Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 13 maja 2025 19:24
  • Data zakończenia: 13 maja 2025 19:25

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik izolacyjny w rejonie pracy
B. poinformować dostawcę energii
C. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
D. oznaczyć obszar roboczy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 2

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 3

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Sprawdzenie kondycji wycinków komutatora
B. Wyważanie
C. Pomiar rezystancji izolacji
D. Weryfikacja braku zwarć międzyzwojowych
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 4

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/300 V
B. 600/1000 V
C. 300/500 V
D. 450/750 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 5

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyłącznik nadprądowy dwubiegunowy.
B. Ogranicznik przepięć.
C. Czujnik zaniku i kolejności faz.
D. Wyłącznik różnicowoprądowy z członem nadprądowym.
Wyłącznik różnicowoprądowy z członem nadprądowym to urządzenie o kluczowym znaczeniu w systemach elektroenergetycznych, które zapewnia zarówno ochronę przed przeciążeniem, jak i przed porażeniem prądem elektrycznym. Jego charakterystyczne oznaczenia i symbole na obudowie pozwalają na łatwe zidentyfikowanie go wśród innych urządzeń elektrycznych. W praktyce, wyłączniki różnicowoprądowe z członem nadprądowym są często stosowane w instalacjach domowych oraz przemysłowych, gdzie zabezpieczają przed skutkami zwarć i przeciążeń. Zgodnie z normami PN-EN 61008 oraz PN-EN 60947, urządzenia te powinny być stosowane w obwodach, gdzie istnieje ryzyko porażenia prądem, zwłaszcza w pomieszczeniach wilgotnych, jak łazienki czy kuchnie. Regularne testowanie tych wyłączników jest kluczowe dla zapewnienia ich skuteczności. Dobrą praktyką jest również ich instalacja w obwodach, gdzie zasilane są urządzenia o dużym poborze mocy, co minimalizuje ryzyko uszkodzenia sprzętu i zapewnia bezpieczeństwo użytkowników.

Pytanie 6

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. odcinek kabla oraz zgrzewarka
B. dwie mufy kablowe i odcinek kabla
C. mufa rozgałęźna oraz odcinek kabla
D. odcinek kabla zakończony głowicami
Odpowiedź, która wskazuje na użycie dwóch muf kablowych i odcinka kabla, jest prawidłowa, ponieważ podczas naprawy uszkodzonego kabla przyłączeniowego, kluczowe jest zapewnienie odpowiedniego połączenia i izolacji. Mufy kablowe pozwalają na skuteczne połączenie dwóch odcinków kabla, co jest szczególnie istotne w przypadku, gdy uszkodzenie występuje w obrębie zasięgu istniejącego kabla. Dwie mufy są potrzebne, aby połączyć nowy odcinek kabla z istniejącymi końcami kabla, co zapewnia, że cała instalacja będzie pracować prawidłowo. Praktycznym przykładem zastosowania tego rozwiązania może być sytuacja, w której kabel został uszkodzony przez maszynę budowlaną. W takim przypadku profesjonalne podejście obejmuje nie tylko wymianę uszkodzonego odcinka, ale również użycie muf w celu zapewnienia wodoodporności i ochrony przed uszkodzeniami mechanicznymi. Zgodnie z normami IEC 60502 oraz PN-EN 50393, stosowanie muf kablowych w połączeniach kablowych jest standardową praktyką, co dodatkowo potwierdza słuszność tego rozwiązania.

Pytanie 7

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Silnik będzie funkcjonować w trybie jałowym
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
D. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 8

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 750 obr./min
B. 1 450 obr./min
C. 1 500 obr./min
D. 720 obr./min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * fN) / p, gdzie n to prędkość obrotowa w obr./min, fN to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku fN wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.

Pytanie 9

Którą z wymienionych funkcji posiada przyrząd przedstawiony na ilustracji?

Ilustracja do pytania
A. Lokalizacja przewodów pod tynkiem.
B. Pomiar rezystancji uziemienia.
C. Sprawdzanie wyłączników różnicowoprądowych.
D. Badanie kolejności faz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tester wyłączników różnicowoprądowych, który widzisz na ilustracji, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Jego główną funkcją jest sprawdzanie poprawności działania wyłączników różnicowoprądowych. Te urządzenia zabezpieczające mają na celu ochronę ludzi przed porażeniem prądem elektrycznym, wykrywając nieprawidłowości w przepływie prądu. Tester symuluje różne warunki, takie jak prąd upływowy, co pozwala na weryfikację, czy wyłącznik prawidłowo zareaguje na zagrożenie. W praktyce, regularne testowanie wyłączników różnicowoprądowych jest zalecane zgodnie z normami PN-EN 61010-1 i PN-EN 60947-2, co pomaga w utrzymaniu wysokiego poziomu bezpieczeństwa elektrycznego w budynkach. Warto również pamiętać, że nieprzeprowadzanie takich testów może prowadzić do niebezpiecznych sytuacji, w których uszkodzone lub wadliwe wyłączniki nie zadziałają w przypadku awarii, co stwarza ryzyko porażenia prądem lub pożaru.

Pytanie 10

Na które końce uzwojenia pracującego silnika prądu stałego doprowadza się napięcie elektryczne za pomocą szczotek?

A. Twornika
B. Kompensacyjnego
C. Wzbudzenia
D. Komutacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "twornika". W silniku prądu stałego, to uzwojenie twornika jest kluczowym elementem, przez który przepływa prąd elektryczny dostarczany przez szczotki. Twornik jest odpowiedzialny za generowanie momentu obrotowego, który napędza wirnik silnika. W praktyce oznacza to, że odpowiedni przepływ prądu w uzwojeniu twornika wpływa na wydajność i moc silnika. W standardach branżowych, takich jak IEC 60034 dotyczący silników elektrycznych, podkreśla się znaczenie poprawnego podłączenia szczotek do uzwojeń twornika, aby zapewnić optymalną pracę i minimalizować straty energii. W zastosowaniach przemysłowych, silniki prądu stałego z odpowiednio skonstruowanym układem twornika są szeroko wykorzystywane w napędach, robotyce oraz w systemach automatyki, gdzie stabilność i kontrola prędkości obrotowej są istotne.

Pytanie 11

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pn = 3 kW, Un = 230 V?

A. gB 20 A
B. aM 20 A
C. aR 16 A
D. gG 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 12

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,40 V)
B. 230 V (±1,50 V)
C. 230 V (±1,30 V)
D. 230 V (±1,20 V)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 13

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. TN-S
B. TN-C
C. IT
D. TT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 14

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. w lokalach mieszkalnych w miejscach o łatwym dostępie
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
D. poza lokalami mieszkalnymi w miejscach o łatwym dostępie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi, wyłącznie w zamkniętych szafkach, jest prawidłowa z kilku powodów. Przede wszystkim, umiejscowienie liczników w lokalach mieszkalnych może prowadzić do utrudnionego dostępu dla personelu technicznego oraz stwarzać zagrożenie dla bezpieczeństwa mieszkańców. Zgodnie z normami branżowymi, takimi jak PN-EN 62053, liczniki powinny być instalowane w miejscach, które zapewniają ich łatwą eksploatację, ale nie mogą naruszać prywatności użytkowników lokali mieszkalnych. Zastosowanie zamkniętych szafek nie tylko zabezpiecza urządzenia przed zniszczeniem, ale także minimalizuje ryzyko nieautoryzowanego dostępu. Przykładowo, w wielu nowoczesnych budynkach mieszkalnych, liczniki są zlokalizowane w wydzielonych pomieszczeniach technicznych, co pozwala na efektywne zarządzanie energią oraz ułatwia przeprowadzanie niezbędnych pomiarów i konserwacji. Takie podejście jest zgodne z najlepszymi praktykami w zarządzaniu budynkami i zapewnia bezpieczeństwo oraz komfort mieszkańców.

Pytanie 15

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy różnicowoprądowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy podnapięciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 16

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. watomierza oraz woltomierza
B. woltomierza i amperomierza
C. omomierza i amperomierza
D. omomierza oraz woltomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 17

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 4,0 mm2
B. 2,5 mm2
C. 1,5 mm2
D. 6,0 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 18

W jakiej odległości od siebie powinny być umieszczone miejsca montażu dwóch sufitowych lamp w pomieszczeniu o wymiarach 2 m × 4 m, aby uzyskać optymalną równomierność oświetlenia?

A. 1,0 m
B. 2,0 m
C. 1,5 m
D. 2,5 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,0 m jest prawidłowa, ponieważ w pomieszczeniu o wymiarach 2 m × 4 m, rozmieszczenie sufitowych opraw oświetleniowych w odległości 2,0 m od siebie zapewnia optymalną równomierność natężenia oświetlenia. Przyjmuje się, że dla pomieszczeń o takich wymiarach, każda lampa powinna pokrywać obszar, który nie jest większy niż 2 m, aby zminimalizować cienie i zapewnić jednolite oświetlenie. W praktyce, rozmieszczając oprawy w odległości 2,0 m, uzyskuje się efekt, w którym każdy punkt w pomieszczeniu jest równomiernie oświetlony, co jest szczególnie istotne w kontekście ergonomii i komfortu użytkowników. Dobre praktyki w projektowaniu oświetlenia wskazują, że zachowanie odległości 2,0 m między oprawami pozwala na zminimalizowanie zjawiska nadmiarowego oświetlenia w jednym miejscu, co mogłoby prowadzić do efektu olśnienia. Ponadto, właściwe rozmieszczenie opraw wpływa także na efektywność energetyczną całego systemu oświetleniowego.

Pytanie 19

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. prądu obciążenia oraz czasu jego działania
B. prądu różnicowego oraz czasu jego działania
C. napięcia sieciowego oraz prądu różnicowego
D. napięcia sieciowego oraz prądu obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 20

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,02 mA
B. ±0,35 mA
C. ±2,35 mA
D. ±0,37 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 21

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 2,3 Ω
C. 4,6 Ω
D. 7,7 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 22

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 3 szt.
B. 13 szt.
C. 10 szt.
D. 6 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 23

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Zamiana zużytych urządzeń na nowe
B. Przesunięcie miejsc montażu opraw oświetleniowych
C. Instalacja nowych punktów świetlnych
D. Wymiana uszkodzonych gniazd wtyczkowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 24

W rozdzielnicy zasilającej instalację niskiego napięcia w budynku doszło do wyzwolenia wyłącznika różnicowoprądowego, podczas gdy inne zabezpieczenia nie zareagowały. Jaką można wskazać przyczynę?

A. Awaria wyłącznika nadprądowego w rozdzielnicy
B. Uszkodzenie lub przepalenie przewodu neutralnego
C. Przeciążenie obwodu
D. Zwarcie rezystancyjne do obudowy odbiornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie rezystancyjne do obudowy odbiornika jest jedną z najczęstszych przyczyn zadziałania wyłącznika różnicowoprądowego, ponieważ polega na niepożądanym połączeniu między przewodami roboczymi a obudową urządzenia. W takiej sytuacji część prądu 'ucieka' do ziemi poprzez obudowę, co skutkuje wywołaniem różnicy potencjałów. Wyłącznik różnicowoprądowy działa na zasadzie porównania prądów wpływających i wypływających z obwodu. Kiedy wystąpi niewielka, ale zauważalna różnica, wyłącznik uruchamia się, aby chronić ludzi przed ryzykiem porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu awarii, należy regularnie kontrolować stan techniczny urządzeń oraz ich instalacji, a także stosować odpowiednie materiały oraz zapewnić właściwą wentylację. Normy takie jak PN-EN 61008-1 wskazują na konieczność stosowania wyłączników różnicowoprądowych w instalacjach niskiego napięcia, co pomaga w ochronie życia i zdrowia użytkowników oraz minimalizuje ryzyko uszkodzeń sprzętu.

Pytanie 25

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. tylko przewody fazowe
B. przewody fazowe oraz ochronny
C. wszystkie przewody czynne
D. wyłącznie przewód neutralny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar prądu upływu w trójfazowej instalacji elektrycznej zasilanej z sieci TN-S wymaga objęcia wszystkimi przewodami czynnymi, co oznacza, że należy zmierzyć prąd w przewodach fazowych oraz w przewodzie neutralnym. Praktycznym zastosowaniem tego pomiaru jest ocena skuteczności ochrony przeciwporażeniowej oraz monitorowanie stanu instalacji elektrycznej. Pomiar prądu upływu pozwala zidentyfikować ewentualne prądy upływowe, które mogą wskazywać na nieszczelności izolacji w przewodach. Zgodnie z normą IEC 60364, zaleca się, aby wartość prądu upływu nie przekraczała 30 mA w instalacjach budowlanych, co jest szczególnie istotne w kontekście ochrony zdrowia użytkowników. Regularne pomiary prądu upływu są fundamentalnym elementem utrzymania bezpieczeństwa instalacji i zapewnienia zgodności z przepisami. Ponadto, objęcie wszystkich przewodów czynnych podczas pomiaru pozwala na dokładne określenie sumarycznego prądu upływu, co jest kluczowe dla skutecznej diagnostyki i ewentualnych napraw.

Pytanie 26

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD

A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to B. Kolejność demontażu elementów stojana silnika indukcyjnego jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności podczas przezwojenia. Proces zaczyna się od odcięcia połączeń czołowych, co pozwala na bezpieczne wyłączenie zasilania i ograniczenie ryzyka porażenia prądem. Następnie przystępuje się do usunięcia uzwojenia, co jest istotne, aby uzyskać dostęp do wnętrza stojana. W tym etapie należy zachować ostrożność, aby nie uszkodzić struktury żłobka. Ostatnim krokiem jest usunięcie izolacji żłobkowej, co umożliwia dokładne oczyszczenie elementów i przygotowanie ich do ponownego nawinięcia. Przestrzeganie tej sekwencji demontażu jest zgodne z dobrymi praktykami w branży elektrycznej i mechaniczej, a także z normami bezpieczeństwa, co zapewnia, że proces przezwojenia będzie przeprowadzony w sposób profesjonalny i skuteczny. Właściwe podejście do tych czynności wpływa na wydajność i żywotność silnika.

Pytanie 27

Który z wymienionych typów instalacji elektrycznych jest używany w lokalach mieszkalnych?

A. Wykonana przewodami szynowymi
B. W kanałach podłogowych
C. Prowadzona na drabinkach
D. W listwach przypodłogowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór listw przypodłogowych jako rodzaju instalacji elektrycznej stosowanej w pomieszczeniach mieszkalnych jest jak najbardziej trafny. Listwy przypodłogowe są popularnym rozwiązaniem, ponieważ łączą w sobie funkcje estetyczne i użytkowe. Umożliwiają one ukrycie przewodów elektrycznych, co przyczynia się do uporządkowanego wyglądu wnętrza. W praktyce, listwy te mogą być wyposażone w gniazda zasilające, co zwiększa ich funkcjonalność, a także zapewnia łatwy dostęp do energii elektrycznej w pobliżu ścian, gdzie najczęściej znajdują się urządzenia elektryczne. Zgodnie z normami, instalacje elektryczne w pomieszczeniach mieszkalnych powinny być wykonywane z zachowaniem odpowiednich środków bezpieczeństwa oraz zgodnie z lokalnymi przepisami budowlanymi. Użycie listw przypodłogowych w tym kontekście jest zgodne z zasadami ergonomii i praktyczności. Dodatkowo, wykorzystanie tego rozwiązania pozwala na łatwiejszą konserwację i ewentualne modyfikacje instalacji bez konieczności przeprowadzania skomplikowanych prac budowlanych.

Pytanie 28

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zwarcia w obwodzie elektrycznym
B. przeciążenia obwodu elektrycznego
C. uszkodzenia podłączonego urządzenia elektrycznego
D. zagrożenia porażeniem prądem elektrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 29

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Minimalny przekrój przewodów podłączonych do zacisków
B. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
C. Klasę ochronności przed porażeniem energią elektryczną
D. Najwyższą temperaturę otoczenia podczas eksploatacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 30

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
B. Najwyższy czas zadziałania
C. Maksymalny prąd zwarciowy
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kod literowo-cyfrowy C10 umieszczony na wyłączniku nadmiarowo-prądowym odnosi się do charakterystyki czasowo-prądowej oraz prądu znamionowego wyłącznika. W przypadku 'C' oznacza to, że wyłącznik jest przeznaczony do ochrony urządzeń, które mogą mieć duże prądy rozruchowe, jak silniki elektryczne. Liczba '10' wskazuje, że prąd znamionowy wynosi 10 A. Tego rodzaju wyłączniki są powszechnie stosowane w instalacjach elektrycznych, gdzie konieczne jest zabezpieczenie przed przeciążeniem oraz zwarciami, a jednocześnie umożliwienie chwilowego przepływu większego prądu, co jest istotne w przypadku urządzeń indukcyjnych. Dobrze dobrany wyłącznik nadmiarowo-prądowy chroni instalację przed uszkodzeniami, a także zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że wybór odpowiedniego wyłącznika powinien być zgodny z normami PN-EN 60898, które regulują wymagania i metody badań związanych z wyłącznikami nadmiarowo-prądowymi.

Pytanie 31

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. zwarcie w systemie elektrycznym
C. uszkodzenie urządzenia elektrycznego
D. przeciążenie systemu elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 32

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. IV
C. I
D. III

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź I jest poprawna, ponieważ oświetlenie miejscowe, które ma na celu dostarczenie światła do określonego obszaru, często stosuje oprawy klasy I. Oprawy te są zaprojektowane w taki sposób, aby zapewniały odpowiednią izolację i ochronę przed porażeniem prądem, co jest kluczowe w kontekście ich użycia w miejscach pracy i w przestrzeni publicznej. Klasa I oznacza, że urządzenia te muszą być uziemione, co znacząco zwiększa bezpieczeństwo ich użytkowania. Przykładowo, w biurach czy warsztatach, gdzie oświetlenie miejscowe jest niezbędne do precyzyjnego wykonania zadań, oprawy klasy I zapewniają, że pracownicy są chronieni przed ryzykiem porażenia prądem. W praktyce, oświetlenie miejscowe może być realizowane poprzez lampy biurkowe, które często mają dodatkowe funkcje regulacji intensywności światła. Stosowanie opraw klasy I w takich sytuacjach jest zgodne z normami bezpieczeństwa, co podkreśla znaczenie tego typu oświetlenia w przestrzeniach użytkowych.

Pytanie 33

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji uziemienia
B. Napięcia dotykowego
C. Impedancji zwarciowej
D. Rezystancji izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.

Pytanie 34

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 3 do 5
B. 5 do 10
C. 2 do 3
D. 10 do 20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 35

Który z podanych materiałów charakteryzuje się najwyższą właściwą przewodnością elektryczną?

A. Aluminium
B. Stal
C. Miedź
D. Brąz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miedź to w zasadzie najlepszy wybór, jeśli chodzi o przewodność elektryczną wśród tych materiałów. Ma około 58 MS/m przewodności, a to naprawdę dużo! Dla porównania, aluminium ma tylko około 37 MS/m, więc wiadomo, dlaczego miedź jest tak powszechnie stosowana w elektryce i elektronice. W praktyce wykorzystuje się ją do robienia przewodów i różnych elementów elektronicznych, jak złącza czy obwody drukowane. Dzięki wysokiej przewodności miedzi, straty energii przy przesyle prądu są minimalne, co jest mega ważne w elektroenergetyce. Oprócz tego, miedź jest odporna na korozję i ma sporą wytrzymałość mechaniczną, dlatego sprawdza się w wielu zastosowaniach, od domów po przemysł. W branży, mówi się, że miedź to standardowy materiał do przewodów, więc to tylko potwierdza, jak ważna jest w inżynierii elektrycznej.

Pytanie 36

Którym zestawem przyrządów pomiarowych można w przypadku braku watomierza wyznaczyć moc czynną pobieraną przez silnik elektryczny zasilany z instalacji jednofazowej?

Amperomierz
Częstościomierz
Waromierz
Amperomierz
Częstościomierz
Woltomierz
Omomierz
Waromierz
Woltomierz
Amperomierz
Waromierz
Woltomierz
ABCD

A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ zestaw przyrządów składający się z amperomierza i woltomierza jest wystarczający do pomiaru mocy czynnej silnika elektrycznego zasilanego z instalacji jednofazowej. W obwodach jednofazowych moc czynna obliczana jest na podstawie wzoru P = U * I * cos(φ), gdzie U to napięcie, I to natężenie prądu, a cos(φ) to współczynnik mocy. Amperomierz umożliwia pomiar natężenia prądu, natomiast woltomierz pozwala na pomiar napięcia. Znajomość wartości obu tych parametrów pozwala na obliczenie mocy czynnej silnika. Przykładowo, jeśli zmierzymy napięcie w obwodzie jako 230 V i natężenie prądu jako 10 A, a współczynnik mocy ustalimy na 0,8, moc czynna wyniesie P = 230 * 10 * 0,8 = 1840 W. Taka metoda jest zgodna z praktykami stosowanymi w elektrotechnice i jest szeroko akceptowana w branży.

Pytanie 37

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. HDGs
B. YDYt
C. SMYp
D. OMYp

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 38

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi pod tynkiem
B. miedzianymi umieszczonymi na tynku
C. aluminiowymi umieszczonymi na tynku
D. miedzianymi umieszczonymi pod tynkiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź miedzianymi ułożonymi na tynku jest właściwa, ponieważ stosowanie miedzi w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi jest najczęściej zalecane. Miedź charakteryzuje się wysoką odpornością na korozję, co jest szczególnie istotne w środowiskach, gdzie mogą występować substancje chemiczne, które mogą negatywnie wpływać na materiały elektryczne. Ponadto, ułożenie przewodów na tynku ułatwia ich konserwację oraz wymianę, co jest kluczowe w przypadku uszkodzeń lub awarii. Standardy takie jak PN-IEC 60364 oraz dobre praktyki branżowe rekomendują tego typu rozwiązania, aby zapewnić bezpieczeństwo i niezawodność instalacji. Przykładowo, w zakładach przemysłowych, gdzie występują agresywne substancje chemiczne, zastosowanie miedzi i odpowiednich osprzętów szczelnych może znacząco zmniejszyć ryzyko awarii oraz zapewnić trwałość systemu. W praktyce, instalatorzy często wybierają przewody miedziane, gdyż zapewniają one nie tylko lepszą przewodność, ale także większą odporność na uszkodzenia mechaniczne oraz chemiczne.

Pytanie 39

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 4,0 Ω
B. 3,8 Ω
C. 2,3 Ω
D. 6,6 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 40

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Dodatkowe miejscowe wyrównawcze połączenia ochronne
B. Bardzo niskie napięcie ze źródła bezpiecznego
C. Samoczynne wyłączenie zasilania
D. Uniedostępnianie (umieszczenie poza zasięgiem ręki)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dodatkowe miejscowe wyrównawcze połączenia ochronne stanowią kluczowy element uzupełniającej ochrony przeciwporażeniowej, która ma na celu zminimalizowanie ryzyka porażenia prądem elektrycznym. Tego typu połączenia wykorzystuje się w instalacjach elektrycznych, aby zapewnić wyrównanie potencjałów między różnymi elementami systemu. Przykładem zastosowania jest podłączenie obudowy metalowej urządzeń elektrycznych do instalacji wyrównawczej, co zapobiega gromadzeniu się niebezpiecznych napięć na obudowie. Zgodnie z normami IEC 60364, które regulują zagadnienia związane z instalacjami elektrycznymi w budynkach, zastosowanie dodatkowych miejscowych połączeń ochronnych jest zalecane w obiektach narażonych na zwiększone ryzyko porażenia. W praktyce, takie połączenia mogą być stosowane w miejscach, gdzie występuje możliwość przypadkowego kontaktu z elementami przewodzącymi, jak np. w laboratoriach czy zakładach przemysłowych. Dodatkowe miejsca wyrównawcze są zatem niezbędnym zabezpieczeniem, które wspiera podstawowe metody ochrony, takie jak izolacja czy wyłączniki różnicowoprądowe.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły