Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 9 maja 2025 10:06
  • Data zakończenia: 9 maja 2025 10:35

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby wykorzystać kamerę IP o wysokiej rozdzielczości, konieczne jest

A. obiektyw o wyższej rozdzielczości
B. rejestrator z dużą pojemnością dysku
C. dostęp do sieci komputerowej
D. zasilacz o większej mocy prądowej
Wielu użytkowników może mylnie sądzić, że rejestrator z dyskiem o dużej pojemności jest niezbędny do użycia kamery megapikselowej IP. Choć posiadanie takiego rejestratora ułatwia przechowywanie danych wideo z kamer, to nie jest to warunek konieczny do samego działania kamery. Kamery IP mogą transmitować obraz bezpośrednio przez sieć, co pozwala na zdalne monitorowanie bez potrzeby lokalnego rejestratora. Kolejnym błędem jest przekonanie, że obiektyw o zwiększonej rozdzielczości jest wymagany. Chociaż lepszy obiektyw może poprawić jakość obrazu, sama kamera IP działa niezależnie od rodzaju obiektywu, a jej funkcjonalność w dużym stopniu opiera się na dostępie do sieci. Innym nieporozumieniem jest zasilacz o podwyższonej wydajności prądowej. Kamery IP zazwyczaj korzystają z technologii Power over Ethernet (PoE), co oznacza, że mogą być zasilane bezpośrednio z kabla sieciowego, eliminując potrzebę dodatkowego zasilania. Tego rodzaju niejasności mogą prowadzić do błędnych decyzji przy planowaniu instalacji systemów monitoringu, dlatego ważne jest zrozumienie, że kluczowym elementem dla kamer IP jest ich integracja z siecią komputerową, a nie inne komponenty.

Pytanie 2

Reflektometr optyczny to urządzenie wykorzystywane do identyfikacji uszkodzeń w

A. ogniwach fotowoltaicznych
B. matrycach LCD
C. światłowodach
D. matrycach LED RGB
Reflektometr optyczny, znany również jako OTDR (Optical Time Domain Reflectometer), to zaawansowane narzędzie służące do diagnozowania oraz lokalizacji uszkodzeń w systemach światłowodowych. Działa na zasadzie wysyłania impulsów światła przez włókno optyczne, a następnie analizowania odbitych sygnałów, co pozwala na określenie lokalizacji oraz charakterystyki uszkodzeń. Przykładowo, w przypadku przerwania włókna, OTDR jest w stanie zidentyfikować miejsce usterki z dużą precyzją, co jest kluczowe dla szybkiej naprawy i minimalizacji przestojów w sieciach telekomunikacyjnych. W branży telekomunikacyjnej stosuje się standardy ITU-T G.651 i G.652, które regulują parametry włókien optycznych, a reflektometry optyczne są uznawane za standardowe narzędzie w monitorowaniu ich wydajności. Dzięki zastosowaniu OTDR można także ocenić jakość połączeń, co jest istotne przy wdrażaniu nowych instalacji. Wiedza na temat użycia reflektometrów optycznych jest niezbędna dla techników i inżynierów w dziedzinie telekomunikacji.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby wymienić moduł klawiatury z czytnikiem w systemach kontroli dostępu, co należy zrobić?

A. otworzyć moduł klawiatury, wymienić moduł, wyłączyć i włączyć zasilanie w celu resetu systemu
B. wyłączyć zasilanie systemu, otworzyć moduł klawiatury, wymienić moduł, włączyć zasilanie
C. otworzyć moduł klawiatury, dokonać wymiany modułu, sprawdzić działanie systemu, pomierzyć napięcia
D. otworzyć moduł klawiatury, wyłączyć zasilanie systemu, przeprowadzić wymianę modułu, następnie włączyć zasilanie
Właściwym podejściem do wymiany modułu klawiatury w systemach kontroli dostępu jest wyłączenie zasilania systemu przed rozpoczęciem jakichkolwiek prac. Praktyka ta jest zgodna z zasadami bezpieczeństwa, aby uniknąć uszkodzenia komponentów elektronicznych oraz zabezpieczyć personel przed porażeniem prądem. Po wyłączeniu zasilania można bezpiecznie otworzyć moduł klawiatury, co pozwala na wymianę uszkodzonego elementu. Po zakończeniu wymiany, zasilanie systemu należy ponownie włączyć, aby sprawdzić poprawność działania nowego modułu. W codziennej praktyce techników zajmujących się systemami zabezpieczeń, kluczowe jest przestrzeganie kolejności działań i zapewnienie, że zasilanie jest odłączone, zanim podejmie się jakiekolwiek fizyczne czynności. Przykładem może być sytuacja, gdy w systemie znajduje się wiele klawiatur rozproszonych. W takim przypadku, stosowanie tej procedury minimalizuje ryzyko błędów i uszkodzeń, jednocześnie zapewniając, że system będzie działał niezawodnie po dokonaniu wymiany.

Pytanie 5

W jaki sposób można usunąć dane z pamięci EPROM, aby ponownie ją zaprogramować?

A. Umieszczając układ pamięci w promieniowaniu ultrafioletowym
B. Umieszczając układ pamięci w promieniowaniu podczerwonym
C. Podając odpowiedni sygnał logiczny na wejście Write Enable
D. Podając odpowiedni sygnał logiczny na wejście CLR
Podanie odpowiedniego poziomu logicznego na wejście CLR oraz na wejście Write Enable to koncepcje, które dotyczą innych typów pamięci, ale nie mają zastosowania w kontekście EPROM. W przypadku pamięci RAM lub innych układów, manipulowanie sygnałami na takich wejściach może prowadzić do kasowania lub przerywania operacji zapisu, jednak EPROM nie jest projektowany w ten sposób. Odpowiedź związana z umieszczaniem układu pamięci w świetle podczerwonym jest także błędna, ponieważ pamięć EPROM nie reaguje na ten zakres promieniowania. W rzeczywistości, światło podczerwone ma znacznie dłuższą długość fali niż to, które jest wymagane do efektywnego kasowania danych w EPROM, co czyni tę metodę całkowicie nieodpowiednią. Warto zrozumieć, że technologia EPROM opiera się na specyficznych mechanizmach, gdzie kasowanie wymaga energii dostarczanej w formie promieniowania UV. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to mylenie różnych technologii pamięci oraz brak zrozumienia mechanizmu działania EPROM. Dlatego kluczowe jest, aby podczas programowania i kasowania pamięci wbudowanych stosować metody zgodne z ich specyfiką technologiczną i unikać nieuzasadnionych uogólnień dotyczących innych typów pamięci.

Pytanie 6

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Kompasu
B. Multimetru
C. Kątomierza
D. Miernika sygnału
Multimetr nie jest przyrządem stosowanym do ustawiania anten satelitarnych, ponieważ jego główne funkcje dotyczą pomiaru napięcia, prądu oraz rezystancji. W kontekście instalacji anten satelitarnych kluczowe jest precyzyjne ustawienie kierunku anteny, aby maksymalizować odbiór sygnału. W tym celu wykorzystuje się inne urządzenia, takie jak mierniki sygnału, które umożliwiają bezpośredni pomiar jakości i siły sygnału satelitarnego. Dodatkowo, kompas może być pomocny przy orientacji anteny względem południa, co jest istotne przy ustawianiu anteny na odpowiednią satelitę. Kątomierz z kolei może służyć do precyzyjnego ustawienia kąta nachylenia anteny. W praktyce instalatorzy anten korzystają z tych narzędzi, aby zapewnić optymalne warunki odbioru, co jest kluczowe dla uzyskania wysokiej jakości sygnału telewizyjnego. Dobrą praktyką jest również stosowanie odpowiednich standardów instalacji, takich jak zalecenia producentów anten, co pozwala na uzyskanie najlepszych rezultatów.

Pytanie 7

Przyrząd, który pozwala na pomiar wartości międzyszczytowej szumów na wyjściu wzmacniacza, to

A. oscyloskop jednokanałowy
B. miernik zniekształceń
C. analyzer widma
D. woltomierz cyfrowy
Oscyloskop jednokanałowy jest narzędziem, które umożliwia obserwację i analizę przebiegów elektrycznych w czasie rzeczywistym. Jego zastosowanie w pomiarze wartości międzyszczytowej szumów na wyjściu wzmacniacza jest szczególnie istotne, ponieważ pozwala na dokładną wizualizację i ocenę charakterystyki sygnału. Dzięki oscyloskopowi możemy zaobserwować nie tylko wartość RMS szumów, ale także ich charakter, co jest kluczowe w diagnostyce systemów audio i telekomunikacyjnych. Przykładem praktycznego zastosowania oscyloskopu w tej roli może być analiza sygnałów w aplikacjach audio, gdzie niska wartość szumów na wyjściu wzmacniacza jest niezbędna do uzyskania wysokiej jakości dźwięku. Dodatkowo, korzystając z oscyloskopu, możemy zidentyfikować źródła zakłóceń w systemie, co pozwala na ich eliminację i poprawę ogólnej jakości sygnału. W branży elektronicznej oscyloskopy są standardowym narzędziem wykorzystywanym do oceny parametrów sygnałów, co potwierdza ich wysoką wartość w procesach inżynieryjnych i testowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
B. Analogowy na zakresie I = 1 A i RWE = 50 Ω
C. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
D. Analogowy na zakresie I = 10 A i RWE = 50 Ω
Jeśli wybierzesz złe amperomierze, możesz się mocno rozczarować co do dokładności. Na przykład, analogowy amperomierz na 10 A z RWE 50 Ω, chociaż może działać, nie jest najlepszy w tej sytuacji. Z takim dużym zakresem, pomiar 0,5 A to praktycznie nic, a to może wprowadzać spore błędy. Do tego ten wysoki RWE wprowadza dodatkowy opór, a to znowu zmniejsza dokładność pomiarów, zwłaszcza przy czujniku 100 Ω. A co do cyfrowego amperomierza na 10 A z RWE 5 Ω – też nie jest to najlepszy wybór, bo przy dużym zakresie wiadomo, że pomiary małych prądów będą mniej dokładne. Przy czujniku o rezystancji 100 Ω ten dodatkowy opór zmienia charakterystykę obwodu, co prowadzi do niepewnych wyników. Często ludzie myślą, że większy zakres to lepsza dokładność, ale to nie zawsze prawda, szczególnie przy pomiarach blisko dolnej granicy zakresu. Więc fajnie jest wybierać narzędzia pomiarowe blisko mierzonych wartości, bo to naprawdę zwiększa dokładność.

Pytanie 13

Jaką rolę odgrywa urządzenie kontrolno-pomiarowe w systemie automatyki przemysłowej?

A. zawór elektromagnetyczny
B. zawór regulacyjny
C. kontroler
D. przetwornik
Przepustnica, będąca urządzeniem stosowanym w systemach wentylacyjnych i cieplnych, pełni funkcję regulacji przepływu powietrza lub cieczy. Choć istotna w kontekście zarządzania mediami, nie ma ona zdolności pomiarowych, co czyni ją niewłaściwym wyborem w kontekście funkcji kontrolno-pomiarowych. Sterownik, będący centralnym elementem systemów automatyki, działa na podstawie dostarczanych mu sygnałów, jednak jego rola nie polega na bezpośrednim pomiarze parametrów fizycznych. Zamiast tego, sterownik interpretuje dane z przetworników i podejmuje decyzje operacyjne w oparciu o algorytmy. Elektrozawór, z drugiej strony, steruje przepływem cieczy lub gazów w systemach, ale również nie zajmuje się bezpośrednim pomiarem. Typowym błędem myślowym jest mylenie funkcji urządzeń pomiarowych z urządzeniami wykonawczymi i regulacyjnymi. W kontekście automatyki przemysłowej kluczowe jest rozróżnienie pomiędzy pomiarem a kontrolą, ponieważ każde z tych urządzeń pełni odmienną rolę w systemie. Aby systemy były efektywne, konieczne jest zastosowanie przetworników, które dostarczają dokładne dane, niezbędne dla prawidłowego funkcjonowania sterowników oraz elementów wykonawczych.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. ich umiejscowienie na suficie
B. ich natychmiastowe działanie
C. to, że działają na tej samej częstotliwości
D. to, że instalacja ma tylko jeden sygnalizator
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 17

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym dodatnim napięciem na wyjściu
B. nieregulowanym ujemnym napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. regulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 18

Jakie zabezpieczenie przed uszkodzeniem lutowanego elementu powinno być użyte podczas przyłączenia tranzystora CMOS do płyty głównej telewizora?

A. Założenie opaski uziemiającej na rękę
B. Noszenie okularów ochronnych
C. Pokrycie końcówek tranzystora pastą termoprzewodzącą
D. Wykorzystanie spoiwa o niższej temperaturze topnienia do lutowania
Założenie opaski uziemiającej na rękę to naprawdę ważna sprawa, kiedy lutujemy tranzystory CMOS. Te elementy są mega wrażliwe na wyładowania elektrostatyczne, więc lepiej nie ryzykować. Użycie opaski zmniejsza ryzyko zgromadzenia ładunku, który może zniszczyć układy scalone. Nawet małe ładunki mogą spowodować ESD i to zazwyczaj kończy się zniszczeniem tranzystora lub sprawia, że działa on nie tak, jak powinien. W branży mówi się o standardach, takich jak IEC 61340-5-1, które podkreślają, jak ważna jest ochrona przed ESD w miejscach, gdzie mamy do czynienia z wrażliwymi komponentami. Takie opaski powinny być na stałe w procedurach roboczych w laboratoriach i na liniach produkcyjnych, żeby zapewnić bezpieczeństwo sprzętu i sprawność pracy. A no i jeszcze warto pamiętać o matach ESD oraz odpowiedniej odzieży roboczej – to wszystko razem tworzy system ochronny przed złymi ładunkami.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakość sygnału z anten satelitarnych w dużym stopniu zależy od warunków pogodowych. Zjawisko pikselizacji lub zanik obrazu jest szczególnie zauważalne w antenach o średnicy

A. 100 cm
B. 85 cm
C. 60 cm
D. 110 cm
Wybór odpowiedzi 100 cm, 85 cm lub 110 cm na pytanie o wpływ średnicy anteny satelitarnej na jakość odbioru w trudnych warunkach atmosferycznych jest błędny, ponieważ koncepcje te ignorują kluczowy aspekt, jakim jest wrażliwość anteny na sygnał. Anteny o większej średnicy, mimo że mogą poprawić odbiór sygnału w stabilnych warunkach, nie zawsze są odpowiednie w trudnych warunkach atmosferycznych. Efekt pikselizacji, który jest istotnym zagadnieniem w telekomunikacji satelitarnej, występuje wtedy, gdy sygnał jest zakłócany przez warunki atmosferyczne, co jest szczególnie widoczne w mniejszych antenach, jak te o średnicy 60 cm. Wybór większej anteny niekoniecznie rozwiązuje problem odbioru w trudnych warunkach, ponieważ nie uwzględnia się, że mniejsza średnica anteny lepiej obrazuje skutki zakłóceń. Użytkownicy często mylą pojęcia związane z wielkością anteny i jakością odbioru, co prowadzi do błędnych wniosków. Istotne jest, aby zrozumieć, że w praktyce, w zależności od lokalizacji i warunków atmosferycznych, mała antena może lepiej określać zmiany w jakości sygnału, co jest kluczowe dla zapewnienia satysfakcjonującego odbioru. Dlatego ważne jest, aby przy planowaniu instalacji anteny sugerować jej średnicę w kontekście lokalnych warunków atmosferycznych oraz przewidywanych czynników zakłócających.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dB
B. dBA
C. dBµV
D. dBmV
Wykorzystanie jednostek takich jak dBA lub dBmV w kontekście pomiaru stosunku poziomu sygnału do szumu w instalacjach telewizyjnych jest niepoprawne. dBA to jednostka, która odnosi się do poziomu głośności sygnału z uwzględnieniem wrażliwości ludzkiego ucha na różne częstotliwości, co czyni ją nieadekwatną w kontekście pomiarów sygnału telewizyjnego. Z kolei dBmV to jednostka wyrażająca napięcie w miliwoltach w stosunku do 1 V, używana głównie w kontekście systemów telekomunikacyjnych i nie jest odpowiednia do mierzenia stosunku sygnału do szumu, który wymaga odniesienia do mocy. dBµV, choć również związane z napięciem, koncentruje się na poziomie sygnału w kontekście telekomunikacji, ale nie oddaje pełnego obrazu stosunku sygnału do szumu. Typowym błędem myślowym w tym kontekście jest utożsamianie różnych jednostek miary, co może prowadzić do nieporozumień w ocenie jakości sygnału. Właściwe rozumienie jednostek miary i ich zastosowania jest kluczowe w projektowaniu i diagnozowaniu systemów telewizyjnych, co podkreśla znaczenie edukacji w tym zakresie dla specjalistów w dziedzinie telekomunikacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Zakres regularnego kontrolowania oraz testowania zasilających instalacji urządzeń elektronicznych nie obejmuje

A. badania ciągłości przewodów ochronnych
B. pomiaru poboru mocy przez zasilane odbiorniki
C. pomiaru rezystancji przewodów
D. próby działania urządzeń różnicowoprądowych
Prawidłowa odpowiedź wskazuje, że zakres okresowego sprawdzania i prób instalacji zasilającej urządzenie elektroniczne nie obejmuje pomiaru poboru mocy przez zasilane odbiorniki. W praktyce, to badanie koncentruje się na zapewnieniu bezpieczeństwa i niezawodności instalacji elektrycznej, a nie na analizie wydajności energetycznej odbiorników. Zgodnie z normą PN-EN 60204-1 oraz innymi wytycznymi, istotne jest, aby sprawdzano aspekty takie jak ciągłość przewodów ochronnych, rezystancję przewodów oraz działanie urządzeń różnicowoprądowych, aby upewnić się, że instalacja elektryczna nie stanowi zagrożenia dla użytkowników. Przykładem może być badanie ciągłości przewodów ochronnych, które jest kluczowe dla ochrony przed porażeniem prądem. Pomiar poboru mocy, choć ważny dla oceny efektywności energetycznej, nie jest częścią podstawowych kontrolnych procedur związanych z bezpieczeństwem instalacji.

Pytanie 27

W instrukcji dotyczącej uruchamiania urządzenia znajduje się polecenie: "...dostosować obwód rezonansowy przy pomocy trymera do częstotliwości...". Czym jest trymer?

A. cewką regulowaną
B. kondensatorem dostrojczym
C. filtr z regulowaną indukcyjnością
D. potencjometrem
Potencjometr, cewka regulowana i filtr z regulowaną indukcyjnością to terminy, które często są mylone z kondensatorem dostrojczym, ale mają zupełnie inne właściwości i zastosowania. Potencjometr to element pasywny, który pozwala na regulację oporu w obwodzie elektrycznym, co jest przydatne w aplikacjach takich jak regulacja głośności w audio czy w kontrolerach jasności. Choć potencjometry mogą wpływać na sygnał elektryczny, nie są one używane do dostrajania częstotliwości, ponieważ nie zmieniają pojemności ani nie mają związku z obwodami rezonansowymi. Cewka regulowana, z kolei, to element indukcyjny, którego indukcyjność można modyfikować, ale nie jest to odpowiednik kondensatora dostrojczego. Cewki regulowane są stosowane w aplikacjach, gdzie zmiana indukcyjności jest kluczowa, jak w transformatorach czy filtrach, jednak same w sobie nie służą do regulacji pojemności. Filtr z regulowaną indukcyjnością również ma swoje specyficzne zastosowanie w filtracji sygnałów, ale nie zmienia pojemności obwodu w taki sposób, aby dostroić go do konkretnej częstotliwości. Typowym błędem w takich rozważaniach jest mylenie funkcji i zastosowań tych elementów; każdy z nich pełni inną rolę w obwodach elektronicznych, co jest kluczowe dla ich prawidłowego działania. Aby uzyskać pełne zrozumienie pojęć związanych z elektroniką, ważne jest, aby dokładnie poznawać właściwości i zastosowanie każdego z tych elementów.

Pytanie 28

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. tylko w poziomie
B. najkrótszą trasą
C. wyłącznie w pionie
D. w pionie oraz poziomie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 29

Na jaki zakres powinien być ustawiony woltomierz analogowy, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V?

A. 0 do 700 V
B. 0 do 20 V
C. 0 do 200 V
D. 0 do 2 V
Woltomierz analogowy powinien być ustawiony na zakres 0 do 20 V, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V. Ustawienie na ten zakres umożliwia uzyskanie największej dokładności pomiaru, ponieważ analogowe przyrządy pomiarowe zazwyczaj osiągają swoją optymalną precyzję, gdy mierzona wartość znajduje się blisko górnej granicy zakresu. W przypadku napięcia 19 V, to ustawienie daje możliwość uzyskania dokładności w granicach 1-2% w zależności od specyfiki danego woltomierza. Używając zbyt szerokiego zakresu, jak 0 do 200 V lub 0 do 700 V, zjawisko nazywane 'efektem rozdzielczości' powoduje, że pomiary mogą być mniej precyzyjne, a większe wartości mogą generować znaczący błąd w odczycie. Na przykład, jeśli zakres zostanie ustawiony na 200 V, niewielkie zmiany napięcia w pobliżu 19 V mogą nie być wystarczająco wyraźnie widoczne na skali. Ponadto zgodnie z praktykami w zakresie metrologii, ważne jest, aby dostosować przyrządy pomiarowe do specyficznych warunków, co ma kluczowe znaczenie w laboratoriach oraz podczas prac inżynieryjnych, aby zapewnić wiarygodność wyników pomiarów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. oscyloskopu
B. omomierza
C. wobulatora
D. woltomierza
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 33

Podczas instalacji którego z elementów elektronicznych nie trzeba zwracać uwagi na jego polaryzację?

A. Kondensatora elektrolitycznego
B. Fotodiody
C. Diody prostowniczej
D. Kondensatora ceramicznego
Kondensatory ceramiczne to jedna z najczęściej stosowanych rodzin kondensatorów, która charakteryzuje się brakiem polaryzacji. Oznacza to, że ich montaż nie wymaga szczególnej uwagi na kierunek podłączenia, co znacznie upraszcza proces instalacji w obwodach elektronicznych. Przykładowo, kondensatory ceramiczne są często stosowane w układach filtrujących oraz w aplikacjach, w których wymagana jest stabilność w szerokim zakresie temperatur i częstotliwości. Warto również zauważyć, że ich niewielkie rozmiary oraz niska cena sprawiają, że są one idealne do zastosowań w urządzeniach mobilnych oraz innych produktach, gdzie przestrzeń i koszt mają kluczowe znaczenie. Zgodnie z najlepszymi praktykami w branży, zaleca się stosowanie kondensatorów ceramicznych w miejscach, gdzie nie występuje ryzyko wystąpienia dużych napięć, co może prowadzić do niepożądanych efektów. Znajomość właściwości tych komponentów jest kluczowa dla projektantów elektroniki, którzy dążą do tworzenia niezawodnych i efektywnych układów elektronicznych.

Pytanie 34

MAN to termin odnoszący się do typu sieci komputerowej

A. miejskiej
B. lokalnej
C. masowej
D. rozległej
MAN (Metropolitan Area Network) to rodzaj sieci komputerowej, która obejmuje obszar miejskiej aglomeracji. Głównym celem takiej sieci jest zapewnienie szybkiej komunikacji między różnymi lokalizacjami w obrębie miasta, co może obejmować zarówno biura, instytucje edukacyjne, jak i inne obiekty użyteczności publicznej. W praktyce MAN-y są często wykorzystywane do łączenia lokalnych sieci (LAN) w większe struktury, umożliwiając efektywne zarządzanie zasobami oraz dostęp do Internetu. Standardy techniczne, takie jak Ethernet, są często stosowane w MAN-ach, co pozwala na uzyskanie dużej przepustowości przy stosunkowo niskich kosztach. Dzięki ich elastyczności, MAN-y umożliwiają również implementację różnych technologii komunikacyjnych, co czyni je atrakcyjnym rozwiązaniem dla organizacji miejskich. Przykładowo, wiele miast korzysta z MAN-ów do integracji systemów transportowych, monitoringu czy inteligentnych rozwiązań miejskich. W ten sposób MAN przyczynia się do efektywnego zarządzania zasobami miejskimi oraz podniesienia jakości życia mieszkańców.

Pytanie 35

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
B. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
C. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
D. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
Odpowiedzi wskazujące na inne funkcje zwrotnicy antenowej są błędne i wynikają z nieporozumień dotyczących jej rzeczywistego zastosowania. Rozdzielanie sygnału telewizyjnego na kilka odbiorników nie jest zadaniem zwrotnicy, lecz rozdzielacza sygnału, który ma na celu dostarczenie tego samego sygnału do wielu urządzeń. Z kolei przesuwanie pasma częstotliwości sygnału telewizji satelitarnej jest funkcjonalnością, która dotyczy konwerterów LNB, a nie zwrotnic. Umożliwienie podłączenia anteny z wyjściem symetrycznym do asymetrycznego wejścia w odbiorniku telewizyjnym jest również błędnym stwierdzeniem, ponieważ do tego celu stosuje się transformator impedancji, a nie zwrotnicę. Takie nieporozumienia mogą prowadzić do nieefektywnego projektu instalacji antenowej, co skutkuje nie tylko pogorszeniem jakości sygnału, ale również problemami z kompatybilnością urządzeń. Dlatego ważne jest, aby zrozumieć specyfikę tych elementów systemu antenowego oraz zasady ich poprawnej pracy, co pozwala na stworzenie wydajnej i niezawodnej instalacji. W praktyce, dobór odpowiednich komponentów oraz ich prawidłowe zastosowanie zgodnie z normami branżowymi jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na wychyłowym przyrządzie do pomiaru napięcia umieszczono symbol przedstawiony na rysunku. Jaki ustrój zastosowano w tym mierniku?

Ilustracja do pytania
A. Elektromagnetyczny
B. Magnetoelektryczny
C. Ferrodynamiczny
D. Elektrodynamiczny
Odpowiedź "Magnetoelektryczny" jest poprawna, ponieważ symbol przedstawiony na rysunku odnosi się do ustroju magnetoelektrycznego, który jest kluczowym elementem w analogowych przyrządach pomiarowych. Mierniki magnetoelektryczne działają na zasadzie interakcji między polem magnetycznym wytworzonym przez magnes trwały a polem magnetycznym generowanym przez prąd przepływający przez cewkę. W wyniku tego zjawiska, cewka ruchoma przemieszcza się, co powoduje wychylenie wskazówki na skali pomiarowej. Tego rodzaju urządzenia są szeroko stosowane w laboratoriach oraz w przemyśle, ponieważ zapewniają wysoką dokładność pomiarów napięcia. Standardy ISO oraz normy IEC definiują wymagania dotyczące projektowania i kalibracji tych urządzeń, co gwarantuje ich niezawodność i precyzyjność w różnych warunkach pracy. Znajomość zasad działania ustrojów magnetoelektrycznych jest niezbędna dla inżynierów i techników zajmujących się pomiarami elektrycznymi.

Pytanie 38

Analogowy woltomierz ma skalę od 0 do 100 działek. Jaka jest wartość napięcia, jeżeli pomiar był wykonany w zakresie 200 V, a wskaźnik wskazuje 80 działek?

A. 160 V
B. 40 V
C. 80 V
D. 120 V
Woltomierz analogowy działa na zasadzie wskazywania wartości napięcia na skali w oparciu o wychylenie wskazówki. W przypadku pomiaru w zakresie 200 V, skala analogowa jest wyskalowana na 100 działek, co oznacza, że każda działka odpowiada wartości napięcia równej 2 V (200 V / 100 działek = 2 V/działkę). Jeśli wskazówka wychyla się na 80 działek, to wartość napięcia wynosi 80 działek * 2 V/działkę = 160 V. Przykład ten pokazuje, jak istotne jest zrozumienie skali woltomierza oraz prawidłowe przeliczanie wartości napięcia na podstawie wychylenia. W praktyce, takie pomiary są niezbędne w elektryce i elektronice, gdzie precyzyjne wskazanie napięcia jest kluczowe dla bezpieczeństwa i efektywności systemów. Przestrzeganie odpowiednich standardów pomiarowych, takich jak ISO 9001, jest również ważne w kontekście zapewnienia jakości pomiarów i wiarygodności wyników.

Pytanie 39

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. wyłącznik różnicowoprądowy
B. ochronnik termiczny
C. wyłącznik nadprądowy
D. ochronnik przepięciowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.