Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 15 kwietnia 2025 12:35
  • Data zakończenia: 15 kwietnia 2025 12:59

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jak nazywa się program wykorzystywany do wyszukiwania błędów w kodach napisanych w asemblerze?

A. konwerterem
B. kompilatorem
C. linkerem
D. debuggerem
Debugger to narzędzie służące do analizy i diagnostyki programów komputerowych, które umożliwia programistom wykrywanie, identyfikowanie i usuwanie błędów w kodzie. Debugging to kluczowy etap w procesie rozwoju oprogramowania, szczególnie w przypadku programów napisanych w asemblerze, gdzie bliskość do sprzętu sprawia, że błędy mogą prowadzić do poważnych problemów. Przykładowo, podczas korzystania z debuggera programista może zatrzymać wykonanie programu w określonym punkcie, zbadać stan rejestrów oraz pamięci, co pozwala na precyzyjne określenie, dlaczego program nie działa tak, jak powinien. W praktyce, debugger pozwala na krokowe przechodzenie przez kod, co jest szczególnie przydatne w asemblerze, gdzie konstrukcje są niskopoziomowe i złożone. Dobre praktyki w zakresie debugowania obejmują korzystanie z takich narzędzi jak GDB dla systemów Unix, które wspierają różne architektury procesorów. Zrozumienie działania debuggera i umiejętność jego efektywnego wykorzystania jest niezbędne dla każdego programisty, który pracuje w niskopoziomowym programowaniu.

Pytanie 2

Do podłączenia elementów systemu alarmowego używa się kabla

A. YTKSY
B. OMY
C. UTP
D. YTDY
Wybór niewłaściwego przewodu do systemu alarmowego może prowadzić do poważnych problemów z bezpieczeństwem. Przewód OMY, choć popularny w innych zastosowaniach, nie jest przeznaczony do pracy w systemach alarmowych ze względu na brak odpowiedniego ekranowania, co czyni go bardziej podatnym na zakłócenia. Użycie tego przewodu w instalacjach alarmowych może prowadzić do fałszywych alarmów, które są efektem interferencji sygnałów z innych urządzeń. Z kolei przewód UTP, mimo że szeroko wykorzystywany w sieciach komputerowych, nie jest przystosowany do pracy w systemach alarmowych, ponieważ jego budowa nie zapewnia odpowiedniego ekranowania i ochrony przed zakłóceniami. W kontekście systemów zabezpieczeń, wybór UTP może skutkować obniżoną jakością sygnału, co jest niebezpieczne w przypadku systemów monitorujących. Przewód YTKSY, choć posiada pewne zalety, takich jak elastyczność i łatwość w instalacji, nie zapewnia odpowiedniego poziomu ochrony, co jest kluczowe w zastosowaniach alarmowych. Wybierając przewody do systemu alarmowego, istotne jest przestrzeganie norm branżowych, które podkreślają konieczność używania przewodów o wysokiej odporności na zakłócenia, takich jak YTDY. Ignorowanie tych standardów prowadzi do typowych błędów, które mogą zagrażać bezpieczeństwu obiektów. Dlatego przy projektowaniu systemów alarmowych należy szczegółowo analizować właściwości przewodów oraz ich zgodność ze specyfikacjami branżowymi.

Pytanie 3

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
B. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 4

Podczas serwisowania telewizora, technik zauważył brak sygnału wideo, iskry oraz typowy zapach ozonu. Który z wymienionych komponentów uległ uszkodzeniu?

A. Wzmacniacz mocy
B. Powielacz wysokiego napięcia
C. Zintegrowana głowica w.cz.
D. Układ odchylania w pionie
Głowica zintegrowana w.cz. odpowiada za odbiór sygnału telewizyjnego, a jej uszkodzenie zwykle manifestuje się brakiem sygnału lub trudnościami w jego dekodowaniu, co nie prowadziłoby do iskrzenia ani zapachu ozonu. Układ odchylania pionowego ma na celu pionowe skanowanie obrazu, a uszkodzenie tego układu najczęściej skutkuje zniekształceniem obrazu lub jego całkowitym brakiem, ale nie generuje charakterystycznych symptomów związanych z wysokim napięciem. Wzmacniacz mocy odpowiada za wzmacnianie sygnału audio i wideo, a jego awaria objawia się najczęściej brakiem dźwięku lub obrazu, jednak nie wiąże się z występowaniem iskrzenia czy zapachu ozonu. Typowe błędy myślowe prowadzące do błędnych wniosków często wynikają z braku zrozumienia, jak poszczególne elementy odbiornika telewizyjnego współdziałają ze sobą. Wiedza o tym, jak funkcjonuje powielacz wysokiego napięcia oraz jego rola w systemie, jest kluczowa dla właściwej diagnostyki oraz skutecznych napraw, co podkreśla znaczenie edukacji i ciągłego doskonalenia w tej dziedzinie.

Pytanie 5

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 750 zł
B. 150 zł
C. 500 zł
D. 2 500 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 6

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po usunięciu starego urządzenia
B. w trakcie instalacji nowego sprzętu
C. zanim rozpoczną się prace demontażowe
D. po zakończeniu montażu
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 7

Jakie kroki należy podjąć w celu udzielenia pomocy osobie dotkniętej prądem elektrycznym?

A. wykonania sztucznego oddychania
B. zgłoszenia sytuacji przełożonemu
C. przeprowadzenia masażu serca
D. odłączenia osoby od źródła prądu
Uwolnienie osoby spod działania prądu elektrycznego jest kluczowym pierwszym krokiem w udzielaniu pomocy w przypadku porażenia prądem. Prąd elektryczny może prowadzić do skurczów mięśni, co często uniemożliwia osobie dotkniętej porażeniem uwolnienie się z niebezpiecznego źródła. Dlatego też, zanim przystąpimy do wszelkich działań resuscytacyjnych, jak sztuczne oddychanie czy masaż serca, niezbędne jest usunięcie zagrożenia. Użycie odpowiednich narzędzi, takich jak kij czy materiał izolacyjny, może pomóc w wyciągnięciu ofiary bez narażania siebie na ryzyko porażenia. Ponadto, należy zawsze upewnić się, że źródło prądu zostało wyłączone lub że jesteśmy w stanie je odizolować. Dbanie o własne bezpieczeństwo jest podstawą dobrych praktyk w udzielaniu pierwszej pomocy. W sytuacjach zagrożenia życia, takich jak te, należy stosować się do wytycznych organizacji takich jak Europejska Rada Resuscytacji, które podkreślają, jak ważne jest najpierw zabezpieczenie miejsca zdarzenia i ochrona ratownika przed dodatkowym ryzykiem.

Pytanie 8

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. patch panel
B. pigtail
C. patchcord
D. łącznik
Patchcord to kabel, który łączy urządzenia w sieci komputerowej, w tym przypadku komputer z gniazdem abonenckim. Jego główną funkcją jest zapewnienie połączenia między różnymi elementami infrastruktury sieciowej, co jest kluczowe dla prawidłowego funkcjonowania sieci. Patchcordy są powszechnie stosowane w biurach, centrach danych oraz w domowych sieciach lokalnych. Standardowe długości patchcordów wahają się od kilkudziesięciu centymetrów do kilku metrów, co pozwala na ich elastyczne wykorzystanie w różnych konfiguracjach sieciowych. Warto zaznaczyć, że patchcordy mogą być wykonane w różnych kategoriach, takich jak Cat5e, Cat6 czy Cat6a, co wpływa na ich przepustowość i maksymalną długość transmisji. W praktyce oznacza to, że wybór odpowiedniego patchcordu zależy od wymagań sieci, takich jak prędkość transferu danych i odległość. Oprócz tego, stosując patchcordy, należy pamiętać o zachowaniu odpowiedniej organizacji kabli, co jest zgodne z dobrymi praktykami branżowymi, w celu uniknięcia zakłóceń oraz zapewnienia estetyki instalacji.

Pytanie 9

Podczas wykonywania montażu kabla krosowego w złączach gniazd należy unikać rozkręcania par przewodów na długości przekraczającej 13 mm, ponieważ

A. dojdzie do zmniejszenia impedancji kabla
B. może to prowadzić do obniżenia odporności na zakłócenia
C. zwiększy się impedancja kabla
D. kabel będzie generował silniejsze pole elektromagnetyczne
Przekonania zawarte w błędnych odpowiedziach opierają się na nieprawidłowym zrozumieniu zasad działania kabli krosowych. Zmiana impedancji kabla, co sugeruje jedna z odpowiedzi, nie jest bezpośrednio związana z długością odcinka rozkręcenia. Zmniejszenie impedancji w rzeczywistości może prowadzić do problemów z dopasowaniem impedancji w sieci, jednak nie jest to główny problem związany z rozkręceniem par przewodów. W kontekście pól elektromagnetycznych, kabel krosowy nie stanie się źródłem większego pola elektromagnetycznego jedynie z powodu rozkręcenia par, o ile nie przekroczymy określonych wartości w standardzie. Ważne jest zrozumienie, że kluczowym czynnikiem jest odporność na zakłócenia, a nie tylko pole elektromagnetyczne. W przypadku zwiększenia impedancji, warto zauważyć, że nie jest to możliwe poprzez samo rozkręcenie par przewodów. Problemy z zakłóceniami, które mogą powstać w wyniku niewłaściwego montażu, są bardziej złożone, ale ich głównym efektem jest właśnie spadek jakości sygnału. W praktyce, aby uniknąć tych błędów, ważne jest przestrzeganie standardów montażu i zapewnienie, by długość rozkręcenia nie przekraczała 13 mm, co jest istotne dla utrzymania wysokiej jakości transmisji danych.

Pytanie 10

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. spadek obrotów silnika
B. wzrost obrotów silnika
C. obniżenie prądu lasera
D. wzrost prądu lasera
Zmniejszenie obrotów silnika, zmniejszenie prądu lasera oraz zwiększenie obrotów silnika są mylnymi interpretacjami symptomów związanych z zużyciem głowicy laserowej. Zmniejszenie obrotów silnika w odtwarzaczu CD zwykle jest związane z problemami z mechaniką napędu lub zasilaniem, a nie bezpośrednio z głowicą laserową. Gdy silnik nie może osiągnąć odpowiednich obrotów, może to wpłynąć na jakość odczytu, jednak nie jest to objaw zużycia głowicy. Z kolei zmniejszenie prądu lasera wskazuje na problem z jego wydajnością, co może oznaczać, że laser nie jest w stanie poprawnie skanować płyty, ale nie jest to symptom zużycia, a raczej efekt ewentualnej awarii. Zwiększenie obrotów silnika również nie jest powiązane z zużyciem lasera; może to sugerować, że napęd próbuje nadrobić straty wynikające z niewłaściwego odczytu, co jest symptomem problemów mechanicznych. Do typowych błędów myślowych prowadzących do takich niepoprawnych wniosków należy sądzenie, że wszystkie zmiany w parametrach pracy urządzenia są bezpośrednio związane z głowicą laserową. Kluczowe jest zrozumienie, że wiele komponentów urządzeń elektronicznych współpracuje ze sobą i zmiana jednego z parametrów może wynikać z różnych przyczyn, dlatego diagnostyka powinna być kompleksowa.

Pytanie 11

Technologia umożliwiająca bezprzewodową komunikację na krótkim zasięgu pomiędzy różnymi urządzeniami elektronicznymi to

A. BLUETOOTH
B. GPRS
C. WiMAX
D. FIREWIRE
Bluetooth to technologia bezprzewodowa, która umożliwia komunikację na krótkie odległości pomiędzy różnymi urządzeniami elektronicznymi, takimi jak telefony, głośniki, słuchawki, a także komputery i urządzenia IoT. Działa w paśmie częstotliwości 2.4 GHz i jest skonstruowana w taki sposób, aby minimalizować zakłócenia z innych urządzeń. Standard Bluetooth został zaprojektowany z myślą o energooszczędności, co pozwala na długotrwałe użytkowanie urządzeń przenośnych. Przykłady zastosowania Bluetooth obejmują bezprzewodowe przesyłanie danych, podłączanie zestawów słuchawkowych do telefonów, a także synchronizację urządzeń, takich jak smartfony z komputerami. Warto również zaznaczyć, że Bluetooth implementuje mechanizmy zabezpieczeń, takie jak szyfrowanie, co czyni go bezpiecznym rozwiązaniem do przesyłania poufnych informacji. Standard Bluetooth przeszedł wiele ewolucji, a jego najnowsze wersje oferują większą przepustowość oraz zasięg, co czyni go jeszcze bardziej wszechstronnym rozwiązaniem w dziedzinie komunikacji bezprzewodowej.

Pytanie 12

Aby zmierzyć współczynnik zawartości harmonicznych na wyjściu wzmacniacza audio, co należy wykorzystać?

A. miernik zniekształceń nieliniowych
B. rejestrator przebiegów elektrycznych
C. wobuloskop
D. oscyloskop
Wobuloskop, oscyloskop oraz rejestrator przebiegów elektrycznych to urządzenia, które mają swoje specyficzne zastosowania w pomiarach elektrycznych, jednak nie są one najlepszymi narzędziami do analizy zniekształceń nieliniowych w sygnałach audio. W przypadku wobuloskopu, jego główną funkcją jest analiza widmowa, co oznacza, że skupia się na częstotliwościach, a nie na szczegółowym pomiarze zniekształceń harmonicznych. Oscyloskop, mimo że potrafi wizualizować przebieg sygnału, nie jest w stanie dostarczyć precyzyjnych danych na temat zniekształceń, ponieważ jego zastosowanie koncentruje się na obserwacji czasu i amplitudy sygnału. Rejestrator przebiegów elektrycznych jest bardziej użyteczny w kontekście długoterminowego monitorowania sygnałów, ale brakuje mu funkcji analitycznych koniecznych do pomiaru zniekształceń. Często pojawia się mylna koncepcja, że ogólne pomiary sygnału wystarczą do oceny jakości audio, co prowadzi do nieprawidłowych wniosków. W rzeczywistości, aby dokładnie zmierzyć współczynnik zniekształceń w dźwięku, konieczne jest zastosowanie narzędzi, które zostały specjalnie zaprojektowane do tego celu, jak miernik zniekształceń nieliniowych, który oferuje szczegółową analizę i precyzyjny wgląd w jakość dźwięku.

Pytanie 13

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
B. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
C. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
D. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
Odpowiedzi wskazujące na inne funkcje zwrotnicy antenowej są błędne i wynikają z nieporozumień dotyczących jej rzeczywistego zastosowania. Rozdzielanie sygnału telewizyjnego na kilka odbiorników nie jest zadaniem zwrotnicy, lecz rozdzielacza sygnału, który ma na celu dostarczenie tego samego sygnału do wielu urządzeń. Z kolei przesuwanie pasma częstotliwości sygnału telewizji satelitarnej jest funkcjonalnością, która dotyczy konwerterów LNB, a nie zwrotnic. Umożliwienie podłączenia anteny z wyjściem symetrycznym do asymetrycznego wejścia w odbiorniku telewizyjnym jest również błędnym stwierdzeniem, ponieważ do tego celu stosuje się transformator impedancji, a nie zwrotnicę. Takie nieporozumienia mogą prowadzić do nieefektywnego projektu instalacji antenowej, co skutkuje nie tylko pogorszeniem jakości sygnału, ale również problemami z kompatybilnością urządzeń. Dlatego ważne jest, aby zrozumieć specyfikę tych elementów systemu antenowego oraz zasady ich poprawnej pracy, co pozwala na stworzenie wydajnej i niezawodnej instalacji. W praktyce, dobór odpowiednich komponentów oraz ich prawidłowe zastosowanie zgodnie z normami branżowymi jest kluczowe dla zapewnienia wysokiej jakości usług telewizyjnych.

Pytanie 14

Jaką czujkę powinno się zastosować, aby sygnalizować otwarcie drzwi?

A. Podczerwieni
B. Kontaktronową
C. Mikrofalową
D. Ultradźwiękową
Czujka kontaktronowa jest najodpowiedniejszym rozwiązaniem do sygnalizacji otwarcia drzwi, ponieważ wykorzystuje zasadę działania, która opiera się na zbliżeniu dwóch styków magnetycznych. Gdy drzwi się otwierają, magnes umieszczony na drzwiach oddala się od styków, co powoduje ich rozłączenie. Taki mechanizm jest niezwykle niezawodny i często stosowany w systemach alarmowych oraz zabezpieczeniach budynków. Kontaktrony charakteryzują się prostotą instalacji oraz niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przypadku monitorowania otwarcia drzwi. W praktyce czujki te można znaleźć w różnych aplikacjach, od domowych systemów alarmowych po zabezpieczenia w obiektach komercyjnych. Dobrą praktyką jest także ich integracja z systemami automatyki budynkowej, co zwiększa komfort użytkowania oraz efektywność zabezpieczeń. Warto podkreślić, że kontaktrony są zgodne z normami branżowymi dotyczącymi bezpieczeństwa i ochrony, co potwierdza ich skuteczność i powszechną akceptację w branży.

Pytanie 15

Zidentyfikowanie usterek w urządzeniach elektronicznych powinno rozpocząć się od weryfikacji

A. bezpieczników
B. elementów biernych
C. diod zabezpieczających
D. tranzystorów
Zaczynając lokalizację uszkodzeń w sprzęcie elektronicznym od sprawdzenia bezpieczników, postępujesz zgodnie z najlepszymi praktykami diagnostyki elektronicznej. Bezpieczniki są pierwszą linią obrony w obwodach elektrycznych, mając na celu ochronę przed przeciążeniem i zwarciem, co może prowadzić do uszkodzenia innych komponentów. Sprawdzenie stanu bezpieczników jest kluczowe, ponieważ uszkodzony bezpiecznik może oznaczać, że obwód był przeciążany lub że wystąpiło zwarcie, co może wskazywać na bardziej poważny problem w urządzeniu. Po zidentyfikowaniu i wymianie uszkodzonego bezpiecznika, zaleca się dalsze testowanie obwodów, aby zlokalizować źródło problemu. W praktyce, często stosuje się multimetr do pomiaru ciągłości obwodu bezpiecznika, co jest szybkim i skutecznym sposobem na określenie jego stanu. Dobrą praktyką jest również prowadzenie dokumentacji dotyczącej stanu i wymiany bezpieczników, co może być pomocne przy przyszłych naprawach oraz w analizie awarii.

Pytanie 16

Aby zidentyfikować brak ciągłości obwodu w instalacjach elektrycznych, należy użyć

A. oscyloskopu
B. omomierza
C. woltomierza
D. wobulatora
Omomierz jest narzędziem służącym do pomiaru oporu elektrycznego, co czyni go idealnym do lokalizowania braków ciągłości obwodu w instalacjach elektrycznych. W momencie, gdy występuje przerwanie obwodu, omomierz pozwala na dokładne określenie, czy dany segment instalacji ma odpowiednią wartość oporu. W praktyce, aby zweryfikować ciągłość obwodu, wykonuje się pomiar oporu między różnymi punktami w instalacji; jeśli wartość oporu wynosi zero lub jest bardzo bliska zeru, obwód jest ciągły. W przypadku braku ciągłości, omomierz zasygnalizuje dużą wartość oporu, co wskazuje na problem w instalacji. Warto również pamiętać, że stosowanie omomierza jest zgodne z normami PN-IEC 61010, które określają wymagania dotyczące bezpieczeństwa sprzętu elektrycznego. W codziennej pracy elektryka, umiejętność wykorzystania omomierza do lokalizacji usterki jest niezbędna, co wpływa na bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 17

Założenie opaski uziemiającej na nadgarstek jest niezbędne przed rozpoczęciem wymiany

A. sygnalizatora akustycznego w systemie alarmowym
B. bezpiecznika topikowego w zasilaczu
C. rozgałęźnika sygnału w sieci telewizji kablowej
D. procesora w komputerze PC
Odpowiedzi wskazujące na inne komponenty, takie jak sygnalizator akustyczny, bezpiecznik topikowy czy rozgałęźnik sygnału, nie uwzględniają kluczowych zagadnień związanych z ochroną przed wyładowaniami elektrostatycznymi w kontekście wymiany procesora. Sygnalizator akustyczny w systemie alarmowym, choć ważny w swoim zastosowaniu, nie ma związku z delikatnością obwodów elektronicznych, jakie znajdują się w procesorach. Podobnie, wymiana bezpiecznika topikowego w zasilaczu czy rozgałęźnika sygnału w telewizji kablowej nie niesie ze sobą ryzyka ESD na poziomie, który występuje podczas pracy z procesorami. Te elementy są w zasadzie bardziej odporne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi niż procesory, które mogą zostać trwale uszkodzone przez nawet niewielkie ładunki elektryczne. Typowym błędem myślowym jest założenie, że wszystkie komponenty elektroniczne wymagają takiej samej ochrony przed ESD, co po prostu nie jest prawdą. W rzeczywistości, najwyższe standardy ochrony przed ESD powinny być stosowane przede wszystkim przy pracy z najwrażliwszymi komponentami, takimi jak procesory, a inne elementy można wymieniać w mniej rygorystyczny sposób. Dlatego kluczowe jest zrozumienie, które komponenty w danym kontekście wymagają szczególnej uwagi, aby uniknąć nieodwracalnych uszkodzeń sprzętu.

Pytanie 18

W specyfikacji diody prostowniczej znajduje się maksymalny średni prąd obciążenia (Ifav) oraz maksymalny szczytowy prąd przewodzenia (Ifsm). Jaką relację można zapisać między tymi wartościami?

A. Ifav ~= Ifsm
B. Ifav > Ifsm
C. Ifav < Ifsm
D. Ifav = Ifsm
Dobrze, że wskazałeś, że Ifav < Ifsm. To ważna zasada, bo Itav to maksymalny prąd, który dioda może prowadzić na stałe. W zwykłych warunkach pracy nie powinieneś go przekraczać, bo to zapewnia, że dioda będzie działać długo i niezawodnie. Ifsm natomiast to maksymalny prąd, jaki dioda może znieść przez krótki czas. Zwykle Ifsm jest dużo większe od Ifav, co daje diodzie możliwość radzenia sobie z chwilowymi skokami prądu, na przykład w przetwornicach czy zasilaczach impulsowych. Kiedy wybierasz diodę prostowniczą, zawsze bierzesz pod uwagę oba te prądy. Musisz upewnić się, że Ifav nie przekracza Ifsm, żeby uniknąć przegrzewania diody i jej uszkodzenia na dłuższą metę. W układach zasilania, gdzie dioda prostownicza działa na prądzie zmiennym, to naprawdę kluczowe zagadnienie.

Pytanie 19

Nieprawidłowa impedancja falowa kabla koncentrycznego wskazuje na uszkodzenie

A. izolacji zewnętrznej.
B. żyły.
C. izolacji wewnętrznej.
D. ekranu.
Wybór odpowiedzi dotyczącej ekranu kabla koncentrycznego jako źródła problemów z impedancją falową może wynikać z błędnego zrozumienia funkcji poszczególnych elementów konstrukcyjnych kabla. Ekran pełni rolę ochronną, zabezpieczając przed zakłóceniami elektromagnetycznymi, jednak jego uszkodzenie rzadziej skutkuje bezpośrednią zmianą impedancji falowej. Przypadek uszkodzenia ekranu mógłby prowadzić do problemów z ekranowaniem, co w konsekwencji może wpłynąć na jakość sygnału, ale nie ma to bezpośredniego wpływu na impedancję falową. Wybór odpowiedzi dotyczącej uszkodzenia izolacji zewnętrznej również jest mylny, ponieważ ta warstwa ma głównie na celu ochronę kabla przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi, a nie bezpośrednio wpływa na parametry elektryczne. Z kolei uszkodzenie żyły kabla, czyli przewodnika, również nie jest bezpośrednim powodem zmian w impedancji, chociaż mogłoby spowodować przerwy w sygnale. W związku z tym, wybierając te odpowiedzi, można popaść w pułapkę myślową, koncentrując się na zewnętrznych aspektach konstrukcji kabla, zamiast na kluczowej roli izolacji wewnętrznej, która jest odpowiedzialna za stabilność parametrów elektrycznych i jakości sygnału. W praktyce, prawidłowa ocena stanu kabla koncentrycznego wymaga znajomości ogólnych zasad jego działania, a także umiejętności diagnozowania specyficznych uszkodzeń i ich wpływu na funkcjonalność systemów komunikacyjnych.

Pytanie 20

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor unipolarny
B. Tranzystor bipolarny
C. Tyrystor
D. Trymer
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 21

Termin "adres MAC" odnosi się do adresu

A. karty sieciowej przypisanego przez producenta urządzenia.
B. komputera przydzielonego przez serwer DHCP.
C. bramy domowej.
D. serwera DHCP.
Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego urządzenia, takiego jak karta sieciowa, przez producenta. Składa się z 48-bitowej liczby, zazwyczaj zapisywanej w postaci sześciu grup po dwa znaki szesnastkowe. Adresy MAC są używane w warstwie łącza danych modelu OSI do identyfikacji urządzeń w sieci lokalnej. Dzięki unikalności adresu MAC, urządzenia mogą komunikować się bez konfliktów. Przykładowo, router w sieci lokalnej używa adresów MAC do kierowania pakietów do właściwych odbiorców. Warto zauważyć, że adresy MAC są kluczowe w protokołach takich jak Ethernet i Wi-Fi, gdzie identyfikacja urządzeń jest niezbędna do prawidłowego funkcjonowania sieci. Standard IEEE 802.3 dla Ethernetu oraz IEEE 802.11 dla Wi-Fi jasno określają, jak adresy MAC są tworzone i używane. W praktyce, znajomość adresów MAC jest niezbędna przy konfigurowaniu zabezpieczeń w sieci, takich jak filtrowanie MAC, które pozwala administratorom na ograniczenie dostępu do sieci tylko do autoryzowanych urządzeń.

Pytanie 22

Której klasy wzmacniaczy nie stosuje się do wzmocnienia sygnałów akustycznych, biorąc pod uwagę znaczące zniekształcenia nieliniowe?

A. Klasa AB
B. Klasa B
C. Klasa C
D. Klasa A
Wzmacniacze klasy C są projektowane głównie do pracy w aplikacjach radiowych, gdzie sygnały są modulowane i nie wypadają w zakresie akustycznym. Ich struktura bazuje na pracy w trybie nasycenia, co oznacza, że przełączają się w stan aktywny na krótki czas, co prowadzi do znacznych zniekształceń nieliniowych. Dlatego nie nadają się do wzmacniania sygnałów akustycznych, które wymagają wysokiej jakości i minimalnych zniekształceń. W praktyce, wzmacniacze klasy C są używane w nadajnikach FM oraz w aplikacjach RF, gdzie istotne jest uzyskanie wysokiej efektywności i mocy wyjściowej, jednak zniekształcenia sygnału mogą być tolerowane. W kontekście audio, najlepszym wyborem są wzmacniacze klasy A lub AB, które oferują znacznie lepszą linearność i niższe zniekształcenia, co jest zgodne z dobrymi praktykami w produkcji sprzętu audio.

Pytanie 23

Standard karty bezstykowej używanej w systemach zarządzania dostępem to

A. HDMI
B. FIREWARE
C. MIFARE
D. RCP
Wybór odpowiedzi związanych z HDMI, FIREWARE czy RCP wskazuje na pomylenie różnych standardów technologicznych, które nie odnoszą się do kontekstu bezdotykowej kontroli dostępu. HDMI (High-Definition Multimedia Interface) to standard interfejsu do przesyłania cyfrowego sygnału audio i wideo, a nie kart dostępu. Jego zastosowanie koncentruje się na przesyłaniu danych pomiędzy urządzeniami multimedialnymi, a nie na identyfikacji czy kontroli dostępu. FIREWARE, z drugiej strony, to termin, który nie jest standardem, lecz może być mylnie interpretowany jako związany z oprogramowaniem sprzętowym (firmware) w kontekście urządzeń elektronicznych. Choć oprogramowanie sprzętowe jest kluczowe w zarządzaniu funkcjami urządzeń, to nie ma związku z bezdotykowymi systemami kontroli dostępu, które wykorzystują technologie RFID. RCP (Remote Control Protocol) to protokół, który umożliwia zdalne sterowanie urządzeniami, jednak nie ma zastosowania w kontekście kart dostępu ani RFID. Typowym błędem w podejściu do tego pytania jest mylenie zastosowań standardów technologicznych, co prowadzi do niepoprawnych wniosków. Kluczowe jest zrozumienie, jaki jest cel każdego z tych standardów i ich odpowiednie zastosowanie w praktyce, aby unikać takich pomyłek.

Pytanie 24

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. direktory
B. dipole
C. fidery
D. symetryzatory
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 25

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Wykorzystać przewód aluminiowy o identycznym przekroju
B. Użyć przewodu o mniejszym przekroju
C. Zrezygnować z realizacji połączenia
D. Połączyć dwie żyły (lub więcej) równolegle
Rezygnacja z połączenia, kiedy spadek napięcia jest za duży, to nie najlepszy pomysł. Takie podejście może tylko unikać problemów, zamiast je rozwiązywać. Możliwe, że stracisz energię, a to wpłynie na sprzęt, który jest zasilany. Użycie mniejszego przewodu to również zły krok, bo to zwiększa opór, a problem z napięciem tylko się pogłębia. Wydaje się, że wybór przewodu aluminiowego za niższą cenę jest dobry, ale pamiętaj, że aluminium jest znacznie gorsze w przewodnictwie niż miedź, co prowadzi do większego oporu i spadku napięcia. Kiedy projektujesz instalacje, musisz naprawdę zrozumieć, jak kluczowe jest dobre dobranie przewodów i ich przekrojów, żeby wszystko działało bezpiecznie i efektywnie. Ignorowanie tych zasad może prowadzić do poważnych awarii, a nawet grozić pożarem, co czyni takie podejścia ryzykownymi. Dlatego lepiej trzymać się standardów branżowych, jak PN-IEC 60364, bo to podstawa dobrego projektowania i budowy instalacji elektrycznych.

Pytanie 26

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. IrDA
B. Bluetooth
C. NFC
D. WiFi
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 27

W czterech różnych wzmacniaczach selektywnych przeprowadzono analizę charakterystyki przenoszenia, a na tej podstawie wyznaczono współczynnik prostokątności p. Jaka wartość współczynnika prostokątności wskazuje na najwyższą selektywność wzmacniacza?

A. p = 1,0
B. p = 0,8
C. p = 0,4
D. p = 0,6
Wartość współczynnika prostokątności p = 1,0 oznacza najlepszą selektywność wzmacniacza, ponieważ wskazuje na idealne parametry przenoszenia sygnału. Wzmacniacz o p = 1,0 charakteryzuje się maksymalnym poziomem wzmocnienia w pasmie przenoszenia oraz minimalną ilością zniekształceń poza tym zakresem. W praktyce oznacza to, że wzmacniacz jest w stanie skutecznie oddzielić sygnały o różnych częstotliwościach, co jest kluczowe w aplikacjach takich jak komunikacja radiowa, gdzie ważne jest oddzielanie sygnałów o różnych częstotliwościach. W branży telekomunikacyjnej standardy, takie jak ITU-T G.703, podkreślają znaczenie selektywności w systemach transmisyjnych, co czyni ten wskaźnik krytycznym dla zapewnienia wysokiej jakości sygnału. Wartości p mniejsze niż 1,0 sygnalizują gorsze parametry selektywności, co może prowadzić do zniekształceń i utraty jakości sygnału, szczególnie w skomplikowanych systemach, gdzie wiele sygnałów jest przesyłanych równocześnie.

Pytanie 28

System RDS (Radio Data System) pozwala na

A. odsłuch z zaawansowanym efektem przestrzennym stereo
B. transmisję informacji tekstowych przez emisję UKF FM
C. zdalne włączanie i wyłączanie odbiornika radiowego
D. odbiór cyfrowych danych poprzez emisję UKF FM
Nieprawidłowe odpowiedzi sugerują mylne zrozumienie funkcji systemu RDS. Zdalne włączenie i wyłączenie odbiornika radiofonicznego, jak również odsłuch z pogłębionym przestrzennym efektem stereofonicznym, są funkcjami, które nie są częścią specyfikacji RDS. RDS nie służy ani do zdalnego sterowania odbiornikiem, ani do poprawy jakości dźwięku w sensie przestrzennym. W rzeczywistości, system RDS jest narzędziem do transmisji informacji, które jest zintegrowane z analogowym sygnałem radiowym, a jego głównym celem jest dostarczanie danych tekstowych oraz innych informacji do słuchaczy. Ponadto, odpowiedzi, które sugerują nadawanie informacji słownych, mylą funkcję RDS z innymi systemami komunikacyjnymi. RDS nie nadawcza informacji w postaci dźwiękowej; zamiast tego, przesyła metadane, które są odbierane przez radioodbiorniki. Te nieporozumienia mogą wynikać z braku znajomości podstawowych zasad działania RDS oraz jego ograniczeń. Właściwe zrozumienie tego systemu pozwala uniknąć typowych błędów myślowych i lepiej ocenić jego zastosowania w kontekście współczesnych technologii radiowych.

Pytanie 29

Aby zbadać ciągłość żył w przewodzie teletechnicznym, należy zastosować

A. omomierz
B. woltomierz
C. galwanometr
D. częstościomierz
Omomierz to super przyrząd do mierzenia oporu elektrycznego, a to znaczy, że jest świetny do sprawdzania, czy żyły w przewodzie teletechnicznym działają tak, jak powinny. Z mojego doświadczenia, sprawdzanie ciągłości żył jest naprawdę ważne, bo jak będą jakieś przerwy, to cała instalacja teletechniczna może po prostu nie działać. Kiedy używasz omomierza, możesz zmierzyć opór między końcami przewodów; jeśli wartość jest bliska zeru, to wiadomo, że przewód działa jak trzeba. Warto też pamiętać, że standardy takie jak IEC 61010 mówią, jak istotny jest pomiar oporu dla bezpieczeństwa instalacji elektrycznych. Dobrze jest też robić takie pomiary przed włączeniem systemu oraz regularnie je kontrolować, żeby uniknąć problemów później. Ogólnie mówiąc, omomierz to jedno z tych narzędzi, które naprawdę szybko pomogą zdiagnozować problemy z ciągłością, a to może zaoszczędzić czas i kasę na przyszłość.

Pytanie 30

Wkręty z łbem oznakowanym symbolem PH można odkręcać za pomocą wkrętaka

A. krzyżowym
B. czworokątnym
C. gwiazdkowym
D. płaskim
Wkręty z łbem oznaczonym symbolem PH nie nadają się do użycia z wkrętakami płaskimi, ponieważ ich konstrukcja jest całkowicie niezgodna z profilem łba wkrętu. Wkrętaki płaskie mają prostą, płaską końcówkę, co ogranicza kontakt z rowkiem łba wkrętu i prowadzi do poślizgu narzędzia, a w efekcie do uszkodzenia zarówno wkrętu, jak i materiału, w którym jest osadzony. W kontekście wkrętów czworokątnych, które wymagają zupełnie innego typu wkrętaka, błędne jest stosowanie wkrętaka krzyżowego. Wkrętaki czworokątne mają inny kształt, który nie pasuje do standardu PH, co mogłoby prowadzić do zwiększonego ryzyka uszkodzenia narzędzia i elementów złącznych. Z kolei wkrętaki gwiazdkowe, choć mogą wyglądać podobnie do krzyżowych, różnią się budową, a ich końcówki są przystosowane do innych łbów wkrętów. Użycie niewłaściwego wkrętaka nie tylko zwiększa ryzyko uszkodzenia wkrętów, ale także prowadzi do marnotrawienia czasu i zasobów. W praktyce, stosowanie odpowiednich narzędzi zgodnych z typem wkrętu jest kluczowe dla efektywności i jakości pracy, a także dla unikania problemów związanych z nieodpowiednim doborem narzędzi.

Pytanie 31

Jakie są właściwe kroki do wykonania podczas wymiany uszkodzonej kamery monitoringu połączonej z rejestratorem wideo?

A. Odłączenie zasilania od kamery, demontaż kamery, odłączenie przewodu sygnałowego od uszkodzonej kamery i podłączenie do nowego urządzenia, zamontowanie kamery, podłączenie zasilania do kamery
B. Odłączenie przewodu sygnałowego od kamery, odłączenie zasilania od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie zasilania do kamery, podłączenie przewodu sygnałowego do kamery
C. Odłączenie zasilania od kamery, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamocowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do kamery
D. Odłączenie zasilania od rejestratora, odłączenie przewodu sygnałowego od kamery, zdemontowanie uszkodzonej kamery i zamontowanie nowej, podłączenie przewodu sygnałowego do kamery, podłączenie zasilania do rejestratora
Wymiana kamery monitoringu wymaga precyzyjnego podejścia i znajomości właściwej kolejności działań. Nieprawidłowe podejście do tej procedury może prowadzić do poważnych problemów, takich jak uszkodzenie kamery, rejestratora czy nawet całego systemu monitoringu. Na przykład, odłączenie przewodu sygnałowego przed odłączeniem zasilania stwarza ryzyko uszkodzenia zarówno złącza sygnałowego, jak i wewnętrznych komponentów kamery, co może skutkować koniecznością wymiany całego urządzenia. Takie działanie jest sprzeczne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi, które nakazują najpierw rozłączyć zasilanie. Dodatkowo, demontowanie kamery przed odłączeniem sygnału i zasilania narusza podstawowe zasady ochrony sprzętu. W przypadku podłączania nowej kamery, najpierw należy założyć przewód sygnałowy, a potem dostarczyć zasilanie, co jest istotne dla prawidłowego rozruchu i synchronizacji z systemem. W każdym przypadku kluczowe jest trzymanie się ustalonych procedur, aby uniknąć niepotrzebnych komplikacji i zapewnić funkcjonalność systemu monitoringu.

Pytanie 32

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBµV
B. dBmA
C. dBµΩ
D. dBmW
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 33

Jaką rolę odgrywa router w sieci komputerowej?

A. Łącznika segmentów sieci
B. Konwertera danych cyfrowych
C. Konwertera danych analogowych
D. Węzła komunikacyjnego
Router jest kluczowym elementem w sieci komputerowej, pełniącym funkcję węzła komunikacyjnego, co oznacza, że zarządza ruchem danych pomiędzy różnymi sieciami. Jego głównym zadaniem jest kierowanie pakietów danych do odpowiednich adresów, co zapewnia efektywną komunikację między urządzeniami znajdującymi się w różnych lokalizacjach. Przykładem zastosowania routera może być domowa sieć Wi-Fi, gdzie router łączy lokale urządzenia, takie jak komputery, telefony czy smart TV z Internetem. W dzisiejszym świecie, w którym komunikacja opiera się na protokołach takich jak TCP/IP, routery są niezbędne do prawidłowego przesyłania informacji. Dobry router powinien przestrzegać standardów takich jak RFC 791, dotyczącego protokołu IP, co zapewnia jego interoperacyjność z innymi urządzeniami. Dodatkowo, routery mogą oferować zaawansowane funkcje, takie jak NAT (Network Address Translation), co pozwala na oszczędne wykorzystanie adresów IP oraz zwiększa bezpieczeństwo sieci.

Pytanie 34

Realizacja programu "instrukcja po instrukcji" w tzw. trybie krokowym mikroprocesora ma na celu

A. wyznaczenie miejsca, w którym występuje błąd w oprogramowaniu
B. określenie tempa przetwarzania poszczególnych instrukcji
C. podniesienie prędkości działania programu
D. zablokowanie obsługi przerwań zewnętrznych
Zwiększenie szybkości wykonywania programu to jedna z powszechnych myśli, jednak tryb pracy krokowej nie ma na celu przyspieszenia działania programu. Wręcz przeciwnie, metoda ta polega na analizowaniu poszczególnych instrukcji w sposób sekwencyjny, co naturalnie spowalnia całkowity czas wykonania. Użytkownicy mogą błędnie sądzić, że tryb krokowy jest sposobem na optymalizację wydajności, podczas gdy jego głównym celem jest diagnostyka i analiza błędów. Kolejną nieścisłością jest twierdzenie, że tryb krokowy pozwala na określenie szybkości przetwarzania poszczególnych rozkazów. Choć może on dostarczyć informacji na temat czasu wykonania jednostkowych instrukcji, to nie jest to jego priorytetowa funkcjonalność. Ostatecznie, stwierdzenie, że tryb ten uniemożliwia obsługę przerwań zewnętrznych, wynika z nieporozumienia dotyczącego działania mikroprocesorów. W rzeczywistości, wiele systemów umożliwia przerywanie trybu krokowego, co pozwala na reagowanie na zewnętrzne sygnały przerwań. Zrozumienie tych koncepcji jest kluczowe dla prawidłowego stosowania technik programowania oraz dla efektywnego debugowania, co jest fundamentem w tworzeniu wysokiej jakości oprogramowania.

Pytanie 35

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. obniżeniem efektywności rejestratora
B. zawieszeniem pracy systemu
C. przegrzaniem rejestratora
D. zmianą parametrów działania kamer
Zrozumienie wpływu krótkotrwałych zanikania napięcia na systemy CCTV wymaga analizy różnych aspektów działania tych urządzeń. Zmniejszenie wydajności rejestratora, jak zasugerowano, jest mylnym podejściem, ponieważ rejestrator nie działa w trybie ograniczonej wydajności w momencie zaniku napięcia. Zazwyczaj takie urządzenia albo działają, albo przestają funkcjonować, a ich wydajność nie jest regulowana przez krótkotrwałe wahania zasilania. Przegrzanie rejestratora również nie jest bezpośrednio związane z zanikiem napięcia; to zjawisko może wystąpić w przypadku długotrwałej pracy bez odpowiedniej wentylacji lub w wyniku zasilania urządzenia nieodpowiednią mocą. Co więcej, zmiana parametrów pracy kamer nie jest efektem zaniku napięcia, ponieważ kamery również przestają działać w przypadku braku zasilania. Należy zrozumieć, że systemy CCTV są projektowane z myślą o stabilności zasilania i w przypadku jego braku mogą nie tylko przestać rejestrować obraz, ale również prowadzić do utraty danych. Ostatecznie, kluczowe w tej kwestii jest zabezpieczenie systemów przed takimi awariami poprzez odpowiednie źródła zasilania awaryjnego, co jest zgodne z najlepszymi praktykami w branży monitoringu wizyjnego.

Pytanie 36

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. halonowej
C. pianowej
D. proszkowej
Gaśnica pianowa jest odpowiednia do gaszenia pożarów instalacji elektrycznych, ponieważ nie przewodzi prądu. W przypadku pożaru w instalacji elektrycznej, kluczowym aspektem jest unikanie używania środków gaśniczych, które mogą przewodzić prąd, co może prowadzić do porażenia prądem oraz dodatkowego zagrożenia pożarowego. Standardy ochrony przeciwpożarowej zalecają stosowanie gaśnic pianowych, które tworzą warstwę piany, izolując ogień od tlenu, co skutecznie gasi ogień. Przykładem zastosowania gaśnicy pianowej może być sytuacja, w której dochodzi do zapalenia się przewodów elektrycznych w obiektach przemysłowych. W takich przypadkach, użycie gaśnicy pianowej nie tylko jest zgodne z zasadami bezpieczeństwa, ale również jest skuteczne w ograniczaniu skutków pożaru. Zgodnie z normami, w budynkach użyteczności publicznej oraz w różnych obiektach przemysłowych powinny być dostępne gaśnice pianowe, które są przeszkolone do użycia przez pracowników, co zwiększa bezpieczeństwo w razie zagrożenia.

Pytanie 37

Skrót "FM" odnosi się do modulacji

A. amplitudy
B. częstotliwości
C. fazy
D. impulsowo-kodowej
Modulacja częstotliwości (FM) to technika, w której informacja jest transmitowana poprzez zmianę częstotliwości fali nośnej. W praktyce oznacza to, że amplituda fali pozostaje stała, natomiast jej częstotliwość ulega modyfikacji w odpowiedzi na sygnał wejściowy, co pozwala na zwiększenie odporności na zakłócenia. Modulacja ta jest szeroko wykorzystywana w radiokomunikacji, w tym w stacjach radiowych FM, ponieważ zapewnia lepszą jakość dźwięku i większy zasięg w porównaniu do innych rodzajów modulacji, takich jak AM (modulacja amplitudy). Przykładem zastosowania FM może być transmisja sygnałów dźwiękowych w radiach samochodowych oraz w systemach komunikacji bezprzewodowej, gdzie kluczowe jest uzyskanie czystości sygnału. Dobry projekt systemu FM musi również uwzględniać normy dotyczące pasma częstotliwości, aby unikać interferencji i zapewnić zgodność z regulacjami na poziomie krajowym i międzynarodowym, takimi jak ITU-R.

Pytanie 38

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. wymiana rejestratora cyfrowego
B. konfiguracja czasu alarmowania
C. dostosowanie zwory elektromagnetycznej
D. naprawa kontrolera ethernet
Regulacja zwory elektromagnetycznej jest kluczowym elementem konserwacji systemu kontroli dostępu, ponieważ to właśnie zwora odpowiada za fizyczne zabezpieczenie drzwi. Zwory elektromagnetyczne działają na zasadzie przyciągania magnetycznego, które utrzymuje drzwi zamknięte, gdy system jest aktywowany. Właściwa regulacja zapewnia, że zwora działa zgodnie z normami bezpieczeństwa, minimalizując ryzyko nieautoryzowanego dostępu. Przykładem zastosowania regulacji może być sytuacja, w której zwora nie trzyma drzwi wystarczająco mocno, co może prowadzić do ich łatwego otwarcia przez osoby trzecie. Regularne kontrole i dostosowania zwory są zgodne z najlepszymi praktykami branżowymi, które zalecają monitoring stanu mechanizmów zabezpieczeń. Ponadto, zwory powinny być sprawdzane pod kątem ewentualnych uszkodzeń oraz korozji, aby zapewnić ich długoterminową efektywność. Odpowiednie szkolenie personelu w zakresie konserwacji i regulacji systemu zabezpieczeń, w tym zwór, jest również istotnym aspektem utrzymania bezpieczeństwa w obiektach.

Pytanie 39

Który z czynników wpływa na zasięg sieci WLAN w obrębie budynku?

A. Grubość ścian oraz stropów
B. Liczba użytkowników
C. Poziom wilgotności powietrza
D. Temperatura otoczenia
Grubość ścian i stropów jest kluczowym czynnikiem wpływającym na zasięg sieci WLAN w budynkach. Materiały budowlane, z których wykonane są ściany i stropy, mogą znacząco tłumić sygnał radiowy. Na przykład, ściany z betonu, cegły czy metalu posiadają większą gęstość, co powoduje, że sygnał radiowy ma trudności z ich przenikaniem. W praktyce oznacza to, że sieć bezprzewodowa może mieć ograniczony zasięg w obszarach oddzielonych grubymi ścianami. Standardy takie jak IEEE 802.11 określają parametry wydajności sieci WLAN, które powinny być brane pod uwagę przy projektowaniu instalacji. Warto również pamiętać o zastosowaniach praktycznych, takich jak użycie wzmacniaczy sygnału (repeaters) lub punktów dostępowych (access points) w celu zwiększenia zasięgu w trudnych warunkach. Dobrze zaprojektowana sieć WLAN powinna uwzględniać układ budynku oraz zastosowane materiały, aby zapewnić optymalne pokrycie sygnałem.

Pytanie 40

Podstawowym celem korytek kablowych jest

A. prowadzenie i maskowanie przewodów
B. obniżenie rezystancji izolacji przewodów
C. zwiększenie efektywności chłodzenia przewodów
D. powiększenie odległości przewodów od ściany
Głównym zadaniem korytek kablowych jest prowadzenie i maskowanie przewodów, co odgrywa kluczową rolę w organizacji instalacji elektrycznych. Korytka kablowe nie tylko umożliwiają estetyczne ukrycie przewodów, ale również zabezpieczają je przed uszkodzeniami mechanicznymi oraz wpływem czynników zewnętrznych, takich jak wilgoć czy zanieczyszczenia. Dzięki zastosowaniu korytek kablowych, możliwe jest także znaczne uproszczenie procesu montażu i konserwacji instalacji, gdyż przewody są zgromadzone w jednym miejscu. W praktyce, korytka kablowe są wykorzystywane w biurach, halach produkcyjnych czy budynkach użyteczności publicznej, gdzie estetyka i porządek w instalacjach elektrycznych mają istotne znaczenie. Zgodnie z normą PN-EN 50085, stosowanie korytek kablowych powinno być dostosowane do rodzaju przewodów oraz warunków montażu, co pozwala na zapewnienie bezpieczeństwa i niezawodności instalacji. Warto również zauważyć, że odpowiednio zainstalowane korytka kablowe ułatwiają identyfikację przyczyn ewentualnych awarii oraz ich szybką naprawę.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły