Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 3 czerwca 2025 21:04
  • Data zakończenia: 3 czerwca 2025 21:21

Egzamin niezdany

Wynik: 9/40 punktów (22,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na plecach i poluzowanie odzieży na szyi
B. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
C. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
D. Położenie jej na brzuchu i odchylenie głowy w bok
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.

Pytanie 2

Pomiar temperatury radiatora służącego do chłodzenia mikroprocesora w urządzeniu elektronicznym można przeprowadzić przy użyciu

A. rotametru
B. tensometru
C. pirometru
D. manometru
Pirometr to narzędzie służące do bezdotykowego pomiaru temperatury powierzchni ciał stałych, cieczy oraz gazów. Jego działanie opiera się na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekt. W przypadku radiatora chłodzącego mikroprocesor, pirometr pozwala na szybkie i precyzyjne określenie temperatury, co jest kluczowe dla zapewnienia efektywności chłodzenia oraz zapobiegania przegrzewaniu się procesora. W wielu zastosowaniach przemysłowych oraz w laboratoriach, pirometry są standardowym wyposażeniem, pozwalającym na monitorowanie temperatury w czasie rzeczywistym. Dzięki nim można uniknąć kontaktu z gorącymi elementami, co wpisuje się w zasady bezpieczeństwa pracy. W praktyce, pirometry są wykorzystywane nie tylko w elektronice, ale także w inżynierii materiałowej, medycynie oraz wielu innych dziedzinach, gdzie kontrola temperatury odgrywa kluczową rolę. Ich zastosowanie jest zgodne z normami ISO dotyczącymi pomiarów temperatury, co potwierdza ich wiarygodność oraz dokładność.

Pytanie 3

Aby poprawić jakość obrazu w trudnych warunkach oświetleniowych, należy zwiększyć odstęp S/N generowany przez układy elektroniczne kamery?

A. wyzerować
B. zwiększyć
C. wyrównać
D. zmniejszyć
Aby poprawić jakość obrazu w słabych warunkach oświetleniowych, kluczowe jest zwiększenie odstępu sygnału do szumu (S/N) wytwarzanego przez układy elektroniczne kamery. Wysoki stosunek S/N oznacza, że sygnał, który jest istotny dla reprodukcji obrazu, jest znacznie silniejszy od szumów, które mogą wprowadzać zakłócenia. Przykładowo, w zastosowaniach takich jak monitoring nocny, zwiększenie czułości matrycy kamery pozwala na uzyskanie lepszej jakości w trudnych warunkach oświetleniowych. W praktyce można to osiągnąć poprzez zastosowanie większych pikseli matrycy, co zwiększa zbieranie światła, lub przez poprawę algorytmów redukcji szumów. Standardy branżowe, takie jak ISO w fotografii, wskazują, że wyższe wartości ISO, które często towarzyszą poprawionemu S/N, mogą doprowadzić do jaśniejszego obrazu w ciemności, choć mogą także wprowadzać szumy. Dlatego ważne jest, aby znaleźć równowagę pomiędzy czułością a jakością obrazu, co jest kluczowe dla uzyskania zadowalających rezultatów.

Pytanie 4

Każdą funkcję logiczną da się zrealizować jedynie przy wykorzystaniu bramek

A. OR
B. NAND
C. NOT
D. EX-OR
Odpowiedź 'NAND' jest poprawna, ponieważ bramka NAND jest uniwersalną bramką logiczną, co oznacza, że może być użyta do realizacji każdej dowolnej funkcji logicznej. W praktyce, za pomocą kombinacji bramek NAND możemy skonstruować wszystkie inne podstawowe bramki, takie jak AND, OR, oraz NOT. Użycie bramki NAND do budowy logiki cyfrowej jest standardem w branży, ponieważ pozwala na uproszczenie procesu projektowania układów logicznych. Na przykład, w projektach układów scalonych, bramki NAND często dominują ze względu na ich prostą strukturę oraz mniejsze wymagania dotyczące zasilania w porównaniu do innych bramek. W zastosowaniach takich jak mikroprocesory czy układy FPGA, bramki NAND są często wykorzystywane do optymalizacji wydajności oraz redukcji kosztów produkcji. Warto zauważyć, że teoria bramek uniwersalnych jest kluczowym elementem w nauczaniu o logice cyfrowej oraz projektowaniu systemów cyfrowych, co czyni tę wiedzę niezbędną dla inżynierów i techników w tej dziedzinie.

Pytanie 5

Co należy zrobić, gdy pracownik, który został odizolowany od źródła prądu, jest nieprzytomny, ale zachowuje prawidłowy oddech oraz funkcje serca?

A. układa się go w ustalonej pozycji bocznej i obserwuje
B. należy udrożnić jego górne drogi oddechowe
C. układa się go na plecach i unosi nogi
D. przystępuje się do natychmiastowego zewnętrznego masażu serca
Udrażnianie górnych dróg oddechowych, mimo że jest kluczowym elementem w ratowaniu osób nieprzytomnych, nie jest pierwszym krokiem w przypadku pacjenta z zachowanym oddechem i pracą serca. W takich sytuacjach, gdy pacjent jest nieprzytomny, ale oddycha samodzielnie, kluczowe jest zapewnienie mu odpowiedniej pozycji, aby zapobiec ewentualnym komplikacjom. Wykonywanie zewnętrznego masażu serca jest wskazane tylko w przypadku zatrzymania krążenia, co w tym przypadku nie ma miejsca. Z kolei układanie pacjenta w pozycji na wznak z uniesionymi nogami może prowadzić do ryzyka aspiracji i zatykania dróg oddechowych, co jest szczególnie niebezpieczne. Takie podejście może być wynikiem błędnego myślenia o tym, że w każdej sytuacji nieprzytomności należy od razu interweniować agresywniej, co nie zawsze jest zasadne. Właściwe zrozumienie, kiedy i jak podjąć działania w przypadku osób nieprzytomnych, jest kluczowe dla skutecznej resuscytacji oraz uniknięcia dodatkowych urazów czy zagrożeń zdrowotnych. Praktyka oraz znajomość procedur są niezbędne, aby prawidłowo reagować w sytuacjach nagłych.

Pytanie 6

Termin PDP odnosi się do typów wyświetlaczy

A. fluorescencyjnych
B. ciekłokrystalicznych
C. diodowych
D. plazmowych
Ciekłokrystaliczne wyświetlacze (LCD) różnią się od plazmowych, ponieważ wykorzystują ciekłe kryształy do modulacji światła. W tej technologii, źródło światła (często diody LED) jest używane do oświetlenia panelu, co prowadzi do niższego kontrastu i ograniczonego kąta widzenia w porównaniu z plazmami. Z kolei wyświetlacze diodowe, czyli LED, są formą LCD z podświetleniem diodowym, które poprawia jasność, ale nie osiąga tak głębokiej czerni, jak plazma. Technologia fluorescencyjna odnosi się głównie do wyświetlaczy, które wykorzystują fluorescencyjne lampy jako źródło światła, co ogranicza ich zastosowanie w nowoczesnych aplikacjach, gdzie preferowane są technologie LCD lub OLED. Typowe błędy myślowe prowadzące do pomyłek w tej kwestii często obejmują spłaszczone podejście do porównania technologii wyświetlania, gdzie brakuje pełnego zrozumienia różnic w działaniu i zastosowaniu tych technologii. Plazmowe wyświetlacze, dzięki swoim unikalnym właściwościom, pozostają preferowaną opcją dla wielu entuzjastów kina domowego i profesjonalnych zastosowań, mimo konkurencji ze strony LCD i OLED.

Pytanie 7

System RDS (Radio Data System) pozwala na

A. odbiór cyfrowych danych poprzez emisję UKF FM
B. odsłuch z zaawansowanym efektem przestrzennym stereo
C. zdalne włączanie i wyłączanie odbiornika radiowego
D. transmisję informacji tekstowych przez emisję UKF FM
Nieprawidłowe odpowiedzi sugerują mylne zrozumienie funkcji systemu RDS. Zdalne włączenie i wyłączenie odbiornika radiofonicznego, jak również odsłuch z pogłębionym przestrzennym efektem stereofonicznym, są funkcjami, które nie są częścią specyfikacji RDS. RDS nie służy ani do zdalnego sterowania odbiornikiem, ani do poprawy jakości dźwięku w sensie przestrzennym. W rzeczywistości, system RDS jest narzędziem do transmisji informacji, które jest zintegrowane z analogowym sygnałem radiowym, a jego głównym celem jest dostarczanie danych tekstowych oraz innych informacji do słuchaczy. Ponadto, odpowiedzi, które sugerują nadawanie informacji słownych, mylą funkcję RDS z innymi systemami komunikacyjnymi. RDS nie nadawcza informacji w postaci dźwiękowej; zamiast tego, przesyła metadane, które są odbierane przez radioodbiorniki. Te nieporozumienia mogą wynikać z braku znajomości podstawowych zasad działania RDS oraz jego ograniczeń. Właściwe zrozumienie tego systemu pozwala uniknąć typowych błędów myślowych i lepiej ocenić jego zastosowania w kontekście współczesnych technologii radiowych.

Pytanie 8

Odbiornik cyfrowy DVB-C jest zaprojektowany do przyjmowania sygnałów telewizyjnych

A. z internetu
B. satelitarnych
C. naziemnych
D. kablowych
W przypadku odpowiedzi, które dotyczą sygnałów internetowych, naziemnych czy satelitarnych, widać, że zrozumienie tych technologii i standardów było nieco mylne. Odbiorniki do streamingu w internecie działają na innych zasadach niż DVB-C, bo polegają na połączeniu z Internetem, a nie na sygnale kablowym. Więc jeśli internet działa słabo, to użytkownik może mieć problem z odbiorem. Z kolei telewizja naziemna korzysta z DVB-T, czyli sygnał jest nadawany z konkretnych nadajników i czasem nie ma go w górskich rejonach. Co do telewizji satelitarnej, to tam znowu mówimy o DVB-S, gdzie sygnał idzie z satelitów na orbitach i potrzebne są specjalne anteny. Jak więc wybierasz odbiornik, warto wiedzieć, że każdy z tych standardów jest inny i wpływa na jakość odbioru.

Pytanie 9

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. HDMI
B. FIREWARE
C. RCP
D. MIFARE
Wybór odpowiedzi związanych z HDMI, FIREWARE czy RCP wskazuje na pomylenie różnych standardów technologicznych, które nie odnoszą się do kontekstu bezdotykowej kontroli dostępu. HDMI (High-Definition Multimedia Interface) to standard interfejsu do przesyłania cyfrowego sygnału audio i wideo, a nie kart dostępu. Jego zastosowanie koncentruje się na przesyłaniu danych pomiędzy urządzeniami multimedialnymi, a nie na identyfikacji czy kontroli dostępu. FIREWARE, z drugiej strony, to termin, który nie jest standardem, lecz może być mylnie interpretowany jako związany z oprogramowaniem sprzętowym (firmware) w kontekście urządzeń elektronicznych. Choć oprogramowanie sprzętowe jest kluczowe w zarządzaniu funkcjami urządzeń, to nie ma związku z bezdotykowymi systemami kontroli dostępu, które wykorzystują technologie RFID. RCP (Remote Control Protocol) to protokół, który umożliwia zdalne sterowanie urządzeniami, jednak nie ma zastosowania w kontekście kart dostępu ani RFID. Typowym błędem w podejściu do tego pytania jest mylenie zastosowań standardów technologicznych, co prowadzi do niepoprawnych wniosków. Kluczowe jest zrozumienie, jaki jest cel każdego z tych standardów i ich odpowiednie zastosowanie w praktyce, aby unikać takich pomyłek.

Pytanie 10

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Skrócenie przewodu oraz obniżenie jego rezystancji
B. Wydłużenie przewodu oraz obniżenie jego rezystancji
C. Wydłużenie przewodu oraz podwyższenie jego rezystancji
D. Skrócenie przewodu oraz podwyższenie jego rezystancji
Jasne, wpływ temperatury na przewody miedziane to dość skomplikowany temat. Niektórzy mogą myśleć, że jak się temperatura podnosi, to przewody się skracają, ale to jest zupełnie nieprawda. Miedź się wydłuża, a nie kurczy, gdy się ją podgrzewa. Często też ludzie myślą, że rezystancja spada, gdy temperatura rośnie, ale to błąd. W rzeczywistości rezystancja miedzianych przewodników rośnie z ciepłem, co może być problematyczne przy doborze odpowiednich komponentów. Jeśli tego nie zrozumiesz, to możesz źle dobrać przewody i to może prowadzić do przegrzewania się instalacji czy nawet pożaru. Normy takie jak IEC 60364 mówią, jak powinno się projektować instalacje, więc warto mieć to na uwadze, żeby uniknąć kłopotów.

Pytanie 11

Aby zweryfikować ciągłość kabla sygnałowego w systemie kontroli dostępu, jakie urządzenie należy wykorzystać?

A. amperomierza
B. woltomierza
C. omomierza
D. watomierza
Woltomierz, amperomierz i watomierz, mimo że są to ważne narzędzia pomiarowe, nie są odpowiednie do sprawdzania ciągłości kabli sygnałowych. Woltomierz mierzy różnicę potencjałów elektrycznych, co ma zastosowanie w sytuacjach, gdy chcemy sprawdzić obecność napięcia w obwodzie. Jednak w przypadku analizowania ciągłości kabla nie jest to wystarczające, jako że woltomierz nie informuje o ewentualnych przerwach w obwodzie. Zastosowanie go w tej roli może prowadzić do fałszywych wniosków, zwłaszcza gdy obwód nie jest pod napięciem. Amperomierz, który mierzy natężenie prądu, również nie jest właściwy w tym kontekście, ponieważ wymaga zamknięcia obwodu, co może być niebezpieczne i niepraktyczne w przypadku sprawdzania ciągłości kabla, zwłaszcza w systemach bezpieczeństwa. Watomierz, z kolei, służy do pomiaru mocy, co także nie ma zastosowania w kontekście oceny ciągłości połączeń. Kluczowe jest zrozumienie, że tylko omomierz dostarcza informacji o oporze, co bezpośrednio przekłada się na możliwość wykrycia uszkodzeń kabli. Stosowanie niewłaściwych narzędzi pomiarowych może prowadzić do zaniedbań w diagnostyce i serwisie systemów elektrycznych, co w dłuższej perspektywie zagraża bezpieczeństwu i niezawodności całych instalacji.

Pytanie 12

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. zwiększy się impedancja kabla
B. może to prowadzić do obniżenia odporności na zakłócenia
C. dojdzie do zmniejszenia impedancji kabla
D. kabel będzie generował silniejsze pole elektromagnetyczne
Przekonania zawarte w błędnych odpowiedziach opierają się na nieprawidłowym zrozumieniu zasad działania kabli krosowych. Zmiana impedancji kabla, co sugeruje jedna z odpowiedzi, nie jest bezpośrednio związana z długością odcinka rozkręcenia. Zmniejszenie impedancji w rzeczywistości może prowadzić do problemów z dopasowaniem impedancji w sieci, jednak nie jest to główny problem związany z rozkręceniem par przewodów. W kontekście pól elektromagnetycznych, kabel krosowy nie stanie się źródłem większego pola elektromagnetycznego jedynie z powodu rozkręcenia par, o ile nie przekroczymy określonych wartości w standardzie. Ważne jest zrozumienie, że kluczowym czynnikiem jest odporność na zakłócenia, a nie tylko pole elektromagnetyczne. W przypadku zwiększenia impedancji, warto zauważyć, że nie jest to możliwe poprzez samo rozkręcenie par przewodów. Problemy z zakłóceniami, które mogą powstać w wyniku niewłaściwego montażu, są bardziej złożone, ale ich głównym efektem jest właśnie spadek jakości sygnału. W praktyce, aby uniknąć tych błędów, ważne jest przestrzeganie standardów montażu i zapewnienie, by długość rozkręcenia nie przekraczała 13 mm, co jest istotne dla utrzymania wysokiej jakości transmisji danych.

Pytanie 13

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
B. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
C. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
D. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
Przyczyny zmniejszającego się czasu działania urządzenia pod zasilaniem UPS są często mylnie interpretowane. Utrata pojemności kondensatorów w zasilaczu nie jest typowym zjawiskiem, które bezpośrednio wpływa na czas podtrzymania. Kondensatory w UPS mają za zadanie wspierać stabilność napięcia i nie są głównym źródłem energii w przypadku awarii zasilania. Ich degradacja może wpływać na jakość dostarczanej energii, ale nie na czas działania urządzenia. Kolejny błąd to teza o błędnym podłączeniu UPS. Prawidłowo podłączony zasilacz awaryjny działa zgodnie z założeniami, a problemy z czasem podtrzymania są ściśle związane z akumulatorami. Uszkodzenie zabezpieczenia przeciążeniowego także nie ma bezpośredniego wpływu na czas działania, a raczej na bezpieczeństwo samego urządzenia. Zrozumienie, że podstawowym elementem odpowiedzialnym za czas działania jest akumulator, a nie inne komponenty, jest kluczowe dla prawidłowej diagnostyki. Właściwe zarządzanie i konserwacja akumulatorów w UPS to fundamentalne aspekty zapewnienia stabilności zasilania i unikania nieprzewidzianych przestojów w działaniu sprzętu. Regularne inspekcje systemów zasilania awaryjnego zgodnie z zaleceniami producentów są niezbędne, aby prawidłowo ocenić stan akumulatorów oraz ich wpływ na funkcjonalność całego systemu.

Pytanie 14

Jaki sposób postępowania z wykorzystanymi kineskopami telewizorów jest zgodny z normami ochrony środowiska?

A. Zabranie ich bezpośrednio na wysypisko.
B. Wrzucenie do pojemnika na szkło.
C. Wrzucenie do pojemnika na odpady plastikowe.
D. Przekazanie do firmy zajmującej się utylizacją niebezpiecznych odpadów.
Przekazanie zużytych kineskopów telewizorów do firmy zajmującej się utylizacją niebezpiecznych odpadów jest zgodne z przepisami ochrony środowiska, ponieważ kineskopy zawierają substancje chemiczne, takie jak ołów, kadm i rtęć, które są szkodliwe dla zdrowia ludzi i środowiska. Firmy zajmujące się utylizacją niebezpiecznych odpadów mają odpowiednie procedury oraz technologie, które pozwalają na bezpieczne i zgodne z prawem usunięcie tych substancji. Przykładem dobrych praktyk jest zgodność z normą ISO 14001, która określa wymagania dotyczące systemów zarządzania środowiskowego, co zapewnia, że odpady są traktowane w sposób minimalizujący wpływ na środowisko. Utylizacja przez profesjonalne firmy nie tylko chroni środowisko, ale także pomaga w recyklingu materiałów, co sprzyja zrównoważonemu rozwojowi i zmniejsza ilość odpadów składowanych na wysypiskach. Przykładowo, szkło z kineskopów może być przetworzone na nowe produkty szklane, a metale odzyskane z ich wnętrza mogą być ponownie wykorzystane w różnych gałęziach przemysłu.

Pytanie 15

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. symetryzator
B. switch
C. zwrotnicę
D. spliter
Jak chodzi o rozdzielenie sygnału z anteny, to takie odpowiedzi jak symetryzator, switch czy zwrotnica to nie to samo co spliter. Symetryzator działa głównie w systemach przesyłowych i przekształca sygnał niesymetryczny na symetryczny. Pomaga, ale nie rozdziela sygnału z anteny. Switch z kolei przełącza sygnały między różnymi źródłami, ale nie dzieli ich na kilka odbiorników. W telewizji używamy go, gdy chcemy wybrać konkretne źródło sygnału, ale nie do dzielenia. Zwrotnica to też inna bajka – ona łączy lub dzieli sygnały, ale głównie w systemach kablowych. Wiele osób myli te urządzenia ze splitterem, co prowadzi do błędnych decyzji przy składaniu systemu telewizyjnego. Warto po prostu ogarnąć, jak każde z tych urządzeń działa, żeby dobrze skonfigurować swój telewizyjny setup.

Pytanie 16

Poniżej przedstawiona jest funkcja logiczna opisująca układ przełączający. Dla której kombinacji sygnałów a, b, c wartość tej funkcji będzie wynosiła "1"?

F(abc)= a·b̅+c
abc
A.011
B.010
C.110
D.101

A. B.
B. C.
C. D.
D. A.
Wybór innej opcji jako odpowiedzi na to pytanie może wynikać z niepoprawnego zrozumienia zasad działania funkcji logicznych oraz ich zastosowania w praktycznych sytuacjach. Funkcje te opierają się na podstawowych zasadach algebraicznych, gdzie każda zmienna (sygnał) może przyjąć wartość "0" lub "1", a ich kombinacje determinują końcowy wynik. Często zdarza się, że błędne odpowiedzi są efektem mylenia sygnałów negowanych z ich rzeczywistymi wartościami. Na przykład, niektóre opcje mogły zostać wybrane, ponieważ zawierały wartości "1" dla sygnałów, które w danej funkcji wymagają wartości "0". Taki błąd logiczny może wynikać z typowych nieporozumień dotyczących negacji sygnałów, co prowadzi do fałszywych wniosków. Ważne jest, aby zwracać uwagę na każdy element funkcji przy ustalaniu, które wartości spełniają wymagania. Ponadto, w praktyce inżynierskiej, znajomość operacji logicznych i umiejętność ich stosowania jest kluczowa w projektowaniu systemów, które muszą działać zgodnie z określonymi zasadami. Używanie diagramów prawdy oraz metod analizy może znacząco zwiększyć skuteczność w zrozumieniu i zastosowaniu tych koncepcji w praktyce. Dlatego też zrozumienie i poprawne zastosowanie zasad logiki cyfrowej jest fundamentem dla efektywnego projektowania układów elektronicznych.

Pytanie 17

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. lutownica.
B. klamry.
C. zgrzewarka.
D. spawarka.
Zaciskacz, lutownica oraz zgrzewarka to narzędzia, które są stosowane w innych kontekstach i nie nadają się do wykonywania połączeń włókien światłowodowych. Zaciskacz jest używany w przypadku kabli miedzianych, gdzie kluczowe jest dokładne zaciśnięcie złączy, jednak nie potrafi on łączyć włókien optycznych w sposób gwarantujący ich integralność. W odniesieniu do lutownicy, użycie tego narzędzia w kontekście włókien światłowodowych jest całkowicie niewłaściwe, ponieważ lutowanie polega na łączeniu metali przez topnienie, co nie ma zastosowania w przypadku delikatnych włókien szklanych. Lutownica może uszkodzić włókna i prowadzić do znacznych strat sygnału. Zgrzewarka, z drugiej strony, jest zazwyczaj używana do łączenia elementów termoplastycznych, a nie do spawania włókien optycznych. Użycie zgrzewarki w tym kontekście może doprowadzić do uszkodzenia włókien poprzez niewłaściwe zastosowanie ciepła. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z mylenia aplikacji narzędzi oraz braku zrozumienia specyfiki technologii światłowodowej. Kluczowe jest, aby przy pracy z włóknami optycznymi korzystać ze specjalistycznych narzędzi, które są zgodne z obowiązującymi standardami branżowymi, co pozwoli na uzyskanie wysokiej jakości połączeń.

Pytanie 18

Która z poniższych czynności nie należy do konserwacji instalacji urządzeń elektronicznych?

A. Czyszczenie
B. Pomiary sprawdzające
C. Regulacja parametrów
D. Programowanie
Czyszczenie, regulacja parametrów i pomiary to takie podstawowe czynności, które pomagają w utrzymaniu urządzeń elektronicznych w dobrym stanie. Na przykład, czyszczenie płyty głównej czy złączy to kluczowa sprawa, bo kurz może powodować przegrzewanie się sprzętu i różne problemy z prądem. Regulacja parametrów, jak w urządzeniach analogowych, pozwala na dostosowanie pracy do warunków, co jest naprawdę ważne. Pomiary, jak napięcie czy prąd, są istotne do sprawdzania, czy coś działa jak powinno. Wiele osób myli jednak konserwację z programowaniem i myśli, że zmiana oprogramowania to część dbania o sprzęt. Ale to nie jest to samo! Programowanie to rozwój oprogramowania, a konserwacja to coś innego, mającego na celu utrzymanie sprzętu w dobrym stanie. Znalezienie różnicy między tymi dwoma rzeczami jest naprawdę ważne, bo inaczej można wpaść w kłopoty.

Pytanie 19

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. SCART
B. DIN
C. BNC
D. HDMI
Złącza DIN, SCART i HDMI, mimo że są szeroko stosowane w różnych dziedzinach elektroniki, nie są odpowiednie do kabli koncentrycznych w systemach telewizji dozorowej. Złącza DIN stosowane są głównie w starszych urządzeniach audio i MIDI, a ich konstrukcja nie zapewnia optymalnych parametrów dla przesyłania sygnałów wideo. W kontekście telewizji dozorowej, ich użycie mogłoby prowadzić do degradacji jakości sygnału ze względu na niekompatybilność z typowym przewodem koncentrycznym. Z kolei złącza SCART, popularne w telewizorach i odtwarzaczach wideo, są projektowane do przesyłania sygnałów analogowych oraz cyfrowych, jednak ich zastosowanie w systemach CCTV jest ograniczone, ponieważ nie obsługują standardowych kabli koncentrycznych. HDMI, mimo że jest nowoczesnym złączem, które obsługuje wysoką jakość obrazu i dźwięku, również nie jest przeznaczone do pracy z kablami koncentrycznymi. HDMI wymaga zastosowania specjalnych przewodów, które nie są zgodne z konwencjonalnymi systemami CCTV. Wybierając złącza do systemu monitoringu, należy unikać typowych błędów myślowych, które mogą prowadzić do wyboru niewłaściwych komponentów, co może skutkować problemami z jakością obrazu oraz awariami systemu.

Pytanie 20

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Rozdzielczość
B. Typ mocowania obiektywu
C. Kąt widzenia kamery
D. Czułość
Rozdzielczość jest istotnym parametrem kamery, ale nie wpływa bezpośrednio na zdolność widzenia w słabym oświetleniu. Wyższa rozdzielczość oznacza więcej pikseli w obrazie, co przekłada się na większą szczegółowość. Niemniej jednak, nawet kamery o wysokiej rozdzielczości mogą mieć problem z uchwyceniem detali w warunkach słabego oświetlenia, jeśli ich czułość jest niska. Typ mocowania obiektywu dotyczy kompatybilności sprzętu, a nie zdolności kamery do pracy w nocy. Kąt widzenia kamery, choć wpływa na zakres obserwacji, również nie jest związany z jej wydajnością przy niskim oświetleniu. W praktyce, podczas wyboru kamery do monitoringu, kluczowym czynnikiem staje się czułość, ponieważ z odpowiednią wartością ISO można osiągnąć zadowalające rezultaty w trudnych warunkach. Nieprawidłowe zrozumienie roli czułości w kontekście niskiego oświetlenia prowadzi do błędnych decyzji zakupowych, gdzie użytkownicy mogą wybrać kamerę z wysoką rozdzielczością, ale niską czułością, co nie spełni ich oczekiwań w trudnych warunkach oświetleniowych.

Pytanie 21

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. ogniwach fotowoltaicznych
B. matrycach LCD
C. matrycach LED RGB
D. światłowodach
Nieprawidłowe odpowiedzi wskazują na nieporozumienia związane z zastosowaniem reflektometrów optycznych. W przypadku ogniw fotowoltaicznych, technologia ta nie jest stosowana w diagnostyce, ponieważ ogniwa te opierają się na zjawisku fotoelektrycznym, a ich sprawność ocenia się przy użyciu mierników prądu i napięcia. Matryce LCD i LED RGB to technologie wyświetlania, które nie korzystają z systemu światłowodowego, a ich naprawa i diagnostyka wymagają zupełnie innych narzędzi, takich jak multimetry, testery luminancji czy analizy obrazu. Ponadto, błędne podejście do reflektometrii optycznej może wynikać z mylnego przekonania, że technologia ta jest uniwersalna dla wszelkich typów urządzeń elektronicznych. Reflektometria optyczna jest ściśle związana z systemami światłowodowymi, a jej zastosowanie w innych dziedzinach jest ograniczone. Dlatego istotne jest zrozumienie, że różne technologie wymagają odpowiednich narzędzi diagnostycznych, a zamienianie ich miejscami prowadzi do nieefektywności i wydłużenia czasu napraw.

Pytanie 22

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. zablokowanie obsługi przerwań zewnętrznych
B. określenie tempa przetwarzania poszczególnych instrukcji
C. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
D. podniesienie prędkości działania programu
Zwiększenie szybkości wykonywania programu to jedna z powszechnych myśli, jednak tryb pracy krokowej nie ma na celu przyspieszenia działania programu. Wręcz przeciwnie, metoda ta polega na analizowaniu poszczególnych instrukcji w sposób sekwencyjny, co naturalnie spowalnia całkowity czas wykonania. Użytkownicy mogą błędnie sądzić, że tryb krokowy jest sposobem na optymalizację wydajności, podczas gdy jego głównym celem jest diagnostyka i analiza błędów. Kolejną nieścisłością jest twierdzenie, że tryb krokowy pozwala na określenie szybkości przetwarzania poszczególnych rozkazów. Choć może on dostarczyć informacji na temat czasu wykonania jednostkowych instrukcji, to nie jest to jego priorytetowa funkcjonalność. Ostatecznie, stwierdzenie, że tryb ten uniemożliwia obsługę przerwań zewnętrznych, wynika z nieporozumienia dotyczącego działania mikroprocesorów. W rzeczywistości, wiele systemów umożliwia przerywanie trybu krokowego, co pozwala na reagowanie na zewnętrzne sygnały przerwań. Zrozumienie tych koncepcji jest kluczowe dla prawidłowego stosowania technik programowania oraz dla efektywnego debugowania, co jest fundamentem w tworzeniu wysokiej jakości oprogramowania.

Pytanie 23

Który z poniższych przyrządów jest używany do pomiaru rezystancji izolacji kabli?

A. Induktor
B. Wobulator
C. Mostek Thomsona
D. Mostek Wiena
Wybór wobulatora, mostka Thomsona lub mostka Wiena jako narzędzi do pomiaru rezystancji izolacji kabli oparty jest na nieporozumieniu dotyczącym funkcji tych urządzeń. Wobulator jest narzędziem stosowanym głównie do analizy i pomiarów częstotliwościowych oraz badania jakości sygnałów elektrycznych, a nie do oceny rezystancji izolacyjnej. Mostek Thomsona służy do pomiaru rezystancji, ale jest przeznaczony do zastosowań w sytuacjach, gdzie izolacja nie jest kluczowym czynnikiem, a jego zastosowanie w kontekście kabli z izolacją może prowadzić do błędnych odczytów. Z kolei mostek Wiena jest używany w pomiarach impedancji, szczególnie w dziedzinie analizy częstotliwości, a jego zastosowanie w pomiarach izolacji jest ograniczone i nieodpowiednie, ponieważ nie uwzględnia specyfiki testowania izolacji. Typowym błędem myślowym jest mylenie różnych typów pomiarów elektrycznych i ich przeznaczenia. Kluczowe jest zrozumienie, że pomiar rezystancji izolacji wymaga zastosowania dedykowanych narzędzi, które są zgodne z odpowiednimi normami i standardami, a nie ogólnych przyrządów do analizy sygnałów czy impedancji.

Pytanie 24

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. dostosować poziom głośności w unifonie
B. zwiększyć poziom głośności w panelu
C. zwiększyć napięcie zasilania elektrozaczepu
D. dostosować napięcie w kasecie rozmownej
Wyregulowanie poziomu głośności w unifonie jest kluczowym krokiem w sytuacji, gdy po podłączeniu domofonu pojawiają się niepożądane piski. Tego rodzaju odgłosy często są wynikiem ustawienia zbyt wysokiego poziomu głośności, co prowadzi do zjawiska zwane sprzężeniem akustycznym. Poprawne dostosowanie głośności może znacznie poprawić komfort użytkowania systemu domofonowego. W praktyce, odpowiednia regulacja głośności może obejmować zarówno zmniejszenie poziomu dźwięku w unifonie, jak i dostosowanie ustawień w kasecie rozmownej. Warto również sprawdzić, czy nie występują inne źródła zakłóceń, takie jak kiepskiej jakości przewody lub nieodpowiednie połączenia. Ważne jest, aby przed przystąpieniem do regulacji głośności, zapoznać się z instrukcją obsługi urządzenia, aby zrozumieć, gdzie znajduje się potencjometr lub przycisk głośności. W kontekście norm branżowych, właściwe ustawienie głośności w urządzeniach audio powinno być zgodne z zaleceniami producenta, co zapewnia optymalną jakość dźwięku i minimalizuje ryzyko wystąpienia nieprzyjemnych odgłosów.

Pytanie 25

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PE o impedancji 75 Ω
B. z PVC o impedancji 75 Ω
C. z PE o impedancji 50 Ω
D. z PVC o impedancji 50 Ω
Odpowiedzi z impedancją 50 Ω są niewłaściwe w kontekście instalacji antenowej telewizji, ponieważ ta wartość nie jest standardem dla większości systemów odbioru telewizyjnego. Przewody o impedancji 50 Ω są powszechnie stosowane w aplikacjach radiowych, takich jak radiokomunikacja czy anteny do systemów WLAN. Zastosowanie takich przewodów w systemach telewizyjnych prowadzi do nieefektywnego odbioru sygnału, co może skutkować zniekształceniami obrazu czy brakiem sygnału. Ponadto, wybór przewodu o materiałach PVC jest również niewłaściwy dla instalacji zewnętrznych, ponieważ PVC nie oferuje tak wysokiej odporności na działanie promieni UV oraz wilgoci jak PE. Użytkowanie przewodu z PVC w trudnych warunkach atmosferycznych może prowadzić do szybkiego uszkodzenia izolacji, co negatywnie wpływa na jakość sygnału. Ważne jest, aby podczas planowania instalacji antenowej kierować się zasadami inżynierii i obowiązującymi normami, aby uniknąć typowych błędów, takich jak stosowanie niewłaściwych materiałów i impedancji, co prowadzi do nieoptymalnych wyników odbioru.

Pytanie 26

Podczas wymiany uszkodzonego kondensatora filtrującego w zasilaczu sieciowym, tak aby uniknąć zwiększenia tętnień na wyjściu oraz ryzyka uszkodzenia kondensatora z powodu przebicia, można wybrać element o

A. mniejszej pojemności i mniejszym napięciu znamionowym
B. większej pojemności i większym napięciu znamionowym
C. mniejszej pojemności i większym napięciu znamionowym
D. większej pojemności i mniejszym napięciu znamionowym
Wybór kondensatora o mniejszej pojemności oraz mniejszym napięciu znamionowym jest często mylnie postrzegany jako wystarczający w wielu aplikacjach. Mniejsza pojemność prowadzi do niewystarczającego wygładzania napięcia, co może skutkować zwiększonym tętnieniem na wyjściu zasilacza. Wyższe tętnienia mogą wpływać negatywnie na działanie podłączonych urządzeń, takich jak komputery czy urządzenia audio, powodując szumy czy zniekształcenia. Zastosowanie kondensatora o mniejszym napięciu znamionowym zmniejsza margines bezpieczeństwa, co zwiększa ryzyko przebicia. Przykładem błędnych rozważań może być założenie, że kondensator o niższej pojemności będzie pracował w podobny sposób, co jego odpowiednik o wyższej pojemności. W rzeczywistości, różnice te mogą prowadzić do poważnych problemów, takich jak uszkodzenie komponentów w zasilaczu, co narusza standardy jakości obowiązujące w branży. Dobrą praktyką jest zawsze dobierać kondensatory zgodnie z wymogami aplikacji oraz zapewniać odpowiednie parametry, aby uniknąć potencjalnych usterek i zapewnić długotrwałą niezawodność systemu.

Pytanie 27

W jakim celu nosi się opaskę antyelektrostatyczną na ręku podczas wymiany podzespołów lub układów scalonych w nowoczesnych urządzeniach elektronicznych?

A. Aby chronić montera przed porażeniem prądem elektrycznym z zasilenia urządzenia elektronicznego
B. Aby zabezpieczyć montera przed szkodliwym działaniem ładunków elektrostatycznych nagromadzonych w urządzeniu
C. Aby chronić układy scalone TTL przed niekorzystnym wpływem ładunków elektrostatycznych nagromadzonych na ciele montera
D. Aby chronić układy scalone CMOS przed szkodliwym działaniem ładunków elektrostatycznych gromadzących się na ciele montera
Wybór odpowiedzi dotyczącej zabezpieczenia układów scalonych TTL przed wpływem ładunków elektrostatycznych, porażenie prądem elektrycznym lub ochrony montera przed ładunkami zgromadzonymi w urządzeniu, jest niewłaściwy z kilku powodów. Po pierwsze, układy scalone TTL, mimo że również są wrażliwe na ładunki elektrostatyczne, nie są tak delikatne jak CMOS. Z tego powodu, w kontekście opasek antyelektrostatycznych, istotniejsza jest ochrona komponentów CMOS, które wymagają specjalistycznego podejścia. Po drugie, opaska nie chroni montera przed porażeniem prądem elektrycznym zasilającym urządzenie. Porażenie prądem jest zagrożeniem niezwiązanym z ładunkami elektrostatycznymi, a jego zapobieganiu służą inne środki, takie jak izolowane narzędzia, odpowiednia odzież ochronna oraz przestrzeganie procedur bezpieczeństwa. Wreszcie, ochrona przed ładunkami elektrostatycznymi zgromadzonymi w urządzeniu nie jest rolą opaski, lecz raczej odpowiednich praktyk przechowywania i transportu komponentów. Podsumowując, w kontekście zastosowania opasek antyelektrostatycznych, istotne jest zrozumienie specyfiki wrażliwości różnych typów układów scalonych oraz różnicy pomiędzy ochroną przed ładunkami elektrostatycznymi a innymi formami zagrożeń elektrycznych.

Pytanie 28

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe zostanie niezmienne
B. napięciowe zmniejszy się
C. prądowe pozostanie na tym samym poziomie
D. napięciowe wzrośnie
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 29

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. w badanym obwodzie znajduje się złącze półprzewodnikowe
B. badany obwód jest ciągły
C. badany obwód jest uszkodzony
D. w badanym obwodzie znajduje się źródło prądowe
Wybór odpowiedzi, że badany obwód jest przerwany, jest podstawowym błędem w rozumieniu działania multimetru. W rzeczywistości, gdy multimetr nie wydaje dźwięku, wskazuje na przerwany obwód. Przerwa w obwodzie oznacza, że nie ma możliwości przepływu prądu, co jest sprzeczne z sygnałem dźwiękowym generowanym przez urządzenie. Twierdzenie, że badany obwód jest ciągły jest kluczowe dla analizy stanu instalacji elektrycznych. Kolejna koncepcja, którą należy zrozumieć, to fakt, że obecność źródła prądowego w obwodzie nie jest warunkiem koniecznym do wydania dźwięku przez multimetr, ponieważ urządzenie jedynie sprawdza ciągłość przewodów, a nie źródła zasilania. Ponadto, istnienie złącza półprzewodnikowego również nie wpływa na pomiar ciągłości, jako że multimetr w trybie testowania ciągłości zazwyczaj nie jest przystosowany do oceny złożonych parametrów półprzewodników. Dlatego ważne jest, aby unikać typowych błędów myślowych, takich jak mieszanie funkcji multimetru z innymi pomiarami, co prowadzi do błędnych interpretacji wyników. Zrozumienie podstaw działania urządzeń pomiarowych jest kluczowe w działalności związanej z elektrycznością, a także w przestrzeganiu standardów bezpieczeństwa przy pracy z instalacjami elektrycznymi.

Pytanie 30

Co należy zrobić, gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski?

A. dostosować poziom głośności w unifonie.
B. zwiększyć poziom głośności w panelu.
C. regulować napięcie w kasecie rozmownej.
D. zwiększyć napięcie zasilania elektrozaczepu.
Wyregulowanie poziomu głośności w unifonie jest kluczowe, ponieważ pisk w słuchawce wskazuje na nieprawidłowe ustawienia audio. Unifony są wyposażone w odpowiednie regulatory, które pozwalają na dostosowanie głośności dźwięku do indywidualnych potrzeb użytkownika. Ustawienie głośności powinno być dostosowane do warunków akustycznych w pomieszczeniu, a także do osobistych preferencji. Warto pamiętać, że zbyt wysoki poziom głośności może prowadzić do zniekształceń dźwięku oraz dyskomfortu słuchowego. Przykładowo, jeżeli w otoczeniu panuje duży hałas, użytkownik może potrzebować wyższej głośności, natomiast w cichym pomieszczeniu wystarczy niższe ustawienie. Odpowiednia regulacja głośności jest zgodna z dobrymi praktykami instalacyjnymi, które sugerują, aby każdy system audio był dostosowany do specyfiki miejsca jego użytkowania, co zapewnia optymalną jakość dźwięku oraz komfort użytkowania.

Pytanie 31

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 5
B. 8
C. 4
D. 10
Wybór niewłaściwej liczby żył do podłączenia unifonu w systemie domofonowym 4+N często wynika z niepełnego zrozumienia zasad działania tego typu instalacji. System 4+N oznacza, że dla efektywnej pracy systemu oraz utrzymania jakości sygnału wymagane są cztery żyły do przesyłania dźwięku oraz zasilania, a dodatkowa żyła N pełni funkcję neutralną. W przypadku wyboru odpowiedzi 4, mylone jest pojęcie liczby przewodów sygnalizacyjnych z wymaganiami zasilania, co może prowadzić do problemów z funkcjonowaniem całego systemu. Odpowiedzi takie jak 10 czy 8 wskazują na nadmiar przewodów, co jest niezgodne z zasadą prostoty i efektywności w instalacjach elektronicznych. Przy projektowaniu systemów domofonowych, warto trzymać się sprawdzonych schematów i standardów, które podkreślają, że każdy dodatkowy przewód wprowadza nie tylko niepotrzebne komplikacje, ale także zwiększa koszty instalacji oraz ryzyko błędów. Dlatego kluczowe jest zrozumienie, że liczba żył w systemie jest ściśle określona przez jego specyfikację, a nie intuicję czy domysły. Właściwe zastosowanie i zrozumienie architektury systemu zapewnia jego optymalne działanie oraz łatwiejszą diagnostykę w przypadku awarii.

Pytanie 32

Charakterystykę amplitudowo-częstotliwościową wzmacniacza mocy można określić przy użyciu generatora funkcyjnego oraz

A. rezystor
B. miernik częstotliwości
C. oscyloskop
D. miernik prądu
Wybór omomierza, amperomierza lub częstotliwościomierza jako narzędzi do analizy amplitudowo-częstotliwościowej wzmacniacza mocy jest niewłaściwy z kilku powodów. Omomierz służy do pomiaru oporu elektrycznego w obwodach, co ma niewielkie znaczenie w kontekście analizy sygnałów AC. Nie jest on w stanie zarejestrować zmian w amplitudzie czy kształcie fali, co jest kluczowe dla oceny charakterystyki wzmacniacza. Amperomierz, choć przydatny do pomiaru prądu, również nie dostarcza informacji o kształcie sygnału czy jego amplitudzie w funkcji częstotliwości. Użycie amperomierza w tym kontekście mogłoby prowadzić do błędnych wniosków na temat efektywności wzmacniacza, ponieważ nie mierzy on zmian sygnału w sposób, który jest potrzebny do szczegółowej analizy. Częstotliwościomierz, choć użyteczny w pomiarze częstotliwości sygnału, nie dostarcza informacji na temat jego amplitudy. Dlatego jego zastosowanie w tym kontekście jest ograniczone. Często pojawiają się błędne przekonania, że można zastąpić oscyloskop innymi przyrządami, jednak oscyloskop jest jedynym narzędziem, które oferuje kompleksowy wgląd w zachowanie sygnałów elektrycznych, umożliwiając inżynierom precyzyjną ocenę charakterystyki wzmacniaczy mocy oraz ich optymalny dobór do zastosowań w różnych dziedzinach. W związku z tym, wybór oscyloskopu jako najbardziej odpowiedniego narzędzia jest zgodny z powszechnie stosowanymi praktykami inżynieryjnymi.

Pytanie 33

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. stopień ochrony obudowy
B. ilość zacisków wyjściowych
C. częstotliwość napięcia zasilającego
D. moc pozorna
Wybór nieprawidłowych odpowiedzi może wynikać z niepełnego zrozumienia, czym są standardy ochrony obudowy urządzeń elektronicznych. Odpowiedź zakładająca, że zapis IP20 odnosi się do mocy pozornej jest błędna, ponieważ moc pozorna dotyczy ilości energii elektrycznej, a nie stopnia ochrony urządzenia. Z kolei, odpowiedź wskazująca na częstotliwość napięcia zasilającego odnosi się do parametrów elektrycznych, które mają na celu zdefiniowanie, jaką częstotliwość prądu stosuje urządzenie, co jest zupełnie niezwiązane z ochroną obudowy. Odpowiedź sugerująca, że IP20 dotyczy ilości zacisków wyjściowych także jest myląca. Liczby w oznaczeniu IP nie mają związku z liczbowym opisem elementów wewnętrznych urządzenia, lecz koncentrują się na ochronie przed dostępem do wnętrza obudowy. W praktyce, nieprawidłowe rozumienie tych znaczeń może prowadzić do niewłaściwego doboru sprzętu w różnych zastosowaniach, co w konsekwencji może skutkować uszkodzeniami, zagrożeniem dla użytkowników lub zwiększeniem kosztów eksploatacji. Wiedza na temat oznaczeń IP i ich zastosowania jest kluczowym elementem w projektowaniu systemów elektrycznych i elektronicznych, dlatego warto poświęcić czas na ich dokładne przestudiowanie.

Pytanie 34

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. galwaniczne oddzielenie obwodów elektronicznych
B. dopasowanie impedancji obwodów elektronicznych
C. dopasowanie poziomów napięć między obwodami elektronicznymi
D. zwiększenie wydolności wyjściowej obwodu elektronicznego
Optoizolacja w układach elektronicznych nie służy dopasowaniu impedancyjnemu, które jest ważne, gdy mówimy o transferze energii w systemach RF czy audio. Dopasowanie impedancji jest kluczowe, żeby zminimalizować straty energii i refleksje sygnału, ale to nie cel optoizolacji. Jak ktoś mówi, że optoizolacja ma na celu dopasowanie napięć między układami, to też nie do końca tak jest. Owszem, napięcia mogą się różnić w różnych układach, ale optoizolacja nie ma za zadanie ich harmonizować, tylko pozwala na niezależne działanie tych układów, bez ryzyka uszkodzenia z powodu różnic w napięciach. Poza tym, zwiększenie obciążalności wyjściowej układu też nie jest celem optoizolacji, bo optoizolator nie zwiększa tej maksymalnej wartości prądu. Mylenie tych pojęć może prowadzić do słabego projektowania układów, gdzie optoizolacja nie działa jak powinna, a to może zwiększać ryzyko awarii. Dlatego dobrze jest zrozumieć, jak działa optoizolacja, żeby skutecznie projektować układy i zapewnić ich niezawodność.

Pytanie 35

Którą z poniższych czynności nie uznaje się za element konserwacji systemów alarmowych?

A. Zamiana akumulatora
B. Sprawdzanie czujników
C. Montaż manipulatora
D. Weryfikacja powiadamiania
Wymiana akumulatora, testowanie czujników oraz kontrola powiadamiania to działania, które są integralną częścią konserwacji instalacji alarmowych. Wymiana akumulatora jest kluczowa, ponieważ zapewnia zasilanie systemu w przypadku awarii zasilania głównego. Bez sprawnego akumulatora system alarmowy nie będzie mógł działać w sytuacjach kryzysowych, co zagraża bezpieczeństwu. Testowanie czujników jest równie istotne, ponieważ może ujawnić problemy z ich działaniem, takie jak zanieczyszczenia czy uszkodzenia mechaniczne. Regularne testy pozwalają również na weryfikację, czy czujniki reagują odpowiednio na bodźce, co jest kluczowe dla skuteczności systemu. Kontrola powiadamiania to także istotny aspekt, który zapewnia, że wszystkie elementy systemu komunikacyjnego działają prawidłowo, co jest kluczowe w sytuacjach alarmowych. Ignorowanie tych czynności konserwacyjnych może prowadzić do poważnych usterek systemu i osłabienia jego funkcji ochronnych. Zatem, mylne jest myślenie, że montaż manipulatora może być porównywany z tymi działaniami konserwacyjnymi, gdyż jest to czynność związana z instalacją, a nie z bieżącym utrzymaniem systemu w należytym stanie operacyjnym.

Pytanie 36

Jakie urządzenia wykorzystuje się do pomiaru mocy czynnej?

A. waromierze
B. wariometry
C. watomierze
D. woltomierze
Watomierz jest urządzeniem pomiarowym, które służy do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, mierzona w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonania pracy, w przeciwieństwie do mocy biernej, która nie ma wpływu na wykonanie pracy, a jedynie oscyluje w obwodzie. Watomierze działają na zasadzie pomiaru napięcia, prądu oraz kąta fazowego między nimi, co pozwala na dokładne określenie mocy czynnej. W zastosowaniach przemysłowych, gdzie monitorowanie zużycia energii jest kluczowe dla efektywności energetycznej, watomierze stanowią nieocenione narzędzie. Standardowe watomierze mogą być wykorzystywane w różnych instalacjach elektrycznych, zarówno w domowych, jak i przemysłowych, co sprawia, że ich znajomość oraz umiejętność ich zastosowania są niezbędne dla inżynierów i techników. Dobre praktyki w zakresie pomiarów mocy zawsze uwzględniają wykorzystanie watomierzy, które są kalibrowane zgodnie z normami międzynarodowymi, co zapewnia ich dokładność i powtarzalność wyników.

Pytanie 37

Aby zarchiwizować materiał wideo w rejestratorze, należy podłączyć go do gniazda na wewnętrznym dysku twardym

A. HDMI
B. LAN
C. SATA
D. USB
Wybór błędnych złączy, takich jak HDMI, USB czy LAN, wskazuje na niepełne zrozumienie ich funkcji oraz ograniczeń w kontekście archiwizacji danych. Złącze HDMI (High-Definition Multimedia Interface) służy głównie do przesyłania sygnału wideo i audio między urządzeniami, ale nie jest przeznaczone do transferu danych do lokalnego przechowywania. Używanie HDMI do archiwizacji materiału wideo byłoby błędne, ponieważ złącze to nie wspiera bezpośredniego dostępu do pamięci masowej. USB (Universal Serial Bus) jest wszechstronnym złączem, które umożliwia transfer danych, jednak jego zastosowanie w profesjonalnych systemach archiwizacji wideo może być ograniczone przez niższą wydajność w porównaniu do SATA. USB 3.0, na przykład, osiąga prędkości do 5 Gbps, co w przypadku dużych plików wideo może okazać się niewystarczające, zwłaszcza w sytuacjach wymagających ciągłego zapisu, jak podczas nagrywania na żywo. Z kolei złącze LAN (Local Area Network) jest używane do komunikacji sieciowej i nie służy do podłączania dysków twardych w sposób umożliwiający ich bezpośrednie użycie w rejestratorze. Choć LAN może być wykorzystywane do zdalnego dostępu do materiału wideo lub do przesyłania danych między urządzeniami, nie zastępuje fizycznego połączenia z dyskiem. Właściwe zrozumienie różnorodnych interfejsów i ich zastosowań jest kluczowe dla efektywnego zarządzania infrastrukturą przechowywania danych oraz zapewnienia optymalnej wydajności systemu.

Pytanie 38

Do lutownicy transformatorowej powinny być stosowane groty z drutu

A. wolframowego
B. aluminiowego
C. miedzianego
D. stalowego
Grot lutownicy transformatorowej wykonany z miedzianego drutu jest najodpowiedniejszym wyborem ze względu na doskonałe przewodnictwo elektryczne oraz termiczne, które zapewnia efektywne i szybkie nagrzewanie. Miedź jest materiałem o niskiej rezystywności, co oznacza, że umożliwia szybkie dostarczanie energii do miejsca lutowania. Dodatkowo, miedziane groty charakteryzują się wysoką odpornością na korozję, co przedłuża ich żywotność podczas intensywnego użytkowania. W praktyce, stosując miedziane groty, technicy lutownicy uzyskują lepszą jakość połączeń, co jest szczególnie ważne w zastosowaniach elektronicznych, gdzie precyzja jest kluczowa. Przykładem może być lutowanie elementów SMD, gdzie odpowiednia temperatura i kontrola są niezbędne do uniknięcia uszkodzeń delikatnych komponentów. W branży elektronicznej powszechnie uznaje się, że stosowanie miedzianych grotów jest zgodne z najlepszymi praktykami, a ich użycie wspiera osiąganie wysokiej jakości lutów.

Pytanie 39

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Trymer
B. Tranzystor unipolarny
C. Tyrystor
D. Tranzystor bipolarny
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 40

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał, który jest przedmiotem analizy. W jaki sposób należy ustawić oscyloskop, aby korzystając z krzywych Lissajous, oszacować częstotliwość sygnału analizowanego?

A. ADD
B. DUAL
C. X-Y
D. SINGLE
Jak przełączysz oscyloskop w tryb DUAL, ADD albo SINGLE, to w zasadzie nie wykorzystasz krzywych Lissajous do analizy częstotliwości sygnału, co jest trochę szkoda. W trybie DUAL możesz wprawdzie pokazać dwa sygnały naraz, ale na osobnych osiach czasu, więc nie zobaczysz, jak się one do siebie mają pod względem fazy czy amplitudy. W tym trybie nie uzyskasz tych fajnych krzywych Lissajous, bo sygnały nie są w odpowiednich osiach X i Y. Z kolei tryb ADD po prostu zsumuje sygnały i wszystko zniekształci, więc porównanie ich w kontekście analizy fazowej w ogóle nie wyjdzie. A w trybie SINGLE to tylko jeden sygnał pokażesz, więc całkiem odpadasz z porównania dwóch sygnałów na tym samym wykresie. Czasem ludzie myślą, że jak mają tryb DUAL to wystarczy, ale zapominają, że wtedy krzywych Lissajous się nie da uzyskać. To pewnie wynika z tego, że nie do końca rozumieją, o co chodzi w analizie sygnałów i jak je można zobrazować na wykresie. Żeby dobrze wykorzystać oscyloskop do określenia częstotliwości sygnałów, trzeba zrozumieć, że kluczowe jest przedstawienie ich w odpowiednich osiach, co tylko w trybie X-Y działa.