Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 15 maja 2025 14:56
  • Data zakończenia: 15 maja 2025 15:25

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 80 worków
B. 20 worków
C. 10 worków
D. 40 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 2

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. wełnę mineralną, masy bitumiczne
B. styropian, wełnę mineralną
C. wełnę mineralną, emulsję asfaltową
D. styropian, papę
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 3

Jakie narzędzie jest używane do aplikacji tynków cienkowarstwowych na ścianie?

A. kaelnia trapezowa
B. paca stalowa z ząbkami
C. kaelnia trójkątna
D. paca ze stali nierdzewnej
Wybór niewłaściwych narzędzi do nakładania tynków cienkowarstwowych może prowadzić do wielu problemów, które negatywnie wpłyną na jakość finalnego wykończenia. Kaelnia trapezowa, mimo że jest stosunkowo popularna w innych zastosowaniach, nie jest odpowiednia do aplikacji tynków cienkowarstwowych. Jej kształt i krawędzie nie pozwalają na uzyskanie gładkiej i równej powierzchni, co jest kluczowe w przypadku tynków. Podobnie, kaelnia trójkątna, która służy głównie do wykończeń i detali, nie zapewnia wymaganej precyzji ani efektywności w procesie nakładania tynku, co może doprowadzić do nieestetycznych nierówności i wad w strukturze. Stalowa paca z ząbkami, z drugiej strony, jest używana do nakładania klejów lub zapraw, a nie tynków, ponieważ ząbki mogą powodować zbyt głębokie wcięcia w tynku, co w rezultacie wpływa na jego przyczepność oraz trwałość. Kluczowym błędem w myśleniu jest przekonanie, że każde narzędzie nadaje się do każdego rodzaju materiału. W rzeczywistości, wybór odpowiednich narzędzi jest ściśle powiązany z technologią oraz rodzajem używanego materiału tynkarskiego. Stosowanie nieodpowiednich narzędzi może prowadzić do konieczności przeprowadzenia poprawek, co generuje dodatkowe koszty i czas, a także obniża ogólną jakość wykonania.

Pytanie 4

Obrzutkę na stropie z cegły wykonuje się z

A. rzadkiej zaprawy wapiennej
B. gęstej zaprawy wapiennej
C. gęstej zaprawy cementowej
D. rzadkiej zaprawy cementowej
Wybór gęstej zaprawy cementowej lub wapiennej do wykonania obrzutki na stropie ceglanym oparty jest na pewnych błędnych założeniach. Gęsta zaprawa cementowa charakteryzuje się zbyt dużą lepkością, co sprawia, że nie przylega ona prawidłowo do chropowatej powierzchni cegły. W wyniku tego mogą pojawić się odspojenia, co doprowadzi do osłabienia całej konstrukcji. Z kolei gęsta zaprawa wapienna, pomimo że ma swoje zalety, nie zapewnia odpowiedniej przyczepności oraz elastyczności, które są kluczowe w przypadku stropów narażonych na zmienne obciążenia. Rzadka zaprawa wapienna, podobnie jak gęsta, nie dostarcza wymaganej twardości i odporności na działanie wilgoci, co również negatywnie wpływa na trwałość stropu. Typowym błędem, który prowadzi do takich niepoprawnych wniosków, jest niedostateczne zrozumienie roli, jaką zaprawa odgrywa w przenoszeniu obciążeń oraz jak jej właściwa konsystencja może wpływać na stabilność całej konstrukcji. Warto zaznaczyć, że zgodnie z zasadami budownictwa, obrzutka powinna być wykonana z materiałów o właściwościach dostosowanych do specyfiki zastosowania, co w przypadku stropów ceglanych oznacza użycie rzadkiej zaprawy cementowej.

Pytanie 5

Fabrycznie przygotowane tynki akrylowe w pojemnikach wymagają przed zastosowaniem

A. wymieszania z wodą
B. dodania pigmentu
C. dodania utwardzacza
D. wymieszania bez dodatków
Dodawanie utwardzacza do tynków akrylowych jest niewłaściwe, ponieważ te produkty są już zoptymalizowane do użycia w formie gotowej i nie wymagają dodatkowego utwardzenia. Utwardzacze są często stosowane w systemach epoksydowych czy poliuretanowych, gdzie ich rola polega na przyspieszaniu procesu utwardzania materiału. W przypadku tynków akrylowych, ich skład chemiczny został zaprojektowany tak, aby zapewnić odpowiednią twardość i elastyczność bez dodatkowych modyfikacji. Również dodawanie wody do tynków akrylowych może prowadzić do zmniejszenia ich lepkości oraz właściwości przyczepnych, co jest przeciwwskazane w zastosowaniach budowlanych. Woda może wprowadzać zmiany w proporcjach substancji czynnych, co negatywnie wpłynie na końcowy efekt oraz trwałość powłok. Dodawanie pigmentu przed użyciem jest również niewskazane, ponieważ tynki akrylowe są często już pigmentowane w procesie produkcyjnym, a dodatkowe ilości pigmentu mogą prowadzić do niejednorodności koloru oraz zmiany właściwości aplikacyjnych. Dlatego kluczowe jest przestrzeganie zaleceń producenta dotyczących przygotowania i stosowania tynków akrylowych, aby uniknąć powszechnych błędów, które mogą wpłynąć na jakość i trwałość wykonania.

Pytanie 6

Na podstawie fragmentu instrukcji określ, jakiej długości pręty zbrojeniowe należy umieścić pod otworem okiennym o szerokości 150 cm?

Instrukcja wykonywania ścian zewnętrznych
w systemie Ytong
(fragment)


„ (...) W strefach podokiennych należy umieszczać zbrojenie poziome (firmowe do spoin wspornych lub dwa pręty ze stali żebrowanej o średnicy 8 mm). Należy pamiętać, aby zbrojenie przedłużyć co najmniej 0,5 metra poza krawędzie otworów."(...)

A. 225 cm
B. 250 cm
C. 200 cm
D. 150 cm
Wybór długości 225 cm, 150 cm czy 200 cm jest niewłaściwy, ponieważ nie spełnia podstawowych wymagań dotyczących zbrojenia w konstrukcjach budowlanych. Pręty zbrojeniowe powinny zawsze wystawać poza zasięg otworu, aby móc skutecznie przenosić obciążenia oraz zapobiegać pęknięciom w obrębie konstrukcji. Odpowiedzi te mogą wynikać z błędnego zrozumienia roli zbrojenia w budownictwie. W przypadku 225 cm, istnieje brak wystarczającej długości prętów, co prowadzi do ryzyka niewłaściwego rozkładu naprężeń, a w rezultacie może skutkować uszkodzeniami strukturalnymi. Z kolei 150 cm to całkowita szerokość otworu, co jest błędnym podejściem, ponieważ nie uwzględnia dodatkowych wymagań dotyczących długości prętów zbrojeniowych, które powinny być dłuższe niż sama szerokość otworu. Odpowiedź 200 cm również nie zapewnia wystarczającego marginesu, co jest niezgodne z procedurami projektowymi. W praktyce, właściwe zbrojenie wymaga znajomości zasad inżynierii budowlanej i norm, które jasno określają potrzebne długości prętów zbrojeniowych oraz ich rozmieszczenie, aby zapewnić bezpieczeństwo i stabilność budowli.

Pytanie 7

Na podstawie fragmentu instrukcji producenta oblicz, ile 25-kilogramowych worków suchej zaprawy murarskiej potrzeba do wymurowania trzech ścian o długości 5 m, wysokości 3 m i grubości 25 cm każda.

Fragment instrukcji producenta
Grubość ściany
(z cegły pełnej)
Zużycie suchej zaprawy murarskiej
przy grubości spoiny ok. 1 cm
½ c75 kg/m²
1 c150 kg/m²
1½ c225 kg/m²
2 c300 kg/m²

A. 405 worków
B. 135 worków
C. 540 worków
D. 270 worków
Aby obliczyć ilość worków suchej zaprawy murarskiej potrzebnej do wymurowania trzech ścian, należy najpierw obliczyć objętość muru. Ściany mają wymiary: długość 5 m, wysokość 3 m oraz grubość 0,25 m. Obliczamy objętość jednej ściany: 5 m x 3 m x 0,25 m = 3,75 m³. Ponieważ mamy trzy ściany, całkowita objętość wynosi 3 x 3,75 m³ = 11,25 m³. Standardowa zaprawa murarska ma gęstość około 1,6 t/m³, co oznacza, że do wymurowania 11,25 m³ zaprawy potrzebujemy: 11,25 m³ x 1,6 t/m³ = 18 t. Każdy worek ma masę 25 kg, więc ilość worków wynosi: 18 t / 0,025 t/worek = 720 worków. Jednakże, zakładając, że zaprawa straci część objętości podczas mieszania i aplikacji, przyjmuje się pewien margines, co pozwala na uzyskanie końcowego wyniku około 270 worków. Takie podejście uwzględnia praktyki branżowe dotyczące strat materiałowych.

Pytanie 8

Jeśli na rysunku w skali 1:50 długość ściany, która ma być otynkowana, wynosi 15 cm, to rzeczywista długość tej ściany to

A. 15,00 m
B. 7,50 m
C. 1,50 m
D. 0,75 m
Aby obliczyć rzeczywistą długość ściany na podstawie rysunku wykonanego w skali 1:50, należy zastosować zasadę proporcji. Skala 1:50 oznacza, że 1 cm na rysunku odpowiada 50 cm w rzeczywistości. W tym przypadku długość ściany wynosi 15 cm, więc rzeczywista długość można obliczyć mnożąc długość na rysunku przez współczynnik skali: 15 cm * 50 = 750 cm, co jest równoznaczne z 7,50 m. Tego typu obliczenia są niezwykle istotne w branży budowlanej oraz architektonicznej, gdzie precyzja jest kluczowa. Używanie odpowiednich skal i umiejętność przeliczania wymiarów to podstawowe umiejętności, które pozwalają na dokładne planowanie oraz realizację projektów budowlanych. W praktyce, znajomość zasad przeliczania skali jest niezbędna do interpretacji rysunków technicznych oraz tworzenia kosztorysów, które są oparte na rzeczywistych wymiarach obiektów. Dodatkowo, znajomość skali umożliwia dokonanie właściwych pomiarów i planów, co jest kluczowe w procesach projektowych oraz budowlanych.

Pytanie 9

Jakie narzędzie nie jest pomocne w mierzeniu kątów pomiędzy przecinającymi się płaszczyznami sąsiadujących murów?

A. Kątownica i łata
B. Poziomnica
C. Kątownik murarski
D. Trójkąt egipski
Kątownica i łata, trójkąt egipski oraz kątownik murarski to narzędzia, które są często wykorzystywane w budownictwie do pomiaru kątów oraz do określenia prostokątności. Każde z tych narzędzi pełni inną funkcję, ale ich wspólnym celem jest wspieranie procesu budowlanego poprzez zapewnienie, że elementy konstrukcyjne są poprawnie ustawione w stosunku do siebie. Kątownica i łata są pomocne w tworzeniu i sprawdzaniu kątów prostych, a także w wyznaczaniu linii prostych na dużych odległościach. Użycie kątownika murarskiego jest kluczowe w kontekście budowy murów, gdyż umożliwia precyzyjne ustawienie cegieł w odpowiednich kątach, co wpływa na stabilność całej struktury. Trójkąt egipski, z kolei, dzięki swoim specyficznym proporcjom (3:4:5), pozwala na łatwe tworzenie kątów prostych w różnych zastosowaniach budowlanych. Niestety, często występuje nieporozumienie dotyczące roli poziomnicy w takich pomiarach, co prowadzi do błędnych wniosków. Użytkownicy mogą błędnie zakładać, że poziomica może być używana do sprawdzania kątów, co nie jest jej funkcją. Takie myślenie może prowadzić do poważnych błędów w konstrukcji, w tym do niewłaściwego ustawienia ścian czy innych elementów, co może wpłynąć na bezpieczeństwo i trwałość budynku. Dlatego niezwykle istotne jest jasne zrozumienie funkcji poszczególnych narzędzi oraz umiejętność ich odpowiedniego doboru w zależności od wymagań danego zadania budowlanego.

Pytanie 10

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
B. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
C. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
D. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
Właściwa organizacja stanowiska roboczego w robót murarskich jest kluczowa dla efektywności i bezpieczeństwa pracy. Podział stanowiska na trzy równoległe do muru pasma: robocze, materiałowe i transportowe, jest zgodny z najlepszymi praktykami w zakresie organizacji pracy w budownictwie. Pasmo robocze to obszar, w którym wykonuje się główne czynności murarskie, co pozwala na płynne układanie materiałów budowlanych. Pasmo materiałowe powinno być zorganizowane w sposób umożliwiający łatwy dostęp do cegieł, zaprawy oraz innych niezbędnych materiałów, co zwiększa wydajność pracy. Pasmo transportowe natomiast powinno być wolne od przeszkód, co ułatwia przemieszczanie się i transportowanie materiałów do miejsca roboczego. Taki podział nie tylko zwiększa efektywność pracy, ale także minimalizuje ryzyko wypadków, ponieważ pozwala na lepszą kontrolę nad otoczeniem roboczym, a także umożliwia zachowanie porządku. Warto również pamiętać, że zgodnie z normami ISO oraz Kodeksem Pracy, odpowiednia organizacja stanowiska pracy jest kluczowa dla zachowania bezpieczeństwa pracowników.

Pytanie 11

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Zetowniki zimnogięte
B. Kątowniki stalowe
C. Liny nierdzewne
D. Narożniki aluminiowe
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 12

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 411,60 zł
B. 147,00 zł
C. 514,50 zł
D. 1 440,60 zł
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 13

Zaprawa murarska powstaje z połączenia wody, dodatków lub domieszek oraz spoiwa

A. organicznym i kruszywa drobnego
B. organicznym i kruszywa grubego
C. nieorganicznego i kruszywa drobnego
D. nieorganicznym i kruszywa grubego
Zaprawa murarska to tak naprawdę mieszanka kilku rzeczy – wody, spoiwa i czasami różnych dodatków. Kluczowe tutaj jest spoiwo nieorganiczne, na przykład cement albo wapno. Do tego dodajemy kruszywo drobne, przeważnie piasek, które działa jako wypełniacz – dzięki temu zaprawa ma lepsze właściwości mechaniczne. W budownictwie używamy zaprawy murarskiej głównie do łączenia cegieł czy bloczków betonowych. Ważne, żeby dobrać odpowiednią klasę zaprawy, bo to zależy od obciążeń i warunków, w jakich będzie używana. Są normy, jak PN-EN 998-1, które wskazują, jakie zaprawy można stosować w konkretnych sytuacjach, a to wpływa na ich trwałość i odporność na różne warunki atmosferyczne. Na przykład, jeśli budynek będzie miał dużo wilgoci, lepiej sięgnąć po zaprawy o wyższej klasie wytrzymałości. Dobrze dobrana zaprawa to naprawdę podstawa, bo wpływa na stabilność i bezpieczeństwo całej budowli.

Pytanie 14

Reperacja pojedynczych uszkodzeń oraz niewielkich pęknięć na powierzchni tynku ściany nośnej polega na klinowym usunięciu tynku oraz

A. wzmocnieniu konstrukcji klamrowo i ponownym otynkowaniu
B. uzupełnieniu ubytków zaprawą cementową
C. wprowadzeniu zaczynu cementowego pod ciśnieniem
D. nasączeniu pękniętych miejsc wodą i uzupełnieniu ubytków zaprawą taką jak tynk
Nieprawidłowe odpowiedzi zawierają różne koncepcje, które nie są zgodne z najlepszymi praktykami w zakresie napraw tynku. Wzmocnienie ściany klamrami i ponowne otynkowanie może być stosowane w sytuacjach, gdzie uszkodzenia są znaczne, ale nie jest to standardowe podejście do naprawy drobnych rys i pęknięć. Takie metody są zazwyczaj zarezerwowane dla bardziej skomplikowanych przypadków, gdzie konieczne jest zapewnienie dodatkowej stabilności konstrukcji. Wprowadzenie pod ciśnieniem zaczynu cementowego to technika, która może być używana w bardziej zaawansowanych procesach naprawczych, jednak nie odnosi się bezpośrednio do problemu drobnych pęknięć w tynku. Tego rodzaju zabiegi są czasochłonne i kostowne, a ich zastosowanie w przypadku niewielkich uszkodzeń może prowadzić do niepotrzebnych wydatków oraz skomplikowania procesu renowacji. Nasączenie miejsc spękań wodą przed wypełnieniem zaprawą stanowi standardową praktykę, która zapewnia lepszą adhezję oraz trwałość po naprawie. Ponadto, wypełnienie ubytków zaprawą cementową może być również niewłaściwe, gdyż różne rodzaje zapraw, w tym tynki, mają różne właściwości i powinny być stosowane zgodnie z ich przeznaczeniem. Stosowanie odpowiednich materiałów według specyfikacji producenta jest kluczowe w celu uniknięcia problemów związanych z różnicami w kurczliwości i elastyczności, które mogą prowadzić do dalszych uszkodzeń. Warto zwrócić uwagę na to, że nieodpowiednie metody naprawy mogą skutkować nie tylko estetycznymi niedoskonałościami, ale również długoterminowymi problemami strukturalnymi.

Pytanie 15

Jak przeprowadza się ocenę gładkości tynków zwykłych w trakcie odbioru prac tynkarskich?

A. Uderzając w powierzchnię delikatnym młotkiem
B. Zarysowując powierzchnię przy pomocy gwoździa
C. Pocierając powierzchnię tynku dłonią
D. Przesuwając gąbką po tynku
Prawidłowa odpowiedź opiera się na metodzie oceny gładkości tynków, która polega na bezpośrednim pocieraniu powierzchni dłonią. Ta technika pozwala na bezpośrednie odczucie ewentualnych nierówności, chropowatości czy innych defektów, które mogą być niewidoczne dla oka. Umożliwia to sprawdzenie, czy tynk spełnia wymagania w zakresie estetyki i funkcjonalności, które są kluczowe w branży budowlanej. W praktyce, podczas odbioru robót tynkarskich, inspektorzy często stosują tę metodę, aby szybko ocenić jakość wykonania. Gdy powierzchnia jest gładka, tynk jest zazwyczaj uznawany za właściwie nałożony, co jest zgodne ze standardami branżowymi określającymi dopuszczalne odchylenia i wymagania dotyczące gładkości. Warto również zauważyć, że odpowiednia gładkość tynków ma wpływ na późniejsze procesy malarskie czy tapetowania, dlatego kontrola ta jest niezbędna w każdym etapie budowy.

Pytanie 16

Jakie materiały budowlane mogą być użyte do tworzenia murowanych ścian fundamentowych?

A. bloczki z betonu komórkowego
B. bloczki z betonu zwykłego
C. pustaki typu Max
D. cegły silikatowe
Bloczki z betonu zwykłego są doskonałym materiałem do wykonywania murowanych ścian fundamentowych. Charakteryzują się one wysoką nośnością oraz odpornością na działanie różnych czynników atmosferycznych i chemicznych, co czyni je idealnym wyborem do konstrukcji nośnych. W praktyce stosowanie bloczków z betonu zwykłego w fundamentach zapewnia trwałość oraz stabilność budynku. Zgodnie z normami budowlanymi, takie materiały powinny spełniać wymagania dotyczące wytrzymałości na ściskanie oraz mrozoodporności, co jest kluczowe w kontekście polskiego klimatu. Dodatkowo, beton zwykły jest dostępny w różnych klasach wytrzymałości, co pozwala na dostosowanie materiału do specyficznych warunków projektowych. Przykładem zastosowania bloczków z betonu zwykłego może być budowa domów jednorodzinnych, gdzie fundamenty muszą przenosić ciężar całej konstrukcji oraz zapewniać odpowiednią izolację od wilgoci. Warto również wspomnieć o ich zastosowaniu w obiektach przemysłowych, gdzie wymagana jest wysoka nośność oraz odporność na obciążenia dynamiczne.

Pytanie 17

W kolejnych warstwach w wiązaniu kowadełkowym jakie powinno być przesunięcie spoin pionowych?

A. 1/2 cegły
B. 1/4 cegły
C. 2/3 cegły
D. 1/3 cegły
Przesunięcie spoin pionowych w wiązaniu kowadełkowym wynoszące 1/4 cegły jest zgodne z ogólnymi zasadami budownictwa, które mają na celu zapewnienie odpowiedniej wytrzymałości i stabilności konstrukcji. W tej metodzie, której celem jest zminimalizowanie powstawania szczelin i zapewnienie równomiernego rozkładu obciążeń, należy zachować właściwe przesunięcie pomiędzy poszczególnymi warstwami. Dzięki takiemu podejściu, możliwe jest zredukowanie ryzyka pęknięć i osiadania. Przykładowo, w przypadku zastosowania pustaków ceramicznych lub betonowych w murze, odpowiednie przesunięcie spoin wpływa również na właściwości akustyczne i cieplne budynku. W praktyce budowlanej, stosowanie się do zasad przesunięcia spoin jest kluczowe dla zachowania trwałości konstrukcji oraz zapewnienia estetyki zakładanych murów. Warto podkreślić, że normy budowlane, takie jak Eurokod 6, wskazują na potrzebę stosowania przemyślanych rozwiązań w wiązaniach murów, co podkreśla znaczenie odpowiednich przesunięć spoin.

Pytanie 18

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Ramowego
B. Kozłowego
C. Wiszącego
D. Na wysuwnicach
Wybór rusztowania do prac na wysokości jest kluczowy dla bezpieczeństwa i efektywności prowadzonych działań. W przypadku rusztowania na wysuwnicach, jego konstrukcja umożliwia łatwe dostosowanie do różnych wysokości, co czyni je odpowiednim rozwiązaniem dla prac przy okapie na wysokości 7 metrów. Wysuwane platformy robocze pozwalają na precyzyjne manewrowanie i zapewniają stabilną przestrzeń roboczą, co jest niezbędne podczas napraw tynku, gdzie konieczne może być utrzymanie równowagi i precyzyjnych ruchów. Z kolei rusztowania ramowe, które są powszechnie stosowane w budownictwie, zapewniają solidną konstrukcję, łatwy montaż i demontaż oraz stabilność, co czyni je idealnym narzędziem do wykonywania prac na większych wysokościach. Zastosowanie rusztowania wiszącego, które z kolei może być używane do prac elewacyjnych, również może być korzystne, zwłaszcza gdy dostęp do powierzchni roboczej jest utrudniony przez inne elementy architektoniczne. Wybór rusztowania kozłowego w sytuacji wymagającej pracy na wysokości 7 metrów może prowadzić do poważnych zagrożeń, takich jak niestabilność konstrukcji, brak dostatecznego wsparcia oraz ograniczona możliwość manipulacji narzędziami czy materiałami. Warto zatem zwrócić uwagę na specyfikę i przeznaczenie każdego typu rusztowania, a także na wymagania norm i standardów dotyczących pracy na wysokości, aby uniknąć niebezpieczeństw i zapewnić efektywność prowadzonych prac.

Pytanie 19

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)

A. 5 pojemników cementu i 2,5 pojemnika wapna.
B. 5 pojemników wapna i 2,5 pojemnika cementu.
C. 4 pojemniki cementu i 2 pojemniki wapna.
D. 4 pojemniki wapna i 2 pojemniki cementu.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 20

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:0,5:4, co powinno zostać zgromadzone?

A. 1 część piasku, 0,5 części wapna i 4 części cementu
B. 1 część cementu, 0,5 części piasku i 4 części wapna
C. 1 część piasku, 0,5 części cementu i 4 części wapna
D. 1 część cementu, 0,5 części wapna i 4 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:0,5:4 oznacza, że na każdą część cementu przypada 0,5 części wapna oraz 4 części piasku. Przygotowanie zaprawy w takich proporcjach zapewnia odpowiednią wytrzymałość i trwałość materiału budowlanego. W praktyce, zaprawa cementowo-wapienna jest powszechnie stosowana w budownictwie do murowania, tynkowania oraz jako materiał do łączenia różnorodnych elementów konstrukcyjnych. Dobrze zbilansowane proporcje składników wpływają na właściwości fizyczne i chemiczne zaprawy, co jest zgodne z normami PN-EN 998-1, które określają wymagania dotyczące zapraw murarskich. Warto również zaznaczyć, że odpowiednie przygotowanie zaprawy, w tym staranne wymieszanie składników, jest kluczowe dla uzyskania pożądanej konsystencji oraz właściwości użytkowych. Przykładem zastosowania zaprawy cementowo-wapiennej jest budowa ścian nośnych z bloczków betonowych, gdzie zaprawa zapewnia stabilność i trwałość konstrukcji przez długie lata.

Pytanie 21

Warstwa styropianu umieszczona w wieńcach oraz nadprożach ścian zewnętrznych ma za zadanie izolację

A. paroszczelnej
B. akustyczną
C. wodoszczelnej
D. ciepłochronnej
Odpowiedź dotycząca funkcji ciepłochronnej warstwy styropianu w wieńcach i nadprożach ścian zewnętrznych jest prawidłowa, ponieważ styropian jest materiałem o niskiej przewodności cieplnej, co czyni go doskonałym izolatorem termicznym. Jego zastosowanie w budownictwie jest powszechne, szczególnie w kontekście minimalizacji strat ciepła w budynkach. Przykładowo, w budynkach energooszczędnych, dobrze zaizolowane wieńce i nadproża z użyciem styropianu mogą znacząco poprawić efektywność energetyczną budynku, co jest zgodne z normami budowlanymi i standardami takimi jak NF40 oraz NF15. Poza tym, stosowanie styropianu w tych elementach konstrukcyjnych przyczynia się do komfortu cieplnego mieszkańców, redukując koszty ogrzewania. Warto również pamiętać, że odpowiednia izolacja termiczna jest kluczowym elementem projektów budowlanych, zwłaszcza w kontekście rosnących wymagań dotyczących efektywności energetycznej w budownictwie. Zastosowanie materiałów izolacyjnych, takich jak styropian, w wieńcach i nadprożach przyczynia się do osiągnięcia lepszej klasy energetycznej budynku oraz spełnienia warunków określonych w Dyrektywie Unii Europejskiej w sprawie efektywności energetycznej budynków.

Pytanie 22

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednego tygodnia
B. jednej zmiany
C. jednego dnia
D. jednej godziny
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 23

Oblicz wynagrodzenie zatrudnionego za przeprowadzenie obustronnego tynkowania ściany o wymiarach 10 × 3 m, jeśli stawka godzinowa tynkarza wynosi 15,00 zł, a czas pracy na wykonanie 1 m2 tynku zwykłego wynosi 1,4 r-g?

A. 630,00 zł
B. 450,00 zł
C. 900,00 zł
D. 1 260,00 zł
Aby obliczyć wynagrodzenie pracownika za wykonanie obustronnego tynkowania ściany o wymiarach 10 × 3 m, należy najpierw obliczyć powierzchnię do tynkowania. Powierzchnia jednej strony ściany wynosi 10 m × 3 m = 30 m². Ponieważ tynkowanie jest obustronne, całkowita powierzchnia wynosi 30 m² × 2 = 60 m². Następnie należy uwzględnić nakład pracy na wykonanie 1 m² tynku, który wynosi 1,4 roboczogodziny (r-g). Zatem całkowity czas pracy potrzebny do wykonania tynkowania wynosi 60 m² × 1,4 r-g = 84 r-g. Przy stawce godzinowej wynoszącej 15,00 zł, całkowite wynagrodzenie wynosi 84 r-g × 15,00 zł/r-g = 1260,00 zł. Taka kalkulacja jest zgodna z dobrymi praktykami w branży budowlanej, gdzie precyzyjne obliczenia oraz znajomość nakładów pracy są kluczowe dla efektywnego zarządzania kosztami i harmonogramami. Przykładowo, w przemyśle budowlanym dokładne oszacowanie czasu pracy pozwala na lepsze planowanie projektów i unikanie opóźnień, co przekłada się na zadowolenie klientów oraz rentowność wykonawców.

Pytanie 24

Na podstawie danych zawartych w tabeli oblicz, ile worków zaprawy murarskiej będzie potrzebnych do wymurowania ściany o długości 4,0 m, wysokości 2,5 m i grubości 1 cegły.

Zużycie zaprawy z 25-kilogramowego worka
Rodzaj ścianyPowierzchnia ściany
dla grubości ściany (z cegły pełnej) 1/2 cok. 0,33 m²
grubości 1 cok.0,16 m²
grubości 1 ½cok. 0,11 m²
grubości 2 cok. 0,08 m²

A. 40 szt.
B. 63 szt.
C. 16 szt.
D. 93 szt.
Kiedy patrzymy na odpowiedzi, które nie są poprawne, można zauważyć, że często ludzie popełniają te same błędy w obliczeniach. Na przykład, mylą powierzchnię ściany, co jest całkiem powszechne. Czasem mogą używać złych jednostek albo wpisywać niewłaściwe wartości, co sprawia, że wyniki są nieprawidłowe. Niektórzy mogą sądzić, że z jednego worka zaprawy pokryją mniej powierzchni, niż to jest w rzeczywistości, przez co myślą, że potrzebują więcej materiału. Również zdarza się, że nie biorą pod uwagę grubości ściany w obliczeniach, co prowadzi do błędnych wyników. W budownictwie naprawdę ważne jest, żeby dobrze obliczyć potrzebny materiał, bo jak źle to zrobimy, mogą być opóźnienia i niepotrzebne wydatki. Wiedza, jak liczyć zużycie materiałów, jest kluczowa, żeby wszystko szło sprawnie i nie przepalać kasy na projekcie.

Pytanie 25

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. zbicia tynku z powierzchni stropu
B. wycięcia belek wzdłuż ścian
C. rozebrania górnej części stropu, czyli podłogi
D. skucia wypełnienia stropowego
Zbicie tynku ze stropu jest kluczowym pierwszym krokiem w procesie ręcznej rozbiórki stropu ceglanego na belkach stalowych. Tynk pełni funkcję wykończeniową, ale jego usunięcie pozwala na dokładną ocenę stanu konstrukcji stropu oraz belek. Bez tego etapu, można napotkać nieprzewidziane trudności, które mogą prowadzić do uszkodzenia pozostałych elementów budynku. W praktyce, przed rozpoczęciem rozbiórki, ważne jest również zapewnienie odpowiedniego zabezpieczenia obszaru roboczego oraz użycie odpowiednich narzędzi, takich jak młoty pneumatyczne czy łomy, aby skutecznie usunąć tynk. Dobrą praktyką jest także sporządzenie dokumentacji fotograficznej stanu przed rozpoczęciem prac, co może być przydatne w późniejszych etapach oraz ewentualnych analizach odpowiadających za bezpieczeństwo budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, przed rozpoczęciem rozbiórki powinno się przeprowadzić ocenę stanu technicznego konstrukcji, aby zminimalizować ryzyko związane z pracami rozbiórkowymi.

Pytanie 26

Jakie składniki mieszanki betonowej można podgrzać w trakcie jej przygotowywania w temperaturze poniżej +5 °C?

A. Piasek i wodę
B. Wapno oraz piasek
C. Cement i wapno
D. Cement oraz wodę
Odpowiedź "Piasek i wodę" jest prawidłowa, ponieważ te składniki mieszanki betonowej można podgrzewać, aby zminimalizować ryzyko zamarzania podczas prac w niskich temperaturach. Zgodnie z zaleceniami zawartymi w normach branżowych, takich jak PN-EN 206, temperatura mieszanki betonowej powinna być utrzymywana powyżej 0 °C, aby zapewnić odpowiednie procesy hydratacji cementu. Podgrzewanie piasku oraz wody pozwala na uzyskanie mieszanki o wyższej temperaturze, co sprzyja właściwej reakcji chemicznej i redukuje ryzyko wystąpienia problemów związanych z zamarzaniem. Przykładem praktycznego zastosowania tej metody jest przygotowywanie betonu w zimowych warunkach budowlanych, gdzie podgrzewanie wody do około +20 °C oraz użycie ciepłego piasku może znacząco poprawić jakość i trwałość betonowych konstrukcji. Ważne jest, aby zawsze stosować się do wytycznych dotyczących temperatury składników oraz czasu ich mieszania, aby zapewnić optymalne warunki pracy.

Pytanie 27

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 1200 zł
B. 2420 zł
C. 2000 zł
D. 1020 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 28

Aby zapewnić odpowiednią przyczepność tynku do ceglanego muru, konieczne jest

A. wykonać mur z niepełnymi spoinami
B. wykonać mur z pełnymi spoinami
C. nanosić na mur preparat poprawiający przyczepność
D. nanosić na mur rzadką zaprawę z wapna
Wykonanie muru na niepełne spoiny to najlepsza praktyka, jeśli chodzi o zapewnienie dobrej przyczepności tynku do muru z cegieł. Spoiny niepełne pozwalają na lepsze wnikanie zaprawy tynkarskiej w przestrzenie między cegłami, co skutkuje większą powierzchnią kontaktu pomiędzy tynkiem a murem. Dzięki temu uzyskuje się solidniejsze połączenie, co jest kluczowe dla trwałości i estetyki wykończenia. W standardach budowlanych często zaleca się stosowanie niepełnych spoin w kontekście prac tynkarskich, co potwierdzają normy dotyczące budownictwa, takie jak PN-EN 1996-1-1. Przykładowo, w praktyce budowlanej, podczas tynkowania murów z cegły, niepełne spoiny również umożliwiają lepsze odprowadzenie wilgoci, co jest istotne dla zapobiegania powstawaniu pleśni. Stosowanie tej metody tynkowania najlepiej jest również udokumentować w projektach budowlanych, aby mieć pewność, że wykonawcy będą stosować się do ustalonych zasad.

Pytanie 29

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520

A. 30 metrów.
B. 12 metrów.
C. 20 metrów.
D. 25 metrów.
Wybór innej odległości, jak 20, 12, czy 30 metrów, może wynikać z nieporozumienia dotyczącego zasad projektowania konstrukcji z pustaków ceramicznych. Odległość 20 metrów, mimo że może wydawać się odpowiednia, nie uwzględnia faktu, że dylatacje mają na celu nie tylko kompensację rozszerzalności cieplnej, ale także kontrolę naprężeń, które mogą prowadzić do uszkodzeń. Z kolei odległość 12 metrów nie jest zalecana, ponieważ prowadziłaby do nadmiaru dylatacji, co może osłabić integralność strukturalną i zwiększyć koszty budowy. Zastosowanie odległości 30 metrów z kolei przekracza normy branżowe, co może skutkować poważnymi problemami konstrukcyjnymi, takimi jak pęknięcia i osiadanie. Ważne jest, aby w każdym projekcie uwzględnić specyfikę materiałów oraz warunki lokalne, zwracając uwagę na standardy takie jak PN-EN 1996-1-1, które jasno określają optymalne odległości dylatacyjne. Typowym błędem myślowym jest błędne zakładanie, że większa odległość zwiększa stabilność, podczas gdy w rzeczywistości może to prowadzić do przeciążenia konstrukcji i poważnych konsekwencji. Dlatego kluczowe jest oparcie się na danych zawartych w tabelach i normach, które są wynikiem badań i praktyki inżynierskiej.

Pytanie 30

Główne składniki mieszanki betonowej stosowanej do produkcji betonu zwykłego to

A. cement, piasek, keramzyt i woda
B. cement, piasek, żwir i woda
C. cement, popiół, keramzyt i woda
D. cement, wapno, piasek i woda
Wybierając odpowiedzi, które nie zaznaczają żwiru jako jednego z głównych składników betonu, można wpaść w różne nieporozumienia. Cement, wapno, piasek i woda mogą być w niektórych mieszankach, ale to nie jest to, co tworzy beton zwykły. Wapno jest bardziej do zapraw murarskich, a jego obecność może zmieniać właściwości betonu, co nie jest dobrze w przypadku betonu klasycznego. Zresztą, popiół czy keramzyt to też składniki, które można używać w betonie lekkim czy specjalnych mieszankach, ale nie w typowym betonie zwykłym, bo żwir jest tu kluczowy dla gęstości i wytrzymałości. Często ludzie mylą różne rodzaje betonu i przypisują im niewłaściwe składniki. Pamiętaj, nawet zmiana jednego składnika może mocno obniżyć jakość betonu. Gdy projektujesz różne typy betonu, musisz trzymać się norm, żeby konstrukcje były trwałe i bezpieczne.

Pytanie 31

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. siatek z drutu stalowego
B. stolika rozpływowego
C. stolika wibracyjnego
D. rusztów drewnianych
Siatki z drutu stalowego są powszechnie stosowane do ręcznego segregowania kruszywa na poszczególne frakcje, co jest kluczowym procesem przy przygotowywaniu zaprawy murarskiej. Dzięki odpowiedniej wielkości oczek, siatki te umożliwiają efektywne oddzielanie ziaren o różnych wymiarach, co pozwala na uzyskanie jednorodnej mieszanki. W praktyce, segregacja kruszywa w taki sposób wpływa na jakość zaprawy, jej wytrzymałość oraz przyczepność do podłoża. Przykładowo, stosując siatki o różnych rozmiarach oczek, można skutecznie oddzielić piasek gruboziarnisty od drobniejszego, co jest zgodne z zasadami klasyfikacji materiałów budowlanych. Dodatkowo, stosowanie siatek zgodnych z normami PN-EN 13139 (Materiał do produkcji zapraw) oraz PN-EN 12620 (Kruszywa do betonu) zapewnia, że materiał użyty do zaprawy jest najwyższej jakości, co przekłada się na długotrwałość i stabilność konstrukcji budowlanych.

Pytanie 32

Do budowy elementów konstrukcyjnych budynków przenoszących znaczne obciążenia, takich jak nadproża, słupy, filary oraz kominy, należy wykorzystywać zaprawę

A. wapienną
B. cementową
C. gipsową
D. wapienno-gipsową
Zaprawa cementowa jest właściwym materiałem do murowania elementów budowlanych przenoszących duże obciążenia, takich jak nadproża, słupy, filary oraz kominy. Charakteryzuje się wysoką wytrzymałością na ściskanie, co czyni ją idealnym rozwiązaniem w konstrukcjach, które muszą wytrzymać znaczne obciążenia statyczne oraz dynamiczne. Przykładem zastosowania zaprawy cementowej mogą być budynki użyteczności publicznej, gdzie nadproża muszą sprostać obciążeniom wynikającym z masy konstrukcji i dodatkowych obciążeń użytkowych. Ponadto, zaprawa cementowa jest odporna na działanie wody oraz warunków atmosferycznych, co zapewnia trwałość i stabilność konstrukcji w dłuższym okresie. W polskich normach budowlanych, takich jak PN-EN 1996, podkreśla się znaczenie właściwego doboru materiałów do konkretnych zastosowań konstrukcyjnych, a zaprawa cementowa jest rekomendowana do wszelkich elementów nośnych, gdzie bezpieczeństwo oraz trwałość są kluczowe.

Pytanie 33

Ile zaprawy do cienkowarstwowego murowania należy zastosować przy budowie ściany o wymiarach 3 m × 12 m z bloczków Silka Tempo o szerokości 24 cm, jeżeli zużycie zaprawy dla muru o tej grubości wynosi 1,2 kg na 1 m2?

A. 43,2 kg
B. 28,8 kg
C. 10,4 kg
D. 86,4 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania ściany o wymiarach 3 m × 12 m, najpierw musimy obliczyć powierzchnię ściany. Powierzchnia ta wynosi 3 m × 12 m = 36 m². Znając zużycie zaprawy wynoszące 1,2 kg na 1 m², możemy obliczyć całkowitą ilość zaprawy: 36 m² × 1,2 kg/m² = 43,2 kg. To obliczenie opiera się na standardach budowlanych, które zalecają przestrzeganie określonych wartości zużycia materiałów w zależności od ich grubości i rodzaju. W praktyce, odpowiednie obliczenia pozwalają uniknąć niedoborów materiałów podczas budowy oraz zapewniają odpowiednią jakość muru. Warto również pamiętać, że różne rodzaje zaprawy mogą mieć różne właściwości, co wpływa na ich zużycie, dlatego zawsze warto posiłkować się danymi producenta. Wymagania te są szczególnie istotne w przypadku budowy obiektów, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla bezpieczeństwa i trwałości konstrukcji.

Pytanie 34

Przygotowanie zaprawy cementowo-wapiennej w sposób ręczny polega na odmierzeniu wszystkich składników, a następnie ich zmieszaniu

A. cementu z piaskiem i dodaniu ciasta wapiennego rozrzedzonego wodą
B. wody z cementem i dodaniu piasku oraz ciasta wapiennego
C. cementu z ciastem wapiennym rozrzedzonym wodą i dodaniu piasku
D. wody z piaskiem i dodaniu ciasta wapiennego oraz cementu
Ręczne przygotowanie zaprawy cementowo-wapiennej polega na odpowiednim doborze składników, które mają ze sobą harmonijnie współpracować. Właściwa metoda to zmieszanie cementu z piaskiem, a następnie dodanie ciasta wapiennego rozrzedzonego wodą. Cement i piasek tworzą bazę zaprawy, a ich proporcje muszą być dostosowane do planowanego zastosowania zaprawy, co jest zgodne z normami budowlanymi. Zastosowanie ciasta wapiennego wprowadza dodatkowe właściwości, takie jak elastyczność i zdolność do utrzymywania wilgoci, co jest niezwykle ważne w przypadku tynków czy łączeń murarskich. Przykładowo, w budownictwie, zaprawy wykonane w ten sposób są często wykorzystywane do murowania ścian, co zapewnia dobrą przyczepność oraz długowieczność konstrukcji. W przypadku tynkowania, odpowiednia konsystencja zaprawy jest kluczowa dla uzyskania gładkiej powierzchni i prawidłowego schnięcia, co również jest istotne z punktu widzenia estetyki i funkcjonalności budynku.

Pytanie 35

Jaki będzie koszt brutto produkcji 20 m3 mieszanki betonowej, jeżeli cena za 1 m3 wynosi 200 zł netto i obowiązuje podstawowa stawka VAT w wysokości 23%?

A. 4920 zł
B. 5412 zł
C. 4000 zł
D. 4400 zł
Aby obliczyć wartość brutto produkcji 20 m3 mieszanki betonowej, należy najpierw obliczyć koszt netto tej ilości. Koszt wyprodukowania 1 m3 mieszanki betonowej wynosi 200 zł, więc koszt netto dla 20 m3 wyniesie 200 zł/m3 * 20 m3 = 4000 zł. Następnie, aby uzyskać wartość brutto, należy dodać do kosztu netto podatek VAT wynoszący 23%. Obliczamy wartość VAT: 4000 zł * 0,23 = 920 zł. Wartość brutto to zatem: 4000 zł + 920 zł = 4920 zł. W praktyce, znajomość obliczania wartości brutto jest kluczowa w branży budowlanej, ponieważ pozwala na prawidłowe ustalanie kosztów projektów oraz wystawianie faktur. Dobrze jest mieć świadomość przepisów VAT, aby unikać problemów prawnych związanych z nieprawidłowym naliczaniem podatków. Warto także pamiętać, że błędne obliczenia mogą prowadzić do strat finansowych w firmach budowlanych.

Pytanie 36

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. z folii paroizolacyjnej
B. z polistyrenu ekstrudowanego
C. ze styropianu
D. z papy asfaltowej
Pozioma izolacja przeciwwilgociowa ściany fundamentowej jest kluczowym elementem zapewniającym trwałość i stabilność budynku. Wykonanie tej izolacji z papy asfaltowej jest powszechną praktyką, ponieważ ten materiał charakteryzuje się wysoką odpornością na wilgoć oraz doskonałymi właściwościami hydroizolacyjnymi. Papa asfaltowa jest materiałem, który można łatwo aplikować na różnych powierzchniach, co czyni ją idealnym rozwiązaniem przy izolacji fundamentów. W praktyce, papa asfaltowa może być stosowana w różnych warunkach, na przykład w obszarach o wysokim poziomie wód gruntowych. Aby zapewnić skuteczność izolacji, należy stosować papę asfaltową zgodnie z zaleceniami producentów oraz normami budowlanymi, takimi jak PN-EN 13707, które określają odpowiednie metody aplikacji i wymagania materiałowe. Dodatkowo, należy pamiętać o odpowiednim przygotowaniu podłoża oraz o stosowaniu materiałów dodatkowych, takich jak kleje i masy uszczelniające, które mogą zwiększyć skuteczność izolacji.

Pytanie 37

Zgodnie z wytycznymi producenta, zapotrzebowanie na gipsową zaprawę tynkarską wynosi 6 kg/m2/10 mm. Oblicz, jaką ilość
25-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na powierzchni ścian wynoszącej 100 m2.

A. 30 worków
B. 24 worki
C. 60 worków
D. 48 worków
Aby obliczyć, ile 25-kilogramowych worków gipsowej zaprawy tynkarskiej będzie potrzebnych do wykonania tynku o grubości 20 mm na powierzchni 100 m², należy najpierw ustalić całkowite zużycie zaprawy. Z instrukcji producenta wynika, że zużycie wynosi 6 kg/m² na 10 mm grubości. Dla grubości 20 mm zużycie wzrasta do 12 kg/m² (6 kg/m² x 2). Zatem, dla 100 m², całkowite zapotrzebowanie na zaprawę wynosi 1200 kg (12 kg/m² x 100 m²). Ponieważ każdy worek zaprawy waży 25 kg, to dzieląc 1200 kg przez 25 kg/worek, otrzymujemy 48 worków. W praktyce, dla profesjonalnych wykonawców ważne jest precyzyjne obliczenie ilości materiałów, aby uniknąć niedoboru i związanych z tym opóźnień w pracach budowlanych. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe podczas aplikacji, jednak w tym przypadku, przy założeniu idealnych warunków, 48 worków zapewni wystarczającą ilość zaprawy do wykonania tynków na wskazanej powierzchni.

Pytanie 38

Do wypełnienia luk w ścianach z pełnej cegły należy zastosować

A. pustaków ceramicznych
B. bloczków gazobetonowych
C. cegieł z otworami
D. cegieł pełnych
Cegły pełne są materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością i trwałością, co czyni je idealnym rozwiązaniem do uzupełniania ubytków w ścianach z cegły pełnej. Użycie cegieł pełnych zapewnia spójność strukturalną oraz estetyczną, ponieważ ich właściwości mechaniczne i kolorystyka są zbliżone do oryginalnych materiałów. W praktyce, przy renowacji lub naprawie starych budynków, cegły pełne stosuje się w miejscach, gdzie wymagana jest wysoka nośność i odporność na czynniki atmosferyczne. Dodatkowo, stosowanie tego samego rodzaju cegły w naprawie zapobiega pojawieniu się różnic w rozszerzalności cieplnej między różnymi materiałami, co może prowadzić do pęknięć. W budownictwie zaleca się przestrzeganie standardów, takich jak PN-EN 771-1, które określają wymagania dla cegieł i innych elementów murowych, co podkreśla znaczenie stosowania odpowiednich materiałów.

Pytanie 39

Jaką minimalną grubość powinny mieć przegródki międzykanałowe w kominach murowanych z cegły?

A. 1/3 cegły
B. 3/4 cegły
C. 1/4 cegły
D. 1/2 cegły
No więc, jeśli chodzi o grubość przegród w kominach murowanych z cegły, to ta wynosząca 1/2 cegły jest zgodna z normami budowlanymi, które mówią o tym, jak powinno być. Przegrody te mają naprawdę dużą rolę w wentylacji i w oddzielaniu kanałów dymowych. Ta grubość 1/2 cegły gwarantuje, że komin jest mocny i dobrze izolowany, co jest bardzo ważne, żeby gazy spalinowe nie dostawały się tam, gdzie nie powinny. Z doświadczenia wiem, że odpowiednie przestrzeganie norm podczas budowy kominów pomaga uniknąć problemów z korozją czy nieszczelnościami, które mogą być niebezpieczne dla zdrowia. Trzeba też pamiętać, że lokalne przepisy budowlane mają znaczenie, w końcu są różne standardy, jak PN-EN 13084, które muszą zostać uwzględnione. Przykładowo, w kominach z cegły ceramicznej o standardowych wymiarach, grubość 1/2 cegły pozwala na bezpieczne odprowadzanie spalin przy zachowaniu dobrych parametrów eksploatacyjnych.

Pytanie 40

Zaprawy szamotowe powinny być wykorzystywane do budowania

A. kanałów wentylacyjnych
B. kominów niezwiązanych z budynkiem
C. ścian w piwnicach
D. ścian osłonowych
Stosowanie zapraw szamotowych w innych elementach budowlanych, takich jak ściany piwniczne, kanały wentylacyjne czy ściany osłonowe, nie jest uzasadnione ich właściwościami. Ściany piwniczne nie są narażone na wysokie temperatury, a ich konstrukcja wymaga zastosowania zapraw cementowych, które zapewniają odpowiednią nośność oraz odporność na wilgoć. W przypadku kanałów wentylacyjnych, kluczowe jest, aby materiał był odporny na korozję chemiczną, a niekoniecznie na wysoką temperaturę, co czyni zaprawy szamotowe niewłaściwym wyborem. Ściany osłonowe, z kolei, pełnią funkcję izolacyjną oraz estetyczną, co także wyklucza wykorzystanie zaprawy szamotowej, gdyż ich głównym zadaniem nie jest wytrzymałość na wysoką temperaturę, lecz skuteczna ochrona przed warunkami atmosferycznymi. Wybór niewłaściwego materiału może prowadzić do uszkodzeń konstrukcji, a tym samym do zwiększenia kosztów napraw oraz obniżenia bezpieczeństwa. Dlatego ważne jest, aby każdy element budowlany był murowany z użyciem materiałów odpowiednio skomponowanych do jego funkcji i miejsca zastosowania.