Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 09:28
  • Data zakończenia: 14 maja 2025 09:48

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. generuje mgłę olejową
C. łączy sprężone powietrze z mgłą olejową
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 2

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. okulary ochronne
B. fartuch ochronny
C. kask ochronny
D. buty na gumowej podeszwie
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 3

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. praski ręcznej
B. pincety
C. ucinaczki boczne
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 4

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Zgrzewanie
D. Sklejanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 5

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 10 Nm
C. 1 Nm
D. 986 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 6

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. nieprawidłowo zamocowanym przewodem pneumatycznym
C. przerwanym przewodem pneumatycznym
D. siłownikiem
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 7

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Smarownica, manometr, reduktor, filtr powietrza
B. Reduktor, manometr, filtr powietrza, smarownica
C. Filtr powietrza, manometr, reduktor, smarownica
D. Manometr, reduktor, smarownica, filtr powietrza
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 8

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. położyć go na plecach z uniesionymi nogami
B. ustawić go w pozycji bocznej ustalonej
C. przystąpić do pośredniego masażu serca
D. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 9

Wyłącznik silnikowy może zadziałać na skutek

A. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
B. braku jednej fazy zasilającej silnik
C. uruchomienia silnika przy niewielkim obciążeniu
D. użycia stałego napięcia w obwodzie sterowania silnika
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 10

Aby zmierzyć temperaturę, należy podłączyć do wejścia sterownika PLC

A. prądnicę tachometryczną
B. czujnik indukcyjny
C. przekaźnik elektromagnetyczny
D. czujnik rezystancyjny
Czujnik rezystancyjny, znany również jako czujnik RTD (Resistance Temperature Detector), jest najczęściej wykorzystywany do pomiaru temperatury w systemach automatyki. Jego działanie opiera się na zasadzie zmiany oporu elektrycznego materiału w zależności od temperatury. W praktyce, czujniki te oferują wysoką precyzję oraz stabilność pomiaru, co czyni je odpowiednimi do zastosowań w przemyśle chemicznym, petrochemicznym oraz w systemach HVAC. Dodatkowo, czujniki rezystancyjne mogą być stosowane w szerokim zakresie temperatur, co sprawia, że są uniwersalne i elastyczne w zastosowaniach. W kontekście połączenia z PLC, czujnik rezystancyjny może być podłączony bezpośrednio do wejścia analogowego sterownika, umożliwiając dokładny odczyt temperatury oraz kontrolę procesów. Warto również dodać, że dla zapewnienia dokładnych pomiarów, stosuje się standardy takie jak IEC 60751, które określają charakterystyki czujników RTD.

Pytanie 11

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. czujnika zegarowego
B. średnicówki mikrometrycznej
C. mikrometru
D. suwmiarki
Suwmiarka, choć jest narzędziem pomiarowym, nie jest odpowiednia do precyzyjnego pomiaru bicia wirującej tarczy. Jej głównym przeznaczeniem jest pomiar długości, szerokości i wysokości z dokładnością do dwóch miejsc po przecinku. W przypadku pomiarów dynamicznych, takich jak bicie, suwmiarka ma zbyt niską czułość. Mikrometr jest narzędziem o jeszcze wyższej dokładności, jednak jego zastosowanie ogranicza się głównie do pomiarów liniowych i nie jest przystosowany do rejestrowania dynamicznych zmian, takich jak te, które występują podczas obrotu tarczy. Średnicówka mikrometryczna, podobnie jak mikrometr, służy do pomiarów średnic, co również nie sprawdza się w kontekście pomiaru bicia. Narzędzia te mogą prowadzić do pomyłek, ponieważ ich konstrukcja nie pozwala na uchwycenie dynamiki ruchu i nie są przystosowane do pomiarów w czasie rzeczywistym. Dlatego stosowanie ich do pomiaru nierówności osiowej może wprowadzać w błąd i prowadzić do nieprawidłowych wyników, co jest sprzeczne z zasadami dobrej praktyki inżynieryjnej. W kontekście precyzyjnych pomiarów mechanicznych, zawsze należy wybierać narzędzia zaprojektowane specjalnie do danego celu, co pozwoli uniknąć niepotrzebnych błędów i zapewnić wysoką jakość pracy.

Pytanie 12

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. rejestratorem prądu
B. testerem izolacji
C. analizatorem drgań
D. tachometrem
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 13

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak

A. HH
B. HV
C. HM
D. HL
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 14

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 3/2
B. 4/3
C. 4/2
D. 5/2
Zawór rozdzielający 3/2 jest odpowiednim elementem do sterowania siłownikami jednostronnego działania, ponieważ ten typ zaworu ma trzy porty i dwa stany robocze. W konfiguracji 3/2, jeden z portów jest podłączony do źródła zasilania, a dwa pozostałe porty mogą być podłączone do siłownika oraz do otoczenia. W przypadku siłownika jednostronnego działania, który działa w jednym kierunku, zawór 3/2 jest odpowiedni, ponieważ umożliwia wprowadzenie ciśnienia do siłownika, a następnie jego odprowadzenie do atmosfery przy powrocie. Przykładem zastosowania zaworu 3/2 może być system pneumatyczny w maszynach produkcyjnych, gdzie siłowniki są używane do podnoszenia lub opuszczania komponentów. Warto również zauważyć, że w praktyce przemysłowej stosowanie zaworów powinno być zgodne z normami, takimi jak ISO 1219, które definiują symbole i oznaczenia dla urządzeń pneumatycznych, co ułatwia ich identyfikację oraz integrację w systemach automatyki.

Pytanie 15

Jaką metodę łączenia materiałów należy wybrać do połączenia stali nierdzewnej z mosiądzem?

A. Zgrzewania
B. Klejenia
C. Lutowania miękkiego
D. Lutowania twardego
Lutowanie twarde jest techniką łączenia, która polega na wykorzystaniu stopu o wyższej temperaturze topnienia niż w przypadku lutowania miękkiego. Jest to proces, który zapewnia silne i trwałe połączenia, co czyni go idealnym do łączenia metali o różnych właściwościach, takich jak stal nierdzewna i mosiądz. W przypadku tych dwóch materiałów, lutowanie twarde umożliwia osiągnięcie wysokiej wytrzymałości na rozciąganie oraz odporności na korozję, co jest kluczowe w aplikacjach przemysłowych. W praktyce lutowanie twarde wymaga zastosowania odpowiednich lutów, które mają podobne właściwości fizyczne i chemiczne do łączonych materiałów. Dobrą praktyką jest również precyzyjne przygotowanie powierzchni, aby zapewnić skuteczną adhezję. Lutowanie twarde jest szeroko stosowane w branży motoryzacyjnej, elektronicznej oraz w produkcji sprzętu medycznego, gdzie niezawodność połączeń jest kluczowa.

Pytanie 16

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik oporności
B. Miernik mocy
C. Woltomierz
D. Miernik prądu
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 17

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. temperatury
B. drgań
C. szumów
D. prędkości
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 18

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. poziomnicę
B. kątomierz
C. czujnik zegarowy
D. przymiar liniowy
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 19

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
B. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
C. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
D. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 20

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. przeprowadzić reanimację poszkodowanego i wezwać pomoc
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. wezwać pomoc i przeprowadzić sztuczne oddychanie
D. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
Inne odpowiedzi, które zaznaczyłeś, mają błędne podejście do tego, co jest najważniejsze w sytuacji wypadku. Pamiętaj, że nie można najpierw robić sztucznego oddychania, gdy drogi oddechowe są zablokowane, bo to jest naprawdę niebezpieczne. Jak coś zablokuje drogi, to powietrze się nie dostanie do płuc i tylko pogorszymy sytuację. Odpowiedź, w której zostawiasz poszkodowanego w pozycji, w jakiej go znalazłeś, jest też zła, bo może prowadzić do kompikacji jak aspiracja. No i w resuscytacji najważniejsze jest, by najpierw otworzyć drogi oddechowe, a potem wezwać pomoc. Każdy, kto chce być ratownikiem, powinien to wiedzieć. Ignorowanie tych zasad może naprawdę zaszkodzić osobie, która potrzebuje pomocy.

Pytanie 21

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. spadku rezystancji uzwojeń
C. zmniejszenia prędkości obrotowej
D. wzrostu rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 22

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. szerokości impulsu
B. częstotliwości impulsu
C. częstotliwości oraz fazy impulsu
D. amplitudy impulsu
Modulacja impulsowa oznaczona jako PWM jest często mylona z innymi formami modulacji, co prowadzi do nieporozumień na temat jej działania. Zmiana częstotliwości impulsu nie jest właściwa, ponieważ w PWM częstotliwość pozostaje stała, a zmienia się tylko szerokość impulsów. Użytkownicy mogą mylić tę koncepcję z modulacją częstotliwości (FM), w której to właśnie częstotliwość sygnału jest zmieniana. Z kolei zmiana fazy impulsu odnosi się raczej do technik, które są stosowane w modulacji fazy, gdzie istotne jest przesunięcie fazy sygnału, co również nie jest cechą PWM. Ostatnia z niepoprawnych koncepcji, związana z amplitudą impulsu, odnosi się do modulacji amplitudy (AM), w której zmiana amplitudy fali nośnej jest kluczowa. Takie błędne myślenie może wynikać z nieznajomości różnic pomiędzy różnymi technikami modulacji. Zrozumienie, że PWM polega na zmianie szerokości impulsów, a nie innych parametrów, jest kluczowe do prawidłowego zastosowania tej techniki w praktyce. Niezrozumienie podstaw PWM może prowadzić do niewłaściwego projektowania układów, co w konsekwencji skutkuje nieefektywnym wykorzystaniem energii lub nawet uszkodzeniem komponentów. Dlatego ważne jest, aby zrozumieć, jak PWM działa oraz jakie ma zastosowanie w różnych dziedzinach inżynierii.

Pytanie 23

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 1,2 A
B. 15,0 A
C. 3,6 A
D. 0,6 A
Odpowiedź 1,2 A jest poprawna, ponieważ prąd jałowy transformatora związany jest z jego mocą znamionową. W przypadku transformatora o mocy S_N = 2300 VA, prąd znamionowy można obliczyć, korzystając ze wzoru: I_N = S_N / U_1N, co daje I_N = 2300 VA / 230 V = 10 A. Prąd jałowy wynosi około 10% wartości prądu znamionowego, co w tym przypadku daje I_0 = 0,1 * 10 A = 1 A. Aby dokładnie zmierzyć prąd jałowy, należy wziąć pod uwagę, że amperomierz powinien mieć zakres pomiarowy, który pozwoli na uchwycenie tej wartości z odpowiednim marginesem. Wybór amperomierza o zakresie 1,2 A jest trafny, ponieważ zapewnia wystarczającą precyzję pomiaru oraz minimalizuje ryzyko uszkodzenia urządzenia. W praktyce, pomiar prądu jałowego jest kluczowy w diagnostyce i utrzymaniu transformatorów, ponieważ nadmierny prąd jałowy może wskazywać na problemy z izolacją lub innymi komponentami urządzenia.

Pytanie 24

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. czujnik termoelektryczny
B. mostek tensometryczny
C. prądnica tachometryczna
D. potencjometr obrotowy
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.

Pytanie 25

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. TIG
B. MAG
C. SAW
D. MIG
Wybór odpowiedzi dotyczących metod TIG, MIG czy SAW wskazuje na pewne nieporozumienia dotyczące zastosowania gazów w procesach spawania. Metoda TIG (Tungsten Inert Gas) opiera się na użyciu tungstenowego elektrody oraz gazu obojętnego, takiego jak argon, co oznacza brak zastosowania gazu chemicznie aktywnego. To sprawia, że metoda TIG nie jest odpowiednia do spawania materiałów podatnych na utlenianie, co czyni ją bardziej skomplikowaną w kontekście spawania stali konstrukcyjnych. Metoda MIG, podobnie jak TIG, także posługuje się gazami obojętnymi, co eliminuje możliwość wpływania aktywnych gazów na proces spawania. Na dodatek, w metodzie SAW (Submerged Arc Welding) stosuje się spawanie pod topnikiem, gdzie gaz nie jest kluczowym elementem procesu, co czyni tę metodę mniej elastyczną w kontekście zastosowań wymagających aktywnych gazów. Zrozumienie różnic między tymi technikami oraz ich odpowiednim zastosowaniem jest kluczowe dla uzyskania wysokiej jakości spoin. W praktyce, wybór odpowiedniej metody spawania powinien być podyktowany specyfiką materiałów oraz wymaganiami technologicznymi danego projektu, co jest zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 26

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. kontroli temperatury uzwojenia
B. kontroli kierunku obrotu wirnika
C. pomiary obrotów wirnika
D. pomiary napięcia zasilającego
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 27

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4060,00 cm3
B. 40,60 cm3
C. 406,00 cm3
D. 4,06 cm3
Wielu użytkowników może pomylić się w obliczeniach objętości cylindra siłownika, co często wynika z niepełnego zrozumienia wzoru na objętość V = A * h. Niepoprawne odpowiedzi, takie jak 4060,00 cm3, 40,60 cm3 czy 4,06 cm3, mogą być wynikiem błędnych przeliczeń lub nieodpowiedniego przeliczenia jednostek. Na przykład, przy odpowiedzi 4060,00 cm3, użytkownik może błędnie założyć, że skok cylindra powinien być bezpośrednio dodany jako wartość w cm, nie przeliczywszy milimetrów na centymetry. Z kolei 40,60 cm3 może sugerować, że użytkownik źle zinterpretował powierzchnię roboczą, być może myląc jednostki lub pomijając istotne przeliczenia. Natomiast odpowiedź 4,06 cm3 jest rażąco nieadekwatna, co może świadczyć o pominięciu kluczowych elementów w procesie obliczeń. Kluczowym krokiem jest prawidłowe zrozumienie i przeliczenie jednostek, co jest niezbędne dla uzyskania właściwych wyników. W praktyce, właściwe obliczenia objętości siłownika mają znaczenie dla wydajności hydrauliki, a ich błędy mogą prowadzić do niewłaściwego doboru komponentów, co w efekcie może wpłynąć na całościową efektywność systemu oraz jego bezpieczeństwo operacyjne.

Pytanie 28

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,3 mm
B. 2,1 mm
C. 1,9 mm
D. 2,0 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 29

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
B. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
C. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
D. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 30

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. oceny stopnia zużycia
B. kontroli czystości paska
C. sprawdzenia poziomu naprężenia
D. weryfikacji wymiarów
Sprawdzanie stopnia naprężenia paska klinowego nie jest częścią operacji przygotowawczych przed jego montażem, ponieważ to zadanie wykonuje się już po zainstalowaniu paska. W ery technicznych i mechanicznych, takie jak w przemyśle automotive czy produkcyjnym, prawidłowe napięcie paska jest kluczowe dla efektywnej pracy przekładni pasowej. Przed montażem należy przede wszystkim zająć się weryfikacją wymiarów nowych komponentów, ocenić stopień zużycia istniejących części oraz zapewnić, że wszystkie elementy są czyste. Na przykład, czysty pasek oraz odpowiednio przygotowane koła pasowe minimalizują ryzyko poślizgu i przedwczesnego zużycia. Dobrą praktyką jest także stosowanie specjalistycznych narzędzi do pomiaru wymiarów, co wpływa na precyzję montażu. Wiedza na temat różnych typów pasków klinowych i ich specyfikacji pozwala na podejmowanie świadomych decyzji w procesie wymiany lub montażu, co jest zgodne ze standardami branżowymi, takimi jak ISO 9001.

Pytanie 31

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 5 V
B. 10 V
C. 15 V
D. 25 V
Zasilanie scalonych układów cyfrowych wykonanych w technologii TTL nie powinno przekraczać 5 V, ponieważ wyższe napięcia, takie jak 10 V, 15 V czy 25 V, mogą prowadzić do uszkodzenia tych układów. Wysokie napięcia mogą przekraczać maksymalne wartości tolerancyjne dla tranzystorów stosowanych w TTL, co skutkuje ich nienormalnym działaniem, a w skrajnych przypadkach - całkowitym zniszczeniem. Niezrozumienie zasad działania technologii TTL oraz ich wymagań dotyczących zasilania może prowadzić do typowych błędów w projektowaniu. Na przykład, użytkownicy mogą mylnie zakładać, że wyższe napięcia zwiększają wydajność układów, co jest nieprawda. TTL działa w zakresie niskich napięć, co zapewnia odpowiednie poziomy sygnałów logicznych, a ich stabilność jest kluczowa dla poprawnego działania. Ponadto, użycie niewłaściwego napięcia zasilania może prowadzić do powstawania zakłóceń elektromagnetycznych, co negatywnie wpływa na inne komponenty systemu. Dlatego ważne jest, aby projektując obwody cyfrowe oparte na TTL, przestrzegać ściśle zalecanych parametrów zasilania, co przyczyni się do ich niezawodności oraz trwałości w dłuższym okresie. Kluczowym elementem każdej aplikacji elektronicznej jest zapewnienie zgodności z dokumentacją techniczną oraz standardami branżowymi, które wskazują na konieczność używania odpowiednich wartości napięcia dla różnych technologii.

Pytanie 32

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Tensometr
B. Żyroskop
C. Pirometr
D. Tachometr
Zrozumienie, które urządzenie może być użyte do pomiaru ciśnienia cieczy, wymaga wiedzy o charakterystyce i zastosowaniach różnych czujników. Tachometr, na przykład, jest narzędziem służącym do pomiaru prędkości obrotowej wirujących elementów, a jego zastosowanie jest ograniczone do systemów monitorowania i sterowania prędkości. Użycie tachometru do pomiaru ciśnienia cieczy jest błędne, ponieważ nie jest on w stanie zmierzyć sił działających na ścianki zbiornika ani odkształceń materiału. Żyroskop, z kolei, jest urządzeniem wykorzystywanym do pomiaru kątowych prędkości obrotowych i orientacji, co czyni go nieodpowiednim w kontekście pomiarów ciśnienia. W zastosowaniach, gdzie ciśnienie cieczy ma kluczowe znaczenie, jego wykorzystanie może prowadzić do poważnych błędów w diagnozowaniu i kontrolowaniu procesów. Pirometr, natomiast, służy do pomiaru temperatury na podstawie promieniowania podczerwonego i nie ma zastosowania w kontekście ciśnienia cieczy. Użytkownicy często mylą funkcje tych urządzeń, co prowadzi do niewłaściwych wniosków. Kluczem do prawidłowego wyboru czujnika jest zrozumienie ich specyficznych zastosowań oraz mechanizmów działania, co pozwala na efektywne wykorzystanie technologii w różnych dziedzinach przemysłu.

Pytanie 33

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. binarnego
B. programowalnego
C. cyfrowego
D. analogowego
Wybór odpowiedzi związanej z układami cyfrowymi nie jest najlepszy. Układy cyfrowe działają na dyskretnych wartościach, a nie na ciągłych sygnałach. Sensory i wzmacniacze analogowe muszą być najpierw odpowiednio przetworzone, na przykład przez konwersję analogowo-cyfrową, zanim będą mogły współpracować z systemami cyfrowymi. Odpowiedzi związane z układami programowalnymi czy binarnymi również nie mają sensu, bo nie odnoszą się do kluczowych cech analogowych sygnałów. Układy programowalne, jak PLC, łączą zarówno analogowe, jak i cyfrowe komponenty, ale same działają na zupełnie innych zasadach. Trzeba zrozumieć, że układy binarne nie mogą współpracować bezpośrednio z elementami działającymi w trybie ciągłym, ponieważ wymaga to zastosowania konwerterów. Kluczowe jest, żeby znać podstawy przetwarzania sygnałów, co pomoże lepiej zrozumieć różnice między tymi układami.

Pytanie 34

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy poniżej rany
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. umieścić poszkodowanego w bezpiecznej pozycji bocznej
D. założyć poszkodowanemu opatrunek uciskowy na ranę
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 35

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Skrobak
B. Tłocznik
C. Gwintownik
D. Narzynka
Narzynka jest narzędziem skrawającym, które służy do nacinania gwintów zewnętrznych na różnych materiałach, w tym metalach. Użycie narzynki jest szczególnie ważne w procesach obróbczych, gdzie precyzja i jakość gwintu mają kluczowe znaczenie. Narzynki są dostępne w różnych rozmiarach oraz typach, w zależności od wymaganego profilu gwintu, co umożliwia ich zastosowanie w szerokim zakresie aplikacji przemysłowych. W praktyce, narzynki są często używane w produkcji śrub oraz w przemyśle motoryzacyjnym, gdzie precyzyjne dopasowanie gwintów jest niezbędne. Dobrą praktyką jest również stosowanie smaru podczas nacinania gwintu, co minimalizuje tarcie i wydłuża żywotność narzędzia. Przestrzeganie standardów ISO dotyczących gwintów, takich jak ISO 965 dla gwintów metrycznych, gwarantuje, że wykonane gwinty będą odpowiednio dopasowane do elementów złącznych. W związku z tym, umiejętność prawidłowego użycia narzynki jest istotna dla każdego specjalisty w dziedzinie obróbki skrawaniem.

Pytanie 36

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. wymiana przyłącza
B. dokręcenie przyłącza kluczem dynamometrycznym
C. uszczelnienie przyłącza taśmą teflonową
D. wymiana uszczelki pomiędzy przyłączem a siłownikiem
Wydaje mi się, że wybór wymiany przyłącza to naprawdę dobry pomysł, szczególnie gdy zauważasz nieszczelności. Często to zużycie lub uszkodzenia połączeń sprawiają, że te problemy się pojawiają. Przyłącza, zwłaszcza w systemach pneumatycznych, są poddawane różnym czynnikom, jak ciśnienie, wibracje, a nawet korozja, co może wpływać na ich stan. Wymieniając przyłącze, masz pewność, że uzyskasz długotrwałe i solidne uszczelnienie, co jest mega ważne dla prawidłowego działania siłowników pneumatycznych. Z mojego doświadczenia, używanie uszczelnienia taśmą teflonową albo dokręcanie to często tylko chwilowe rozwiązanie, które nie eliminuje sedna problemu nieszczelności. Dlatego lepiej postawić na nowe, certyfikowane przyłącze, które spełnia normy branżowe – to najlepsza droga, żeby zapewnić efektywność i bezpieczeństwo systemu. Regularne sprawdzanie i wymiana krytycznych części to naprawdę dobre praktyki, które mogą uchronić cię przed poważniejszymi awariami i drogimi naprawami w przyszłości.

Pytanie 37

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 13,33 A
B. 7,70 A
C. 5,77 A
D. 10,00 A
Błędne odpowiedzi w tym pytaniu wskazują na typowe nieporozumienia dotyczące obliczeń prądu pobieranego przez silnik trójfazowy. Wiele osób może skupić się na niewłaściwych założeniach, takich jak zaniedbanie wpływu współczynnika mocy na całkowitą moc silnika. Na przykład, odpowiedzi takie jak 5,77 A czy 10,00 A mogą sugerować, że obliczenia zostały wykonane bez uwzględnienia istotnych parametrów, takich jak napięcie zasilania czy współczynnik mocy. Często błędne odpowiedzi wynikają z uproszczenia wzoru na moc lub przyjęcia niewłaściwych wartości. Kluczowe jest zrozumienie, że moc czynna, napięcie oraz prąd są ze sobą silnie powiązane i każda zmiana jednego z parametrów wpływa na pozostałe. W praktyce, jeżeli silnik ma niższy współczynnik mocy, to prąd pobierany z sieci będzie wyższy, co nie zostało uwzględnione w niepoprawnych odpowiedziach. Warto pamiętać, że w przypadku obliczeń związanych z energią elektryczną należy zawsze korzystać z odpowiednich wzorów oraz uwzględniać wszelkie istotne zmienne, aby uniknąć błędów, które mogą prowadzić do nieprawidłowego doboru sprzętu czy nieefektywnego działania instalacji elektrycznych. Dlatego tak ważne jest, aby dokładnie analizować wszystkie parametry przed dokonaniem obliczeń.

Pytanie 38

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
C. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 39

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. pianowej
B. proszkowej
C. śniegowej
D. halonowej
Gaśnice pianowe są odpowiednie do gaszenia pożarów urządzeń elektrycznych pod napięciem, ponieważ stosują pianę, która tworzy warstwę izolacyjną, zmniejszając ryzyko przewodnictwa prądu. Wodna piana, będąca podstawą tych gaśnic, działa na zasadzie odcięcia dostępu tlenu oraz chłodzenia. W przypadku pożaru elektrycznego, najważniejsze jest, aby zminimalizować ryzyko porażenia prądem, co czyni gaśnice pianowe bezpieczniejszym wyborem niż inne typy gaśnic. Przykładem zastosowania gaśnicy pianowej może być pożar w serwerowni, gdzie niezbędne jest szybkie i skuteczne działanie. Warto również wspomnieć, że zgodnie z normami NFPA oraz standardami ochrony przeciwpożarowej, użycie gaśnic pianowych w takich sytuacjach jest zalecane jako najlepsza praktyka. Dodatkowo, gaśnice te są uniwersalne i mogą być używane do gaszenia innych rodzajów pożarów, takich jak pożary cieczy palnych, co czyni je wszechstronnym narzędziem w walce z ogniem.

Pytanie 40

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. magnes stały
B. tłumik
C. membrana
D. zawór dławiący
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.