużają jej żywotność.

Pytanie 23

Jaki adres IP w formacie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanym w formacie binarnym?

A. 171.15.159.252
B. 170.15.160.252
C. 170.14.160.252
D. 171.14.159.252
Adres IP zapisany w systemie binarnym 10101010.00001111.10100000.11111100 można przekształcić na system dziesiętny poprzez konwersję każdej z czterech oktetów. W pierwszym oktetach mamy 10101010, co odpowiada 128 + 32 + 8 + 2 = 170. Drugi oktet, 00001111, to 0 + 0 + 0 + 8 + 4 + 2 + 1 = 15. Trzeci oktet, 10100000, daje 128 + 0 + 0 + 0 = 160. Ostatni oktet, 11111100, to 128 + 64 + 32 + 16 + 8 + 4 = 252. Zatem pełny adres IP w systemie dziesiętnym to 170.15.160.252. Adresy IP są kluczowe w komunikacji sieciowej, a ich poprawna konwersja jest niezbędna w zarządzaniu sieciami. W praktyce, w sytuacjach takich jak konfiguracja routerów czy firewalli, znajomość konwersji adresów IP pozwala na skuteczniejsze zarządzanie, lepsze zabezpieczenie sieci oraz efektywniejsze planowanie zasobów.

Pytanie 24

Jaki jest maksymalny promień zgięcia przy montażu kabla U/UTP kat 5e?

A. cztery średnice kabla
B. osiem średnic kabla
C. sześć średnic kabla
D. dwie średnice kabla
Odpowiedzi sugerujące, że promień zgięcia kabla U/UTP kat 5e wynosi dwie, cztery lub sześć średnic kabla są nieprawidłowe i mogą prowadzić do poważnych problemów technicznych. Zmniejszenie promienia zgięcia poniżej zalecanych ośmiu średnic może prowadzić do uszkodzenia struktury kabla poprzez zagięcia, co skutkuje osłabieniem sygnału, a nawet całkowitym przerwaniem połączenia. W przypadku zbyt małego promienia zgięcia, przewodniki wewnątrz kabla mogą ulec przemieszczeniu lub przerwaniu, co prowadzi do zakłóceń w transmisji danych. Takie nieprzemyślane podejście jest typowym błędem, szczególnie w sytuacjach, gdy instalacje są przeprowadzane w zatłoczonych pomieszczeniach lub ciasnych przestrzeniach. Ponadto, ignorowanie standardów dotyczących promienia zgięcia może narazić instalację na niezgodność z przepisami prawa oraz standardami branżowymi, co może wiązać się z konsekwencjami finansowymi i prawnymi. Kluczowe jest zrozumienie, że właściwe podejście do instalacji kabli oraz ich obsługi nie tylko zapewnia ich długowieczność, ale również gwarantuje efektywność operacyjną systemów telekomunikacyjnych. Właściwe praktyki związane z instalacją kabli powinny zawsze uwzględniać nie tylko ich bieżące potrzeby, ale także przewidywane warunki użytkowania oraz potencjalne zmiany w infrastrukturze.

Pytanie 25

Zastosowanie symulacji stanów logicznych w obwodach cyfrowych pozwala na

A. kalibrator.
B. impulsator.
C. sonda logiczna.
D. sonometr.
Wybór sonometru, kalibratora lub sondy logicznej jako narzędzi do symulowania stanów logicznych obwodów cyfrowych opiera się na mylnych założeniach dotyczących ich funkcji i zastosowań. Sonometr, na przykład, jest urządzeniem służącym do pomiaru poziomu dźwięku i nie ma zastosowania w kontekście analizy sygnałów elektronicznych. Jego zadaniem jest ocena natężenia fal akustycznych, a nie generowanie czy symulowanie stanów logicznych. Kalibrator, z drugiej strony, to narzędzie stosowane do porównywania wartości pomiarowych z wartościami odniesienia, co jest istotne w zapewnieniu dokładności pomiarów, ale nie jest przeznaczone do tworzenia impulsów logicznych. Natomiast sonda logiczna jest narzędziem do analizy sygnałów w obwodach cyfrowych, jednak nie generuje sygnałów, lecz służy do ich monitorowania i pomiaru. Typowym błędem myślowym jest mylenie funkcji narzędzi pomiarowych z funkcjami generującymi sygnały. W rzeczywistości, aby symulować stany logiczne, potrzeba urządzenia zdolnego do wytwarzania impulsów, co dokładnie realizuje impulsator. W kontekście testowania obwodów cyfrowych, ważne jest użycie odpowiednich narzędzi zgodnych z branżowymi standardami, by zapewnić dokładność i efektywność przeprowadzanych testów.

Pytanie 26

Najefektywniejszym sposobem dodania skrótu do aplikacji na pulpitach wszystkich użytkowników w domenie będzie

A. użycie zasad grupy
B. ponowna instalacja programu
C. pobranie aktualizacji Windows
D. mapowanie dysku
Użycie zasad grupy (Group Policy) to najefektywniejszy sposób na wdrożenie skrótów do programów na pulpitach wszystkich użytkowników w obrębie domeny. Zasady grupy umożliwiają centralne zarządzanie konfiguracją systemu operacyjnego oraz aplikacji, co pozwala na łatwe i szybkie wprowadzanie zmian na wielu maszynach jednocześnie. Dzięki tej metodzie, administratorzy mogą skonfigurować skróty do aplikacji, które będą automatycznie dostępne dla wszystkich użytkowników, co znacząco oszczędza czas oraz minimalizuje ryzyko błędów ludzkich. Zasady grupy pozwalają również na dostosowywanie ustawień w zależności od potrzeb poszczególnych grup użytkowników. Na przykład, administrator może stworzyć różne skróty dla działu IT i działu sprzedaży, co zapewnia większą elastyczność zarządzania. W kontekście standardów branżowych, korzystanie z zasad grupy jest uznawane za najlepszą praktykę w zakresie administracji systemami Windows w sieciach korporacyjnych, co potwierdzają liczne dokumentacje oraz wytyczne Microsoftu.

Pytanie 27

Prezentowane wbudowane narzędzie systemów Windows w wersji Enterprise lub Ultimate jest przeznaczone do

Ilustracja do pytania
A. tworzenia kopii zapasowej dysku
B. kompresji przestrzeni dyskowej
C. integracji danych na dyskach
D. kryptograficznej ochrony informacji na dyskach
BitLocker to wbudowane narzędzie dostępne w systemach Windows w wersjach Enterprise i Ultimate które służy do kryptograficznej ochrony danych na dyskach. Umożliwia pełne szyfrowanie dysków co oznacza że wszystkie dane na dysku są zabezpieczone przy użyciu zaawansowanych algorytmów szyfrowania. Zastosowanie BitLockera jest szczególnie istotne w kontekście ochrony danych przed nieautoryzowanym dostępem na przykład w przypadku kradzieży laptopa. Dzięki zastosowaniu modułu TPM (Trusted Platform Module) BitLocker zapewnia dodatkowy poziom bezpieczeństwa przechowując klucze kryptograficzne. Praktyczne zastosowanie BitLockera obejmuje ochronę danych wrażliwych na urządzeniach przenośnych i stacjonarnych co jest zgodne z najlepszymi praktykami branżowymi w zakresie bezpieczeństwa informacji. BitLocker wspiera także zarządzanie kluczami odzyskiwania co pozwala na odzyskanie dostępu do zaszyfrowanych danych w sytuacjach awaryjnych. Implementacja BitLockera jest zgodna z międzynarodowymi standardami bezpieczeństwa takimi jak ISO 27001 co czyni go efektywnym rozwiązaniem dla firm dążących do spełnienia wymogów regulacyjnych dotyczących ochrony danych osobowych i poufnych informacji.

Pytanie 28

Shareware to typ licencji, który opiera się na

A. użytkowaniu programu przez ustalony czas, po którym program przestaje funkcjonować
B. korzystaniu z programu bez opłat i bez jakichkolwiek ograniczeń
C. bezpłatnym dystrybuowaniu aplikacji bez ujawnienia kodu źródłowego
D. bezpłatnym udostępnianiu programu w celu testowania przed dokonaniem zakupu
Shareware to model licencjonowania, który umożliwia użytkownikom wypróbowanie oprogramowania przez określony czas bez opłat, co ma na celu zachęcenie do zakupu pełnej wersji. Użytkownik ma możliwość przetestowania funkcji programu, co jest bardzo ważne dla podejmowania decyzji o ewentualnym zakupie. Przykładem zastosowania shareware mogą być programy do edycji zdjęć czy oprogramowanie biurowe, które oferują pełne funkcje przez 30 dni. Po upływie tego czasu, użytkownik powinien zakupić licencję, aby kontynuować korzystanie z programu bez ograniczeń. W branży oprogramowania shareware jest szeroko stosowane, jako że pozwala producentom oprogramowania na dotarcie do szerszej grupy odbiorców, co zwiększa szanse na konwersję użytkowników testowych w płacących klientów. Dobrą praktyką w tym modelu jest jasne komunikowanie warunków licencji oraz dostępności wsparcia technicznego dla użytkowników testowych.

Pytanie 29

Wykonanie na komputerze z systemem Windows kolejno poleceń ```ipconfig /release``` oraz ```ipconfig /renew``` umożliwi zweryfikowanie, czy usługa w sieci funkcjonuje poprawnie

A. Active Directory
B. serwera DHCP
C. serwera DNS
D. rutingu
Active Directory to nie jest to samo co przydzielanie adresów IP w sieci. To taka usługa katalogowa, która zajmuje się zarządzaniem użytkownikami, komputerami i grupami, a także uwierzytelnianiem. Więc wniosek, że ipconfig /release czy ipconfig /renew mogą mieć coś wspólnego z Active Directory, to błąd. Te polecenia są bardziej związane z IP. Co do DNS, to ono tłumaczy nazwy domen na adresy IP, ale problemy z DNS nie mają bezpośredniego związku z tymi poleceniami. A routing, to jeszcze inna bajka, bo tu chodzi o to, jak przesyła się dane przez sieć, co wymaga rozważenia wielu elementów. Dobrze jest zrozumieć te różnice, bo to może pomóc w lepszym zarządzaniu sieciami i rozwiązywaniu problemów.

Pytanie 30

Osobiste prawo autorskie twórcy do software'u

A. obowiązuje przez 70 lat od daty pierwszej publikacji
B. obowiązuje przez 50 lat od daty pierwszej publikacji
C. nigdy nie traci ważności
D. obowiązuje wyłącznie przez okres życia jego autora
Rozważając odpowiedzi na pytanie o trwałość autorskiego prawa osobistego do programu komputerowego, warto zauważyć, że odpowiedzi sugerujące określony czas trwania praw, takie jak 50 czy 70 lat, mają swoje odniesienie w zakresie autorskich praw majątkowych. Jednakże, autorskie prawo osobiste w polskim prawodawstwie ma inną naturę, co często prowadzi do mylnego rozumienia. W pierwszej kolejności, pojęcie 70-letniego okresu ochrony dotyczy praw majątkowych, które rozpoczynają się od momentu śmierci autora i trwają przez 70 lat. W przypadku prawa osobistego, nie ma takiego ustalonego okresu, ponieważ chroni ono niezbywalne prawa twórcy do uznania autorstwa i nienaruszalności utworu. Podobnie, odpowiedź mówiąca o 50-letnim okresie również jest myląca, gdyż dotyczy ona praw majątkowych, a nie osobistych. Kolejnym błędnym rozumowaniem jest sugestia, że autorskie prawo osobiste wygasa, co jest sprzeczne z definicją tych praw w polskim prawie. Zrozumienie, że prawa osobiste są nieprzedawnialne, jest kluczowe dla ochrony twórcy w długoterminowej perspektywie. Typowym błędem myślowym w tym kontekście jest mylenie praw osobistych z majątkowymi, co prowadzi do błędnych wniosków o ich wygasaniu. Takie nieprecyzyjne rozumienie może mieć poważne konsekwencje prawne, zarówno dla twórcy, jak i dla osób korzystających z jego dzieła.

Pytanie 31

Jakie informacje można uzyskać dzięki programowi Wireshark?

A. Krótkie spięcia w przewodach
B. Połączenia par żył przewodów
C. Ruch pakietów sieciowych
D. Usterki w okablowaniu
Wireshark to potężne narzędzie do analizy ruchu sieciowego, które umożliwia użytkownikom obserwację i analizę pakietów danych przesyłanych przez sieć. Poprawna odpowiedź odnosi się do zdolności Wiresharka do przechwytywania i prezentowania w czasie rzeczywistym ruchu pakietów, co jest kluczowe dla diagnozowania problemów z siecią, monitorowania wydajności oraz analizy bezpieczeństwa. Dzięki Wireshark użytkownicy mogą zrozumieć, jakie dane są przesyłane, kto je wysyła i odbiera, oraz jakie protokoły są używane. Na przykład, administratorzy sieci mogą używać Wiresharka do analizy ruchu HTTP, aby zidentyfikować nieautoryzowane połączenia lub zrozumieć, jak aplikacje korzystają z zasobów sieciowych. W kontekście dobrych praktyk, analiza pakietów powinna być przeprowadzana z poszanowaniem prywatności użytkowników oraz zgodnie z lokalnymi przepisami i regulacjami dotyczącymi ochrony danych. Wireshark jest również używany w edukacji do nauki o protokołach sieciowych, co przyczynia się do lepszego zrozumienia architektury sieciowej.

Pytanie 32

Oprogramowanie komputerowe, które można używać bezpłatnie i bez czasowych ograniczeń, jest udostępniane na mocy licencji typu

A. public domain
B. donationware
C. trial
D. shareware
Odpowiedź "public domain" jest prawidłowa, ponieważ odnosi się do oprogramowania, które jest udostępniane publicznie, co oznacza, że każdy ma prawo do korzystania, modyfikowania i rozpowszechniania takiego oprogramowania bez żadnych ograniczeń czasowych czy kosztowych. Oprogramowanie w domenie publicznej nie jest objęte prawem autorskim, co sprawia, że jest dostępne dla wszystkich. Przykłady oprogramowania w domenie publicznej obejmują niektóre projekty open source, takie jak edytory tekstu czy narzędzia graficzne, które są używane przez wiele osób na całym świecie. Z perspektywy standardów branżowych, oprogramowanie w domenie publicznej często wspiera innowacje i współpracę w ramach społeczności programistycznych, przyczyniając się do szybszego rozwoju technologii. Działa to na zasadzie otwartego dostępu, co jest zgodne z dobrymi praktykami w zakresie tworzenia oprogramowania, promując transparentność i współdzielenie zasobów.

Pytanie 33

Brak zabezpieczeń przed utratą danych w wyniku fizycznej awarii jednego z dysków to właściwość

A. RAID 1
B. RAID 0
C. RAID 3
D. RAID 2
RAID 0, znany również jako striping, to konfiguracja, która dzieli dane na bloki i rozkłada je równomiernie na wiele dysków. Główną zaletą RAID 0 jest zwiększenie wydajności, ponieważ operacje odczytu i zapisu mogą być wykonywane równolegle na wielu dyskach. Jednak ta konfiguracja nie oferuje żadnej redundancji ani ochrony danych. W przypadku awarii jednego z dysków, wszystkie dane przechowywane w macierzy RAID 0 są tracone. Przykładami zastosowania RAID 0 są systemy, w których priorytetem jest szybkość, takie jak edycja wideo czy graficzne operacje, gdzie czas dostępu do danych ma kluczowe znaczenie. W kontekście standardów branżowych, RAID 0 jest często używany w środowiskach, gdzie dane mogą być regularnie kopiowane lub gdzie ważna jest ich wydajność, ale niekoniecznie ich trwałość. Warto pamiętać, że mimo wysokiej wydajności, RAID 0 nie jest rozwiązaniem do przechowywania krytycznych danych bez dodatkowych zabezpieczeń.

Pytanie 34

Element elektroniczny przedstawiony na ilustracji to:

Ilustracja do pytania
A. induktor
B. pojemnik
C. opornik
D. tranzystor
Rezystor cewka i kondensator to fundamentalne komponenty pasywne o różnych funkcjach i zastosowaniach w elektronice, jednak różnią się znacznie od tranzystorów pod względem budowy i zastosowania. Rezystor służy głównie do ograniczania przepływu prądu oraz ustalania poziomu napięcia w układach elektrycznych. Jest on stosowany w filtrach dzielnikach napięcia i jako element ograniczający prąd. Zrozumienie różnic w charakterystyce rezystora i tranzystora jest kluczowe gdyż rezystory nie mogą wzmacniać sygnałów ani działać jako przełączniki. Cewka z kolei magazynuje energię w polu magnetycznym i jest stosowana w układach filtracyjnych obwodach rezonansowych oraz w przetwornicach DC-DC. Podobnie jak rezystor nie posiada zdolności wzmacniania sygnału. Kondensator magazynuje energię w polu elektrycznym i jest kluczowy w układach filtracji zasilania oraz w aplikacjach czasowych. Każdy z tych elementów pełni specyficzną rolę w obwodach elektronicznych jednak brak zdolności przełączania i wzmacniania w tych komponentach odróżnia je od tranzystorów które są aktywnymi elementami zdolnymi do kontrolowania przepływu prądu w sposób dynamiczny co jest niezbędne w sterowaniu pracą skomplikowanych układów elektronicznych i cyfrowych. Typowym błędem jest niewłaściwe rozróżnienie tych funkcji co może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych i wpływać na ich wydajność i działanie. Dlatego kluczowe jest zrozumienie różnic między pasywnymi a aktywnymi elementami w kontekście ich zastosowań inżynieryjnych i projektowych.

Pytanie 35

Który standard złącza DVI pozwala na przesyłanie wyłącznie sygnałów analogowych?

Ilustracja do pytania
A. Rys. A
B. Rys. D
C. Rys. C
D. Rys. B
Złącze DVI-D w wersjach Single Link i Dual Link jest zaprojektowane do przesyłania wyłącznie sygnałów cyfrowych co czyni je nieodpowiednim dla urządzeń wymagających sygnału analogowego. DVI-D koncentruje się na zapewnieniu jak najwyższej jakości obrazu w transmisjach cyfrowych eliminując zakłócenia charakterystyczne dla sygnałów analogowych. Wybór DVI-D w sytuacji gdy potrzebny jest sygnał analogowy może prowadzić do całkowitego braku obrazu ponieważ nie ma możliwości konwersji sygnału cyfrowego na analogowy w tym standardzie. Natomiast złącze DVI-I choć obsługuje zarówno sygnały cyfrowe jak i analogowe to w wersji Dual Link jak na ilustracji A jest bardziej skomplikowane i zapewnia przesył dodatkowych kanałów transmisji cyfrowej co może powodować mylne przekonanie że obsługuje tylko cyfrowe przesyły. DVI-I Dual Link jest bardziej uniwersalne ale wciąż nie oferuje możliwości samodzielnego przesyłu wyłącznie sygnałów analogowych tak jak robi to DVI-A. Często użytkownicy mylą złącza z powodu podobieństwa wizualnego i niepełnej wiedzy o różnych standardach które funkcjonują jednocześnie w jednym złączu. Warto zwrócić uwagę na oznaczenia na urządzeniach oraz specyfikacje techniczne by uniknąć błędów w doborze odpowiednich kabli i interfejsów co jest istotne zwłaszcza w środowisku zawodowym gdzie wymagana jest kompatybilność różnych urządzeń elektronicznych.

Pytanie 36

Aby zapobiec uszkodzeniu układów scalonych, podczas konserwacji sprzętu komputerowego należy używać

A. okularów ochronnych
B. rękawiczek skórzanych
C. opaski antystatycznej
D. rękawiczek gumowych
Opaska antystatyczna jest kluczowym elementem ochrony podczas naprawy sprzętu komputerowego, ponieważ zapobiega gromadzeniu się ładunków elektrycznych na ciele technika. Te ładunki mogą być niebezpieczne dla wrażliwych układów scalonych, które mogą ulec uszkodzeniu w wyniku wyładowania elektrostatycznego (ESD). Używanie opaski antystatycznej pozwala na odprowadzenie tych ładunków do ziemi, minimalizując ryzyko uszkodzenia komponentów. W praktyce, technicy powinni zawsze zakładać opaskę przed rozpoczęciem pracy z elektroniką, szczególnie w przypadku wymiany lub naprawy podzespołów, takich jak procesory, pamięci RAM czy karty graficzne. Dobre praktyki branżowe zalecają również, aby miejsce pracy było odpowiednio uziemione, co zwiększa efektywność działania opaski. Dodatkowo, stosowanie opasek antystatycznych jest zgodne z normami ochrony przed ESD, takimi jak ANSI/ESD S20.20, które określają wymogi dla stanowisk roboczych zajmujących się elektroniką. Stosowanie ich w codziennej pracy przyczynia się do zwiększenia bezpieczeństwa i niezawodności naprawianego sprzętu.

Pytanie 37

Jakie znaczenie ma parametr NVP (Nominal Velocity of Propagation) podczas pomiarów okablowania strukturalnego?

A. na jakość
B. na koszt
C. na szybkość
D. na długość
Zrozumienie wpływu NVP na różne aspekty okablowania strukturalnego jest kluczowe, aby uniknąć nieporozumień. Na przykład, odpowiedź sugerująca, że NVP ma wpływ na prędkość, może wydawać się logiczna, jednak w rzeczywistości NVP to już określona prędkość, a nie parametr, który ją zmienia. Inną mylną koncepcją jest stwierdzenie, że NVP wpływa na jakość sygnału. Choć NVP pośrednio może wpływać na jakość w kontekście odległości, to nie jest to bezpośredni czynnik determinujący. Jakość sygnału bardziej zależy od parametrów takich jak zakłócenia, tłumienie czy zastosowane materiały. Ponadto, wybór parametrów kabli nie jest bezpośrednio związany z ceną, ponieważ koszty komponentów są określane przez inne czynniki, takie jak materiały i technologia produkcji. Pojęcie długości ma znaczenie, ale tylko w kontekście zastosowania NVP do obliczeń wymaganych dla właściwego doboru długości kabli w instalacji. Często błędne interpretacje tych parametrów prowadzą do niewłaściwego doboru materiałów i projektowania sieci, co w konsekwencji może skutkować problemami z wydajnością i niezawodnością systemu. Właściwe zrozumienie NVP oraz jego zastosowanie w zgodności z normami branżowymi, takimi jak ANSI/TIA-568, jest niezbędne dla osiągnięcia optymalnych rezultatów w instalacjach okablowania strukturalnego.

Pytanie 38

W schemacie logicznym struktury okablowania, zgodnie z polską terminologią zawartą w normie PN-EN 50174, cechą kondygnacyjnego punktu dystrybucyjnego jest to, że

A. obejmuje zasięgiem całe piętro obiektu.
B. łączy okablowanie obiektu i centralny punkt dystrybucji.
C. obejmuje zasięgiem cały obiekt.
D. łączy okablowanie pionowe i międzylokalowe.
Jeśli chodzi o kondygnacyjne punkty dystrybucyjne, niektóre odpowiedzi mogą być mylące. W sumie, właściwością takiego punktu jest to, że jest on ograniczony do piętra budynku, a nie do całego budynku, tak jak sugeruje jedna z opcji. Cały budynek to raczej sprawa centralnych punktów dystrybucyjnych, które łączą różne piętra. Odpowiedzi związane z łączeniem okablowania pionowego i między budynkami są trochę na bocznym torze, bo punkty dystrybucyjne nie zajmują się łączeniem okablowania między budynkami. Moim zdaniem, to może prowadzić do błędnego zrozumienia, że kondygnacyjne punkty dystrybucyjne mają większy zasięg, co jest nieprawda. Mówiąc, że kondygnacyjny punkt dystrybucyjny łączy okablowanie budynku z centralnym punktem dystrybucyjnym, też może wprowadzać w błąd, bo taką rolę pełnią raczej inne elementy infrastruktury, jak serwerownie czy szafy dystrybucyjne. Dlatego ważne jest, żeby dobrze rozumieć, co tak naprawdę robią te punkty dystrybucyjne, bo ma to znaczenie przy projektowaniu i wdrażaniu efektywnych systemów okablowania.

Pytanie 39

Które stwierdzenie opisuje profil tymczasowy użytkownika?

A. Jest tworzony przez administratora systemu i zapisywany na serwerze, tylko administrator systemu ma prawo wprowadzać w nim zmiany
B. Umożliwia używanie dowolnego komputera w sieci z ustawieniami i danymi użytkownika przechowywanymi na serwerze
C. Jest generowany przy pierwszym logowaniu do komputera i przechowywany na lokalnym dysku twardym
D. Po wylogowaniu się użytkownika, zmiany dokonane przez niego w ustawieniach pulpitu oraz w plikach nie będą zachowane
Profil tymczasowy użytkownika jest szczególnym przypadkiem, który ma na celu zapewnienie elastyczności i bezpieczeństwa w korzystaniu z komputerów, zwłaszcza w środowiskach wspólnych, takich jak szkolne labolatoria czy biura. Główna cecha tego typu profilu polega na tym, że wszystkie zmiany wprowadzone przez użytkownika podczas sesji są przechowywane tylko tymczasowo. Oznacza to, że po wylogowaniu się z systemu, wszystkie personalizacje, takie jak zmiany ustawień pulpitu, instalacja aplikacji czy modyfikacja plików, nie zostaną zapisane. Dzięki temu, nowi użytkownicy mogą korzystać z systemu bez obaw o modyfikację ustawień dotyczących innych użytkowników. W praktyce, takie podejście jest szczególnie przydatne w instytucjach, gdzie komputery są używane przez wielu użytkowników i gdzie konieczne jest zachowanie spójności systemu oraz bezpieczeństwa danych. Przykładowo, w szkołach, uczniowie mogą korzystać z tych samych komputerów bez ryzyka, że ich działania wpłyną na konfigurację dla innych uczniów. To zapewnia zarówno ochronę prywatności, jak i integralność systemu operacyjnego. W kontekście stosowania dobrych praktyk IT, profile tymczasowe są zgodne z zasadą najmniejszych uprawnień, co zwiększa bezpieczeństwo systemu.

Pytanie 40

Element systemu komputerowego przedstawiony na ilustracji to

Ilustracja do pytania
A. dysk SSD
B. karta graficzna do laptopa
C. GPU
D. moduł pamięci Cache
Dysk SSD, czyli Solid State Drive, to naprawdę nowoczesne urządzenie do przechowywania danych. Wykorzystuje pamięć flash, co oznacza, że jest dużo szybszy i bardziej niezawodny niż tradycyjne dyski HDD. Brak ruchomych części sprawia, że nie jest tak podatny na uszkodzenia mechaniczne. Dlatego dyski SSD są teraz powszechnie używane w komputerach, laptopach i serwerach, zwłaszcza tam, gdzie szybkość dostępu do danych ma kluczowe znaczenie. Czasami naprawdę można zauważyć różnicę w czasach ładowania systemu czy aplikacji – to potrafi znacznie poprawić komfort pracy. Z tego co pamiętam, dyski SSD zazwyczaj łączą się przez interfejsy SATA, M.2 lub PCIe, co daje różne prędkości transferu. Dodatkowo, pamięć flash zużywa mniej energii, co jest super ważne w przenośnych urządzeniach jak laptopy. Tak więc, podsumowując, dyski SSD to naprawdę kluczowy element w dzisiejszych komputerach, oferując świetną wydajność, niezawodność i oszczędność energii.