Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 czerwca 2025 11:56
  • Data zakończenia: 3 czerwca 2025 12:05

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia jednej fazy
B. brak podłączenia dwóch faz
C. zamiana miejscami dwóch faz
D. zamiana jednej fazy z przewodem neutralnym
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 2

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Czujnika zaniku fazy
B. Neonowego wskaźnika napięcia
C. Omomierza cyfrowego
D. Miernika parametrów instalacji
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 3

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YLY 2,5 mm2
C. YDY 2,5 mm2
D. ALY 2,5 mm2
Odpowiedź ADY 2,5 mm² jest poprawna, ponieważ oznaczenie to odnosi się do przewodów jednożyłowych wykonanych z drutu aluminiowego, które są izolowane polwinitą (PVC). Przewody te charakteryzują się odpowiednimi właściwościami elektrycznymi i mechanicznymi, co czyni je odpowiednimi do stosowania w różnorodnych instalacjach elektrycznych, w tym w budownictwie, przemyśle czy instalacjach domowych. Przekrój żyły wynoszący 2,5 mm² jest standardowym rozwiązaniem dla obwodów o niewielkim poborze prądu, takich jak oświetlenie czy gniazdka. Zastosowanie przewodów aluminiowych staje się coraz bardziej popularne ze względu na ich niską masę i korzystne właściwości przewodzące, pod warunkiem, że są odpowiednio dobrane do obciążenia. W przemyśle elektrycznym ważne jest również, aby wszelkie elementy instalacji spełniały normy bezpieczeństwa, co potwierdza odpowiednia certyfikacja. W kontekście zastosowania, przewody ADY często wykorzystuje się w instalacjach, gdzie nie ma dużych przeciążeń, a warunki pracy są umiarkowane.

Pytanie 4

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 230 A
B. 25 A
C. 1000 A
D. 0,03 A
Przy analizie innych odpowiedzi zauważamy, że wybór wartości 230 A jest błędny ze względu na to, że odpowiadałby on hipotetycznie maksymalnemu prądowi obciążenia, a nie rzeczywistemu prądowi znamionowemu wyłącznika. Przykrością jest, że w praktyce, jeśli obciążenie przekracza znamionowy prąd wyłącznika, może on nie działać prawidłowo, co stwarza potencjalne zagrożenie dla bezpieczeństwa instalacji. Z kolei wartość 0,03 A wskazuje na czułość wyłącznika różnicowoprądowego, co jest istotne dla ochrony przed porażeniem prądem, ale nie ma nic wspólnego z maksymalnym prądem obciążenia, co prowadzi do mylnego rozumienia roli tego parametru. Zastosowanie wyłącznika z czułością 30 mA ma na celu ochronę ludzi, a nie urządzeń. Odpowiedź 1000 A również jest niewłaściwa, ponieważ dotyczy prądu zwarciowego, który wyłącznik może wytrzymać, ale nie jest to wartość, którą można przyjąć jako ciągłe obciążenie. Pojmowanie tych parametrów jest kluczowe, aby uniknąć błędów w doborze urządzeń elektrycznych, co powinno być zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 5

Na izolatorach wsporczych instaluje się przewody

A. uzbrojone
B. szynowe
C. rdzeniowe
D. kabelkowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 6

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
B. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
C. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
D. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
Zrozumienie parametrów wyłącznika instalacyjnego nadprądowego wymaga znajomości podstawowych zasad dotyczących jego funkcjonowania. Odpowiedzi sugerujące prąd zwarciowy, rodzaj zestyku i napięcie podtrzymania są mylące. Prąd zwarciowy to wartość prądu, która występuje w przypadku zwarcia, jednak nie jest to parametr, który definiuje działanie wyłącznika w normalnych warunkach pracy. Z kolei rodzaj zestyku dotyczy bardziej mechanicznej konstrukcji wyłącznika, a nie jego podstawowych właściwości elektrycznych, więc nie jest kluczowym parametrem do analizy wyłączników nadprądowych. Napięcie podtrzymania odnosi się do zdolności wyłącznika do pracy w określonym zakresie napięcia, ale nie jest to parametr, który bezpośrednio wiąże się z jego działaniem jako zabezpieczenia nadprądowego. W kolejnej propozycji, prąd obciążenia, rezystancja zestyku i czas wyłączenia, również odbiegają od istoty funkcjonowania wyłącznika nadprądowego. Prąd obciążenia jest bardziej związany z warunkami pracy urządzenia, a rezystancja zestyku nie jest parametrem specyfikującym wyłącznik. Z kolei czas wyłączenia to wynik działania wyłącznika, a nie jego właściwość. Ostatnia opcja, dotycząca napięcia dopuszczalnego i prądu różnicowego, również jest myląca, ponieważ prąd różnicowy dotyczy wyłączników różnicowoprądowych, a nie nadprądowych, co może prowadzić do nieporozumień i błędów w doborze odpowiednich zabezpieczeń. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby unikać takich nieścisłości w ocenie wyłączników nadprądowych.

Pytanie 7

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. miernik indukcyjny uziemień
B. omomierz
C. miernik obwodu zwarcia
D. megaomomierz
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 8

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. ochronnik przeciwprzepięciowy
B. wyłącznik instalacyjny płaski
C. wyłącznik różnicowoprądowy
D. bezpiecznik instalacyjny
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 9

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana oprawki.
B. Wykonanie pomiarów natężenia oświetlenia.
C. Wymiana złączki.
D. Czyszczenie obudowy i styków.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 10

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Zagniatarka
C. Nóż monterski
D. Płaskoszczypce
Nóż monterski jest kluczowym narzędziem przy naprawie przeciętego przewodu, gdyż umożliwia precyzyjne przygotowanie końcówek przewodów do lutowania. W praktyce, przed przystąpieniem do lutowania, należy odpowiednio odizolować końce przewodów, co wymaga użycia ostrego noża monterskiego. Dzięki odpowiedniej technice użycia noża, możemy uniknąć uszkodzenia żył przewodu oraz zapewnić ich czystą powierzchnię lutowniczą. Istotne jest, aby stosować nóż monterski zgodnie z zasadami BHP, co zapobiega urazom. Ponadto, zgodnie z normami branżowymi, każda naprawa powinna być przeprowadzana z użyciem narzędzi zapewniających dokładność oraz bezpieczeństwo. Dlatego nóż monterski powinien być zawsze w dobrym stanie, a jego ostrze powinno być regularnie wymieniane, aby zminimalizować ryzyko uszkodzenia przewodu. Stosowanie noża monterskiego w połączeniu z lutownicą jest zgodne z najlepszymi praktykami w branży elektrycznej oraz elektronicznej.

Pytanie 11

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 3 szt.
B. 13 szt.
C. 10 szt.
D. 6 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 12

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. mufa rozgałęźna oraz odcinek kabla
B. odcinek kabla oraz zgrzewarka
C. dwie mufy kablowe i odcinek kabla
D. odcinek kabla zakończony głowicami
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 13

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 5 sekund
B. 0,2 sekundy
C. 1 sekundę
D. 0,4 sekundy
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 14

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pn = 3 kW, Un = 230 V?

A. aR 16 A
B. gG 16 A
C. gB 20 A
D. aM 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 15

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 10 mm2
B. 4 mm2
C. 2,5 mm2
D. 1,5 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 16

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia lamp oświetleniowych
B. wymiany gniazd zasilających
C. montażu nowych punktów świetlnych
D. czyszczenia urządzeń w rozdzielniach
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 17

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Miedź
B. Stal
C. Brąz
D. Aluminium
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 18

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy D
C. Klasy C
D. Klasy B
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 19

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. podtynkowej.
C. wiązanej.
D. natynkowej.
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 20

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
B. Do formowania oczek na końcach żył jednodrutowych.
C. Do montażu zacisków zakleszczających.
D. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 21

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru rezystancji
B. Miernika z funkcją pomiaru pojemności
C. Woltomierza
D. Amperomierza
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 22

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 23

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Ochrona przed przeciążeniami
B. Kontrola temperatury przewodów
C. Zdalne sterowanie obwodami elektrycznymi
D. Zmniejszenie zużycia energii
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 24

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm2 w izolacji z PVC?

A. DY 2,5 mm2
B. LY 2,5 mm2
C. YLY 7×2,5 mm2
D. YDY 5×2,5 mm2
Odpowiedź 'LY 2,5 mm2' jest prawidłowa, ponieważ oznaczenie to odnosi się do przewodu jednożyłowego z wielodrutową żyłą miedzianą o przekroju 2,5 mm², który jest stosowany w instalacjach elektrycznych. Przewody typu LY charakteryzują się tym, że są wykonane z materiałów odpornych na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym wyborem do zastosowania w różnych warunkach przemysłowych. Przykładowe zastosowania obejmują instalacje w budynkach mieszkalnych, biurowych oraz przemysłowych, gdzie niezbędne jest zapewnienie bezpieczeństwa i niezawodności. Przewody te spełniają normy PN-EN 60228, które określają wymagania dotyczące właściwości przewodów elektrycznych. Użycie przewodów LY w instalacjach domowych zapewnia nie tylko poprawne działanie urządzeń elektrycznych, ale również minimalizuje ryzyko wystąpienia awarii elektrycznych. Dodatkowo, przewody te wykazują niską rezystancję, co zapewnia efektywne przewodzenie prądu i minimalizuje straty energetyczne.

Pytanie 25

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. omomierza oraz woltomierza
B. omomierza i amperomierza
C. watomierza oraz woltomierza
D. woltomierza i amperomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 26

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Oczkowym.
B. Nasadowym.
C. Płaskim.
D. Imbusowym.
Odpowiedź "Imbusowym" jest prawidłowa, ponieważ klucz imbusowy jest zaprojektowany do używania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionej na ilustracji śruby, która ma sześciokątną główkę zewnętrzną, klucz imbusowy nie jest odpowiedni. Zamiast tego można zastosować klucz nasadowy, oczkowy lub płaski, które są przystosowane do pracy ze śrubami mającymi zewnętrzne główki. W praktyce, korzystanie z klucza imbusowego do dokręcania śrub z gniazdem zewnętrznym prowadzi do uszkodzenia zarówno narzędzia, jak i śruby. W kontekście standardów branżowych, ważne jest, aby dobierać narzędzia odpowiednio do typu śruby, co zwiększa efektywność pracy i zmniejsza ryzyko awarii. Zrozumienie różnic pomiędzy typami kluczy i ich zastosowaniami jest kluczowe dla prawidłowego wykonywania prac montażowych i serwisowych, co jest standardem w branży inżynieryjnej.

Pytanie 27

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Instalacja dodatkowego gniazda elektrycznego
D. Zmiana rodzaju zastosowanych przewodów
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 28

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,79
C. 0,75
D. 0,95
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 29

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz znamionowy prąd ciągły 63 mA
B. 0,03 A oraz napięcie znamionowe 63 V
C. 0,03 mA oraz napięcie znamionowe 63 V
D. 0,03 A i znamionowy prąd ciągły 63 A
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 30

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Czujnik zaniku fazy
B. Odgromnik
C. Stycznik elektromagnetyczny
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 31

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Luźny przewód w przełączniku
B. Zbyt niska moc żarówki
C. Zwarcie w obwodzie lampy
D. Przerwa w obwodzie lampy
Poluzowany przewód w wyłączniku może być odpowiedzialny za nagrzewanie się łącznika puszkowego, ponieważ prowadzi do zwiększonego oporu elektrycznego w miejscu połączenia. Gdy przewód nie jest odpowiednio dokręcony, pojawia się luz, co skutkuje niewłaściwym kontaktem i generowaniem ciepła. Zjawisko to jest zgodne z zasadą Joule'a, według której moc wydzielająca się na oporze jest proporcjonalna do kwadratu natężenia prądu i oporu. Przykłady zastosowania tej wiedzy można znaleźć w praktykach instalacyjnych, gdzie stosuje się odpowiednie narzędzia do dokręcania połączeń, co minimalizuje ryzyko nagrzewania się. Dobre praktyki branżowe zalecają regularne przeglądy połączeń elektrycznych oraz zastosowanie elementów zabezpieczających, takich jak złączki z funkcją blokady, aby uniknąć luzów w instalacjach elektrycznych.

Pytanie 32

Z jakiego rodzaju metalu oraz w jakiej formie produkowane są żyły przewodu YDYp 4×1,5 mm2?

A. Z miedzi w formie drutu
B. Z aluminium w formie linki
C. Z aluminium w formie drutu
D. Z miedzi w formie linki
Żyły w przewodzie YDYp 4×1,5 mm² są z miedzi, co jest standardem w branży elektrycznej. Miedź jest super, bo dobrze przewodzi prąd, dlatego właśnie się ją najczęściej wybiera do instalacji elektrycznych. W przypadku YDYp, jego druciana konstrukcja daje sporo elastyczności, co ułatwia robienie instalacji, zwłaszcza tam, gdzie jest ciasno. Te przewody można spotkać w budownictwie, szczególnie przy instalacjach oświetleniowych i systemach zasilających. Zgodnie z normą PN-EN 60228, miedziane przewody mają dokładnie określone parametry, co zapewnia bezpieczeństwo i efektywność. Na przykład, YDYp 4×1,5 mm² świetnie sprawdza się w oświetleniu w domach, gdzie trzeba mieć na uwadze zabezpieczenia przed przeciążeniem i zwarciem.

Pytanie 33

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. DYt
B. LgY
C. YADY
D. XzTKMXpw
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 34

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Czujnik kolejności faz.
C. Przekaźnik czasowy.
D. Lampkę sygnalizacyjną trójfazową.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 35

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje zwarcia
D. Rozpoznaje przeciążenia
Wykrywanie przeciążenia przez wyzwalacz elektromagnetyczny w wyłączniku nadprądowym to często mylony temat. Chociaż wyzwalacz elektromagnetyczny jest kluczowym elementem w systemach zabezpieczeń, jego główną funkcją nie jest identyfikacja przeciążenia, lecz detekcja zwarć, które następują przy znacznie większych prądach. Przeciążenie oznacza, że prąd roboczy jest wyższy od nominalnego, ale wciąż niższy od wartości, która spowodowałaby bezpośrednie uszkodzenie obwodu. W takich sytuacjach wyzwalacze termiczne, a nie elektromagnetyczne, są odpowiedzialne za monitorowanie długotrwałego wzrostu temperatury, co związane jest z przeciążeniem. Z kolei gasi łuk elektryczny i naciąga sprężynę napędu to funkcje, które również nie są charakterystyczne dla wyzwalacza elektromagnetycznego. Gasi łuk elektryczny w wyłącznikach nadprądowych jest realizowane zazwyczaj przez specjalne mechanizmy, takie jak komory gaszenia, które mają na celu zminimalizowanie ryzyka powstania łuku podczas rozłączenia obwodu. Naciąganie sprężyny napędu dotyczy mechanizmów działania wyłączników, ale nie jest jednym z zadań wyzwalacza elektromagnetycznego. Stąd wynika, że pomylenie funkcji różnych komponentów wyłącznika nadprądowego może prowadzić do niewłaściwego zrozumienia ich roli w systemach elektrycznych.

Pytanie 36

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 2,3 Ω
C. 8,0 Ω
D. 4,6 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 37

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,69
B. 0,84
C. 0,49
D. 0,39
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 38

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. pomiar rezystancji uziemienia
B. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
C. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 39

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225

A. 1 - sprawny, 2 - niesprawny.
B. 1 - niesprawny, 2 - sprawny.
C. Oba niesprawne.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 40

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. rok
B. pięć lat
C. trzy lata
D. dwa lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.