Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 18 lutego 2025 11:38
  • Data zakończenia: 18 lutego 2025 11:56

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakim przyrządem dokonuje się pomiaru ciągłości połączeń w instalacjach urządzeń elektronicznych?

A. omomierzem przy wyłączonym zasilaniu elektrycznym
B. omomierzem przy aktywnym zasilaniu elektrycznym
C. amperomierzem przy aktywnym zasilaniu elektrycznym
D. woltomierzem przy aktywnym zasilaniu elektrycznym
Użycie woltomierza przy włączonym zasilaniu elektrycznym w celu pomiaru ciągłości połączeń jest niewłaściwe, gdyż ten przyrząd służy do pomiaru napięcia, a nie oporu. Woltomierz nie pozwala na ocenę, czy połączenia są rzeczywiście ciągłe, ponieważ jego działanie opiera się na pomiarze różnic potencjałów, co może prowadzić do mylnych wniosków w przypadku uszkodzenia połączenia. Podobnie, omomierz użyty przy włączonym zasilaniu może być niebezpieczny, ponieważ może ulec uszkodzeniu lub spalić bezpiecznik, co skutkuje dodatkowymi kosztami naprawy. Amperomierz, który mierzy prąd, również nie jest odpowiednim przyrządem do sprawdzania ciągłości, gdyż działa tylko na przewodach, przez które przepływa prąd, a nie na obwodach otwartych. Często w praktyce spotyka się błędne założenie, że można wykorzystać jakikolwiek przyrząd pomiarowy bez odpowiednich przygotowań i zabezpieczeń, co stwarza poważne ryzyko zarówno dla sprzętu, jak i personelu. Dlatego istotne jest, aby przed wykonaniem jakichkolwiek pomiarów wyłączyć zasilanie i stosować odpowiednie narzędzia do pomiaru oporu, aby dokładnie ocenić stan instalacji oraz zachować bezpieczeństwo podczas pracy.

Pytanie 5

Aby zweryfikować funkcjonalność kabla krosowego, co należy zastosować?

A. testera kabli sieciowych przy podłączonym kablu do sieci komputerowej
B. wobulatora przy podłączonym kablu do sieci komputerowej
C. wobulatora przy odłączonym kablu od wszystkich urządzeń
D. testera kabli sieciowych przy odłączonym kablu od wszystkich urządzeń
Jak podłączysz tester kabli do włączonego kabla, to może być naprawdę kiepsko z wynikami testów. Aktywne urządzenia mogą wysyłać sygnały, które zakłócają analizę przez tester, przez co wyniki mogą być fałszywe. Na przykład, jeśli testujesz kabel z podłączonymi urządzeniami, tester może pokazać problemy, których tak naprawdę nie ma, co tylko wprowadza w błąd i może sprawić, że ktoś niepotrzebnie zacznie grzebać w infrastrukturze. To dość powszechny błąd, który może prowadzić do dużych problemów w komunikacji sieciowej. Wobulator też jest narzędziem diagnostycznym, ale używanie go w takich sytuacjach mija się z celem, bo też wymaga, by urządzenie było odłączone, żeby uniknąć zakłóceń. No i wobulator głównie służy do testowania sygnałów w telekomunikacji, a nie do sprawdzania struktury kabli. Dlatego używanie tych narzędzi w niewłaściwy sposób może tylko pogorszyć diagnostykę i zwiększyć szansę na problemy w sieci.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Wzmacniacz z tranzystorem bipolarnym w układzie OC
B. Źródło prądowe oparte na tranzystorze bipolarnym
C. Wzmacniacz z tranzystorem bipolarnym w układzie OB
D. Ogranicznik prądowy zrealizowany w technologii bipolarnej
Wtórnik emiterowy, znany również jako wzmacniacz emiterowy, to układ elektroniczny oparty na tranzystorze bipolarnym, który działa w konfiguracji OC (emiter wspólny). Jego główną cechą jest to, że sygnał wyjściowy jest pobierany z emitera tranzystora, co pozwala na uzyskanie wysokiej impedancji wejściowej oraz niskiej impedancji wyjściowej. Dzięki temu, wtórnik emiterowy jest szczególnie efektywny w aplikacjach, gdzie wymagana jest izolacja pomiędzy różnymi stopniami układu. Przykładem zastosowania wtórnika emiterowego może być tor sygnałowy w systemach audio, gdzie zapewnia on stabilne napięcie wyjściowe niezależnie od obciążenia. Zastosowania w branży obejmują również układy zasilające, gdzie wtórnik emiterowy stabilizuje napięcie na poziomie wymaganym przez podłączone urządzenia. Dobre praktyki projektowe sugerują stosowanie wtórników emiterowych w przypadkach, gdy zachowanie integralności sygnału jest kluczowe, a obciążenia są zmienne.

Pytanie 11

Urządzenie działające w sieci komputerowej, mające na celu powiększenie zasięgu transmisji przez odtworzenie pierwotnego kształtu sygnału, bez oceny poprawności przesyłanych informacji, to

A. bridge
B. switch
C. repeater
D. hub
Wybór hubu, switcha lub bridge'a jako odpowiedzi na to pytanie jest wynikiem niepełnego zrozumienia ról, jakie pełnią te urządzenia w sieci komputerowej. Hub, będący jednym z najstarszych urządzeń, działa na zasadzie rozsyłania sygnału do wszystkich portów, co skutkuje dużą ilością kolizji i obniżeniem efektywności sieci. Hub nie regeneruje sygnału, a jedynie go powiela, co czyni go mniej wydajnym rozwiązaniem w porównaniu do repeatera. Switch, z drugiej strony, operuje na warstwie drugiej modelu OSI i jest w stanie inteligentnie kierować dane do odpowiednich urządzeń w sieci, co czyni go bardziej złożonym urządzeniem, ale nie ma on na celu zwiększenia zasięgu sygnału. Bridge działa na zasadzie łączenia dwóch lub więcej segmentów sieci, ale również nie regeneruje sygnału i wymaga analizy danych. Kluczowym błędem w myśleniu jest mylenie regeneracji sygnału z analizą i kierowaniem danych. Wybierając niewłaściwe urządzenie, można wprowadzić wiele problemów, takich jak spadek wydajności czy problemy z połączeniem, co może negatywnie wpłynąć na całą infrastrukturę sieciową.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Termin PDP odnosi się do typów wyświetlaczy

A. plazmowych
B. fluorescencyjnych
C. diodowych
D. ciekłokrystalicznych
PDP, czyli Plazma Display Panel, odnosi się do technologii wyświetlaczy plazmowych, które wykorzystują gazy szlachetne do generowania obrazu. W plazmowych wyświetlaczach, dwa cienkie szkła są pokryte warstwą fosforu i wypełnione gazem, takim jak argon czy neon. Kiedy na te gazy działa wysoka energia elektryczna, powstają cząstki plazmy, które emitują światło. Wyświetlacze plazmowe oferują szeroki kąt widzenia, żywe kolory i doskonały kontrast, co czyni je idealnym rozwiązaniem dla dużych ekranów telewizyjnych i projektorów. W praktyce, plazmy były popularne w telewizorach wysokiej rozdzielczości, szczególnie w dużych formatach. Choć technologia OLED zyskała na popularności, plazmowe wyświetlacze wciąż pozostają istotnym elementem w kontekście technologii wizualnych, dostarczając wyjątkową jakość obrazu przy odpowiednim oświetleniu pomieszczenia.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. uszkodzenia układów scalonych
B. porażenia prądem elektrycznym
C. uszkodzenia sprzętu lutowniczego
D. poparzenia gorącym spoiwem
Nie da się ukryć, że pomysł, że brak opaski uziemiającej może prowadzić do porażenia prądem, poparzenia spoiwem czy uszkodzenia sprzętu lutowniczego, to nieporozumienie. Porażenie prądem jest tu mało prawdopodobne, bo te układy działają na niskim napięciu, więc nie ma ryzyka wysokiego napięcia, które mogłoby zaszkodzić pracownikowi. Co do poparzenia gorącym spoiwem, to raczej dotyczy to lutowania, a nie ESD. Uszkodzenia sprzętu lutowniczego mogą się zdarzyć przez złe użytkowanie lub błędne ustawienia temperatury, a nie przez brak opaski. Często myli się te różne zagrożenia związane z ESD i innymi problemami w procesie lutowania. Ważne jest, żeby dobrze zrozumieć zagrożenia związane z ESD i ich wpływ na elektronikę, bo to klucz do zapewnienia jakości i bezpieczeństwa w laboratoriach czy na liniach produkcyjnych. Warto wprowadzać procedury ochrony przed ESD, żeby zminimalizować ryzyko uszkodzeń, co w efekcie wpływa na wydajność i jakość finalnych produktów.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Układ DMA stosowany w mikrokomputerach pozwala na

A. wstrzymywanie CPU w każdym momencie
B. realizowanie podwójnych poleceń
C. używanie pamięci RAM bez pośrednictwa CPU
D. podwójne zwiększenie częstotliwości zegara systemu
Pierwsza odpowiedź dotyczy podwajania częstotliwości zegara systemowego, co jest koncepcją błędną, ponieważ DMA nie ma żadnego wpływu na częstotliwość pracy procesora. Częstotliwość zegara jest determinowana przez parametry sprzętowe oraz ustawienia systemowe, a nie przez technologię dostępu do pamięci. Zatrzymywanie CPU w dowolnym momencie, jak sugeruje kolejna odpowiedź, jest również nieprawidłowe. DMA działa równolegle do CPU, ale nie przerywa jego pracy; zamiast tego efektywnie zarządza dostępem do pamięci w sposób, który nie wymaga zatrzymywania procesora. Ponadto, wykonanie podwójnych rozkazów jest terminologią, która nie odnosi się do funkcji DMA. DMA nie jest zaprojektowane do realizowania rozkazów, lecz do transferowania danych między urządzeniami bez angażowania CPU. Typowym błędem myślowym jest mylenie funkcji DMA z operacjami, które są stricte związane z architekturą procesora. Pojęcie DMA dotyczy uproszczenia i optymalizacji procesów I/O, a nie wpływania na samą architekturę CPU czy jego taktowanie. W związku z powyższym, rozumienie specyfiki funkcji DMA jest kluczowe dla właściwego podejścia do projektowania systemów komputerowych i ich wydajności. Znajomość tego mechanizmu pomaga uniknąć powszechnych nieporozumień dotyczących interakcji między CPU a pamięcią.

Pytanie 20

Którego urządzenia nie wykorzystuje się przy ustawianiu anten satelitarnych?

A. Miernika sygnału
B. Kątomierza
C. Multimetru
D. Kompasu
Wybór innych przyrządów, takich jak miernik sygnału, kompas czy kątomierz, może prowadzić do błędnych założeń na temat ich funkcji w kontekście ustawiania anten satelitarnych. Miernik sygnału jest kluczowym narzędziem, które pozwala instalatorom na bezpośrednie podejrzenie, jak silny i stabilny jest sygnał odbierany przez antenę. Jego użycie jest niezbędne do skutecznego ustawienia anteny, co czyni go niezastąpionym w procesie instalacji. Kompas jest również istotnym narzędziem, gdyż pozwala na orientację anteny w odpowiednim kierunku geograficznym, co jest fundamentem do prawidłowego ustawienia anteny na satelitę. Kątomierz zaś umożliwia precyzyjne określenie kąta azymutu i elewacji, co ma kluczowe znaczenie dla efektywności odbioru sygnału. Używanie multimetrów w tej sytuacji jest błędnym podejściem, ponieważ ich funkcje nie obejmują pomiaru parametrów sygnału satelitarnego. Typowym błędem myślowym jest połączenie różnych zastosowań przyrządów pomiarowych, co prowadzi do nieefektywnej pracy i frustracji podczas instalacji. Wiedza na temat specyfiki każdego z narzędzi oraz ich prawidłowego zastosowania jest kluczowa dla zapewnienia wysokiej jakości usług w dziedzinie instalacji systemów satelitarnych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
B. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
C. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
D. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
W przypadku nieprawidłowych odpowiedzi można zauważyć kilka kluczowych błędów w zrozumieniu procesu odbioru sygnału satelitarnego. Na przykład, w niektórych odpowiedziach zakłada się, że odbiornik satelitarny powinien znajdować się przed konwerterem, co jest technicznie niepoprawne. Odbiornik satelitarny jest urządzeniem odpowiedzialnym za dekodowanie sygnału, który już przeszedł przez konwerter. Konwerter pełni kluczową rolę w przetwarzaniu sygnału, dlatego musi znajdować się bezpośrednio po antenie satelitarnej, a przed odbiornikiem satelitarnym. Innym typowym błędem jest ignorowanie znaczenia anteny satelitarnej, która jest pierwszym punktem kontaktu z sygnałem radiowym. Niepoprawna kolejność może prowadzić do braku sygnału lub znacznego pogorszenia jakości obrazu. Takie nieporozumienia często wynikają z braku wiedzy na temat funkcji poszczególnych komponentów systemu. Standardy branżowe określają, że właściwe ustawienie i konfiguracja systemu są kluczowe dla uzyskania najlepszego odbioru. Niezrozumienie tego procesu nie tylko może skutkować nieodpowiednim działaniem systemu, ale również ogranicza możliwości użytkownika w zakresie wykorzystania pełni potencjału technologii satelitarnej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Poprawnie funkcjonująca instalacja antenowa jest zbudowana w topologii

A. gwiazdy, w której wykorzystano wyłącznie gniazda TV przelotowe
B. gwiazdy, w której wykorzystano wyłącznie gniazda TV końcowe
C. liniowej, w której wykorzystano wyłącznie gniazda TV końcowe
D. liniowej, w której wykorzystano wyłącznie gniazda TV przelotowe
Topologia liniowa, w której zastosowano gniazda TV końcowe lub przelotowe, nie jest najlepszym rozwiązaniem dla instalacji antenowych. W przypadku gniazd końcowych w topologii liniowej, sygnał jest przesyłany przez każdą jednostkę po drodze, co prowadzi do znacznych strat sygnału i pogorszenia jakości obrazu. Gniazda przelotowe również wprowadzają dodatkowe problemy, ponieważ sygnał przechodzi przez wiele punktów, co zwiększa ryzyko zakłóceń. W praktyce, użytkownicy mogą doświadczać problemów z odbiorem, takich jak zniekształcenia obrazu czy zrywanie sygnału. Dodatkowo, instalacje liniowe są trudniejsze do rozbudowy, ponieważ każda zmiana wymaga przerywania istniejących połączeń. Takie podejście nie jest zgodne z zaleceniami branżowymi, które podkreślają znaczenie minimalizacji strat sygnału oraz łatwości w modyfikacji systemu. Dlatego, wybór topologii gwiazdy z gniazdami końcowymi jest nie tylko bardziej efektywny, ale również jest zgodny z najlepszymi praktykami w branży telekomunikacyjnej i instalacyjnej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. aparat oddechowy zasilany powietrzem
B. maskę pełną
C. półmaskę
D. filtr krótkoczasowy
Aparaty oddechowe zasilane powietrzem to najskuteczniejszy sposób ochrony dróg oddechowych w sytuacjach, gdy dostępność tlenu w otoczeniu jest ograniczona. Tego rodzaju urządzenia zasysają powietrze z zewnątrz, filtrując je, aby zapewnić użytkownikowi odpowiednią jakość powietrza do oddychania. W przeciwieństwie do innych urządzeń, takich jak maski pełne czy półmaski, które mogą nie zapewnić wystarczającej ilości tlenu w przypadku znacznego obniżenia jego stężenia w powietrzu, aparaty te są przystosowane do pracy w trudnych warunkach, np. w zamkniętych przestrzeniach lub w pobliżu substancji chemicznych, gdzie ryzyko wystąpienia niskiego poziomu tlenu jest wyższe. Użycie aparatu oddechowego zasilanego powietrzem jest zgodne z obowiązującymi normami BHP oraz standardami ochrony zdrowia, takimi jak normy EN 137 i EN 12942. Przykładem zastosowania tego typu urządzeń jest praca w przemyśle, gdzie narażenie na gazy toksyczne i niedotlenienie może być realnym zagrożeniem. Regularne szkolenia z ich obsługi oraz przeszkolenie użytkowników w zakresie postępowania w sytuacjach awaryjnych są kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie typy złączy są stosowane w kamerach IP w systemach monitoringu?

A. BNC
B. RJ11
C. RJ45
D. SMA
Złącza SMA, BNC i RJ11, mimo że są powszechnie używane w różnych aplikacjach technologicznych, nie są odpowiednie w kontekście kamer IP. Złącze SMA jest stosowane głównie w systemach komunikacji bezprzewodowej, jako złącze antenowe, co czyni je nieprzydatnym dla kamer, które wymagają połączenia Ethernetowego do przesyłania danych. Z kolei złącze BNC jest przestarzałym rozwiązaniem stosowanym głównie w analogowych systemach wideo, takich jak kamery CCTV, gdzie obraz jest przesyłany w postaci sygnału analogowego. W systemach IP, które przesyłają dane w formie cyfrowej, wykorzystanie BNC nie jest zalecane, ponieważ nie obsługuje standardów transmisji IP. Złącze RJ11, znane jako złącze telefoniczne, również nie jest odpowiednie dla kamer IP, ponieważ jego zastosowanie ogranicza się do systemów telefonicznych i nie oferuje wystarczającej przepustowości ani możliwości przesyłania sygnału wideo. Wybór niewłaściwego złącza w systemie monitoringu może prowadzić do problemów z jakością obrazu, opóźnieniami oraz brakiem stabilności połączenia, co jest kluczowe w zabezpieczeniach i monitoringu obiektów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Ile wynosi maksymalna prędkość przesyłania danych do urządzenia, którego dane techniczne przedstawiono w tabeli?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM

A. 150 B/s
B. 1 200 B/s
C. 14 400 B/s
D. 115 200 B/s
Poprawna odpowiedź to 14 400 B/s, ponieważ jest to maksymalna prędkość przesyłania danych, która jest zgodna z typowymi standardami komunikacji w urządzeniach elektronicznych. W kontekście urządzeń, które komunikują się z komputerami lub innymi systemami, istnieją różne protokoły, które określają maksymalne prędkości transferu. Na przykład, standard RS-232, który jest powszechnie stosowany w komunikacji szeregowej, może obsługiwać prędkości do 115 200 bps, ale w praktyce wiele urządzeń korzysta z niższych prędkości, aby zapewnić stabilność i niezawodność transferu danych. W przypadku urządzeń, które mają maksymalną prędkość 14 400 B/s, oznacza to, że mogą one efektywnie przesyłać dane, nie przeciążając jednocześnie interfejsu komunikacyjnego. Przykłady zastosowania to modemy czy urządzenia do przesyłania danych, które wymagają stabilnych prędkości transferu, aby zapewnić ich sprawne działanie.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W instalacji naściennej w budynku mieszkalnym jednokondygnacyjnym przewody powinny być prowadzone

A. najkrótszą trasą
B. tylko w poziomie
C. w pionie oraz poziomie
D. wyłącznie w pionie
Instalacja natynkowa w jednokondygnacyjnym budynku mieszkalnym wymaga prowadzenia przewodów zarówno w pionie, jak i w poziomie, co jest zgodne z ogólnymi zasadami projektowania instalacji elektrycznych. W praktyce oznacza to, że instalatorzy muszą uwzględniać różnorodne czynniki, takie jak dostępność punktów zasilających, rozmieszczenie gniazdek i włączników oraz estetykę wykończenia wnętrza. Prowadzenie przewodów w pionie umożliwia wygodne podłączenie urządzeń na różnych poziomach, a poziome prowadzenie jest kluczowe dla łatwego dostępu do zasilania w obrębie pomieszczeń. Ponadto, zgodnie z normą PN-HD 60364, instalacje elektryczne powinny być wykonywane w sposób zapewniający bezpieczeństwo użytkowania oraz łatwość konserwacji. Przykładowo, w przypadku montażu instalacji w kuchni, odpowiednie prowadzenie przewodów w poziomie i pionie zapewnia optymalne połączenia z urządzeniami AGD, minimalizując jednocześnie ryzyko przeciążeń elektrycznych oraz uszkodzeń mechanicznych. Ostatecznie, elastyczność w projektowaniu instalacji pozwala na lepsze dostosowanie do indywidualnych potrzeb mieszkańców budynku.

Pytanie 35

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jakikolwiek stałokodowy
B. uniwersalny (samouczący)
C. jakikolwiek zmiennokodowy
D. jedynie dostarczony przez producenta szlabanu
Wybór odpowiedzi "wyłącznie dostarczony przez producenta szlabanu" jest właściwy, ponieważ systemy zdalnego sterowania, takie jak Keeloq, często są zaprojektowane do pracy z określonymi pilotami, które są dostarczane przez producenta. System Keeloq oparty jest na technologii kodowania zmiennego, co oznacza, że piloty są programowane do współpracy z danym urządzeniem, zapewniając maksymalne bezpieczeństwo i niezawodność. Użycie uniwersalnych pilotów lub pilotów stałokodowych może prowadzić do problemów z kompatybilnością, a nawet do naruszenia bezpieczeństwa, ponieważ mogą nie być w stanie poprawnie zidentyfikować sygnałów lub mogą być podatne na nieautoryzowane kopiowanie sygnałów. Przykładem zastosowania tego podejścia jest system zabezpieczeń w parkingach, gdzie korzystanie z pilotów dostarczonych przez producenta zapobiega nieautoryzowanemu dostępowi. W przypadku uszkodzenia pilota, zaleca się kontakt z producentem w celu uzyskania oryginalnych komponentów, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 36

Która z poniższych czynności nie należy do serwisowania systemu domofonowego?

A. Zamiany żarówki podświetlającej panel
B. Sprawdzenia napięć zasilających
C. Montażu przekaźnika dwuwejściowego
D. Dostosowania głośności unifonu
Instalacja przekaźnika dwuwejściowego nie jest czynnością konserwacyjną, lecz zadaniem związanym z montażem lub modernizacją systemu domofonowego. Konserwacja instalacji domofonowej koncentruje się na utrzymaniu już istniejących komponentów w dobrym stanie oraz zapewnieniu ich prawidłowego funkcjonowania. Przykładowe czynności konserwacyjne obejmują regulację głośności unifonu, co ma na celu dostosowanie poziomu dźwięku do warunków użytkowania i preferencji użytkownika oraz wymianę żarówki podświetlenia panela, co jest istotne dla funkcjonalności wizualnej urządzenia. Kontrola napięć zasilających również należy do rutynowych działań konserwacyjnych, które pomagają w identyfikacji ewentualnych problemów z zasilaniem i zapewniają stabilność działania systemu. Poznanie zakresu działań konserwacyjnych jest kluczowe dla prawidłowego funkcjonowania instalacji domofonowych i może znacznie przedłużyć ich żywotność.

Pytanie 37

Aby zidentyfikować przerwę w obwodzie systemu alarmowego, należy użyć

A. generatora
B. bramki
C. multimetru
D. manometru
Multimetr jest kluczowym narzędziem w diagnostyce elektrycznej i elektronice, pozwalającym na pomiar napięcia, prądu oraz oporu w obwodach. W przypadku lokalizacji przerwy w obwodzie instalacji alarmowej, multimetr umożliwia szybkie zidentyfikowanie, czy obwód jest zamknięty, czy otwarty. Przykładowo, można ustawić multimetr na pomiar oporu (Ω) i sprawdzić, czy zasilany obwód wykazuje wartość bliską zeru (co wskazywałoby na zamknięcie obwodu) czy nieskończoności (co sugerowałoby przerwę). Dobrą praktyką jest również użycie funkcji pomiaru napięcia, aby upewnić się, że zasilanie dociera do wszystkich istotnych punktów obwodu. Warto również zwrócić uwagę na standardy bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, takie jak odpowiednie uziemienie multimetru oraz przestrzeganie instrukcji producenta, co znacząco zmniejsza ryzyko uszkodzenia sprzętu oraz zapewnia bezpieczeństwo użytkownika w trakcie diagnostyki.

Pytanie 38

Stacja bazowa jest częścią systemu

A. telewizji kablowej
B. sterowania mikroprocesorowego
C. nawigacyjnego
D. alarmowego
Wybór odpowiedzi dotyczącej alarmowego systemu jest nieprawidłowy, ponieważ stacja czołowa nie ma związku z systemami alarmowymi. Systemy alarmowe koncentrują się na detekcji zagrożeń, takich jak włamania czy pożary, oraz na monitorowaniu i reagowaniu na te sytuacje. W kontekście telekomunikacji, stacja czołowa nie jest elementem, który odpowiada za alarmowanie, lecz za przetwarzanie sygnałów telewizyjnych. Podobnie, wybór opcji dotyczącej nawigacji jest błędny, ponieważ systemy nawigacyjne, takie jak GPS, skupiają się na lokalizacji i kierowaniu, a nie na przekazywaniu sygnału telewizyjnego. Stacja czołowa nie uczestniczy w procesie nawigacyjnym, lecz skupia się na dystrybucji treści multimedialnych. Napotkanie na odpowiedź wskazującą na sterowanie mikroprocesorowe może wynikać z mylnego przekonania o uniwersalności mikroprocesorów w różnych zastosowaniach. Choć mikroprocesory są kluczowe w systemach elektronicznych, ich rola w stacji czołowej telewizji kablowej jest ograniczona do przetwarzania sygnałów, a nie zarządzania funkcjami systemów sterowania. Często spotykanym błędem myślowym w takich przypadkach jest uogólnienie funkcji technologii bez zrozumienia ich kontekstu i specyfiki działania w danym systemie.

Pytanie 39

Instalacja sieci komputerowej z wykorzystaniem kabla U/UTP jest instalacją

A. ekranowaną
B. światłowodową
C. nieekranowaną
D. ekranowaną podwójnie
Wybór odpowiedzi dotyczących ekranowania kabli, takich jak ekranowana podwójnie, ekranowana, czy światłowodowa, pokazuje nieporozumienie dotyczące podstawowych właściwości kabli U/UTP. Kable ekranowane, w przeciwieństwie do U/UTP, posiadają dodatkową warstwę ochronną, która pomaga w minimalizowaniu zakłóceń elektromagnetycznych. Ekranowanie jest niezbędne w warunkach, gdzie występuje wysoki poziom zakłóceń, takich jak w pobliżu silnych źródeł elektromagnetycznych. Jednak, w większości typowych zastosowań, gdzie kabel U/UTP jest wykorzystywany, nie ma potrzeby stosowania ekranów, co czyni je bardziej praktycznym i ekonomicznym rozwiązaniem. Z kolei odpowiedź dotycząca kabli światłowodowych jest również błędna, ponieważ kable U/UTP są zbudowane na zupełnie innej zasadzie, gdzie dane przesyłane są za pomocą sygnałów elektrycznych, a nie optycznych. Kable światłowodowe oferują większe prędkości i odległości transmisji, ale są droższe i wymagają bardziej skomplikowanej instalacji. Kluczowe błędy myślowe w analizie tego pytania mogą obejmować mylenie wymagań dotyczących konkretnej instalacji oraz nieznajomość specyfikacji technicznych poszczególnych rodzajów kabli. Ważne jest, aby na etapie projektowania sieci komputerowej rozważyć warunki środowiskowe, jakie będą panować w miejscu instalacji, aby odpowiednio dobrać typ kabla, co pozwoli na uzyskanie optymalnej wydajności i niezawodności sieci.

Pytanie 40

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. położenie anteny
B. usytuowanie gniazd
C. jakość sygnału w gniazdku
D. metodę ułożenia przewodów
Podczas okresowej kontroli instalacji TV kluczowym elementem jest sprawdzenie poziomu sygnału w gniazdku. Sygnał telewizyjny musi mieć odpowiednią moc, aby zapewnić jakość odbioru. Standardy branżowe, takie jak DVB-T lub DVB-S, określają minimalne wartości poziomu sygnału, które powinny być osiągane, aby gwarantować stabilny i bezawaryjny odbiór. Niski poziom sygnału może prowadzić do zniekształceń obrazu, a nawet do jego całkowitego braku. Przykładowo, w instalacjach antenowych, jeśli poziom sygnału jest niższy niż -80 dBm, może to skutkować problemami z odbiorem. Regularne kontrole poziomu sygnału pozwalają na szybką identyfikację problemów, takich jak uszkodzenia kabli czy niewłaściwe ustawienie anteny. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie moc sygnału i jakości, a także przeprowadzają pomiary w różnych warunkach, aby upewnić się, że instalacja działa optymalnie.