Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 3 czerwca 2025 19:23
  • Data zakończenia: 3 czerwca 2025 19:35

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Po wymianie klocków hamulcowych z przodu pojazdu przeprowadzono jazdę testową, której celem jest ustalenie

A. rozkładu siły hamowanej na każde z kół
B. rodzaju użytego płynu hamulcowego
C. skuteczności hamulców
D. siły hamowania
Skuteczność hamulców jest kluczowym wskaźnikiem, który pozwala ocenić, czy wymiana klocków hamulcowych przyniosła zamierzony efekt. Jazda próbna po wymianie klocków hamulcowych ma na celu nie tylko sprawdzenie, czy nowo zamontowane części działają poprawnie, ale również, czy ich działanie jest zgodne z wymaganiami bezpieczeństwa i komfortu jazdy. W praktyce, skuteczność hamulców można ocenić poprzez obserwację reakcji pojazdu na wciśnięcie pedału hamulca, co powinno skutkować natychmiastowym i proporcjonalnym spowolnieniem. Przy odpowiednim doborze klocków i tarcz hamulcowych, ich współpraca powinna zapewniać optymalne warunki hamowania, co jest kluczowe dla zapobiegania wypadkom drogowym. Warto również wspomnieć, że skuteczność hamulców powinna być regularnie weryfikowana, a jej ocena powinna być zgodna z wytycznymi producentów oraz standardami branżowymi, takimi jak normy ECE R90, które regulują wymagania dotyczące wydajności hamulców w pojazdach. Dodatkowo, nieodpowiednie dobranie klocków hamulcowych może prowadzić do ich przegrzewania, co może negatywnie wpływać na ich skuteczność. Aspekty te powinny być brane pod uwagę podczas każdej wymiany klocków hamulcowych.

Pytanie 2

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. olej silnikowy
B. olej przekładniowy
C. płyn hydrauliczny
D. smar stały
Olej przekładniowy to substancja smarująca, która została zaprojektowana z myślą o specyficznych wymaganiach mechanizmów różnicowych w pojazdach. Jego główną funkcją jest redukcja tarcia między ruchomymi częściami, co z kolei minimalizuje zużycie i wydłuża żywotność podzespołów. W przeciwieństwie do innych rodzajów olejów, olej przekładniowy zawiera dodatki, które poprawiają jego właściwości smarne oraz zapobiegają pienieniu się, co jest kluczowe w warunkach dużych obciążeń i zmiennych prędkości pracy. Zastosowanie oleju przekładniowego jest zgodne z zaleceniami producentów układów napędowych, co wpływa na ich niezawodność i efektywność. Dobór właściwego oleju jest istotny, ponieważ niewłaściwy może prowadzić do przegrzewania się przekładni, co skutkuje uszkodzeniem mechanizmu różnicowego. W praktyce, regularna wymiana oleju przekładniowego jest kluczowym elementem konserwacji pojazdów, co jest zgodne z najlepszymi praktykami utrzymania pojazdów.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Największa dopuszczalna różnica w sile hamowania pomiędzy kołami tej samej osi wynosi

A. 20%
B. 10%
C. 30%
D. 40%
Maksymalna dopuszczalna różnica sił hamowania pomiędzy kołami tej samej osi wynosząca 30% jest zgodna z normami i standardami bezpieczeństwa w motoryzacji. Taki limit ma na celu zapewnienie równomiernego rozkładu siły hamowania, co jest kluczowe dla stabilności pojazdu podczas hamowania. Nierównomierne hamowanie może prowadzić do utraty kontroli nad pojazdem, zwłaszcza w trudnych warunkach, takich jak mokra lub śliska nawierzchnia. Przykładem może być sytuacja, gdy jedno z kół hamuje znacznie mocniej niż drugie, co może spowodować obrót pojazdu lub zablokowanie kół. Dobrą praktyką w diagnostyce układów hamulcowych jest regularne sprawdzanie wydajności hamowania oraz równowagi sił na osiach, co może być realizowane podczas przeglądów technicznych. Spełnianie norm dotyczących siły hamowania jest istotne nie tylko z punktu widzenia bezpieczeństwa, ale także w kontekście przepisów prawa, które regulują dopuszczalne parametry techniczne pojazdów.

Pytanie 5

Proces odpowietrzania hamulców w pojeździe, który nie jest wyposażony w system ABS, powinien być realizowany

A. w przeciwnym kierunku do ruchu wskazówek zegara
B. rozpoczynając od najbliższego koła do pompy hamulcowej
C. zgodnie z ruchem wskazówek zegara
D. rozpoczynając od najdalszego koła od pompy hamulcowej
Odpowietrzanie układu hamulcowego pojazdu nie wyposażonego w układ ABS powinno być przeprowadzane, zaczynając od najdalszego koła od pompy hamulcowej. Taki sposób działania jest zgodny z zasadami hydrauliki oraz praktykami stosowanymi w branży motoryzacyjnej. W układzie hamulcowym, powietrze gromadzi się w miejscach, gdzie ciśnienie jest najniższe, a więc najczęściej w najdalszym kole od pompy. Przy odkręcaniu odpowietrznika w tym kole, powietrze, które wpływa do układu, jest usuwane, co pozwala na poprawne działanie hydrauliki hamulcowej. Przykładowo, jeśli odpowietrzanie zaczniemy od najbliższego koła, powietrze nie zostanie całkowicie usunięte, co może prowadzić do słabszej efektywności hamulców oraz wydłużenia drogi hamowania. Przy odpowiednim odpowietrzaniu układu, podczas serwisowania pojazdu, można zapewnić jego bezpieczeństwo oraz prawidłowe działanie, co jest kluczowe dla każdego kierowcy.

Pytanie 6

W systemie chłodzenia silnika, ilość płynu krążącego w obiegu kontrolowana jest przez

A. wentylator chłodnicy
B. czujnik temperatury cieczy
C. termostat
D. pompę cieczy
Termostat odgrywa kluczową rolę w układzie chłodzenia silnika, regulując przepływ płynu chłodzącego w obiegu chłodzenia. Jego zadaniem jest otwieranie lub zamykanie przepływu płynu w zależności od temperatury silnika. Po uruchomieniu silnika, termostat pozostaje zamknięty, co pozwala na szybkie nagrzanie się silnika do optymalnej temperatury roboczej. Po osiągnięciu tej temperatury, termostat otwiera się, umożliwiając przepływ płynu chłodzącego przez chłodnicę, co skutkuje obniżeniem temperatury silnika. Dzięki tym właściwościom, termostat przyczynia się do efektywnego i stabilnego działania silnika, co ma kluczowe znaczenie dla wydajności oraz trwałości jednostki napędowej. W praktyce, regularna kontrola stanu termostatu jest zalecana w ramach przeglądów technicznych, a jego wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne warunki pracy silnika oraz zapobiec przegrzaniu lub zbyt niskiej temperaturze pracy.

Pytanie 7

Zniekształcenie powierzchni przylegania głowicy silnika następuje w wyniku

A. luźnych łożysk wału rozrządu
B. zużytych gniazd zaworów
C. niedostatecznego smarowania
D. nieprawidłowego dokręcenia śrub
Jak wiesz, dobrze dokręcone śruby w układzie mocującym głowicę silnika są mega ważne. Jeśli nie dokręcisz ich odpowiednio, siły rozkładają się nierównomiernie i to może prowadzić do deformacji płaszczyzny. W efekcie może być problem z szczelnością komory spalania, co wpływa na to, jak działają układy zaworowe. Podczas montażu głowicy lepiej trzymać się sprawdzonych procedur, które opisują, jak dokręcać śruby - czasem są tam konkretne wartości momentu obrotowego i sekwencje. W motoryzacji mamy normy jak ISO 898-1, które mówią, jakie materiały i cechy mechaniczne powinny mieć śruby. Więc pamiętaj, żeby o to zadbać, bo to kluczowe dla długiej i bezawaryjnej pracy silnika, a co za tym idzie, bezpieczeństwo i wydajność twojego auta. Jeśli spróbujesz to zlekceważyć, możesz się zmierzyć z poważnymi problemami, takimi jak przegrzewanie silnika albo uszkodzenie uszczelki pod głowicą, a to może być naprawdę kosztowne.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Do zadań sondy lambda zainstalowanej tuż za katalizatorem należy

A. mierzenie poziomu tlenu w spalinach, które wydobywają się z katalizatora
B. mierzenie poziomu tlenu w spalinach, które opuszczają silnik
C. kontrola składu mieszanki paliwowo-powietrznej
D. korekcja kąta wyprzedzenia zapłonu
Sonda lambda umieszczona za katalizatorem odgrywa kluczową rolę w monitorowaniu poziomu tlenu w spalinach. Jej głównym zadaniem jest dostarczanie informacji do systemu zarządzania silnikiem, co pozwala na optymalizację procesu spalania. Prawidłowe działanie sondy lambda ma istotne znaczenie dla efektywności pracy silnika, a także dla spełnienia norm emisji spalin. Przykładowo, jeśli sonda rejestruje zbyt niską ilość tlenu w spalinach, oznacza to, że mieszanka paliwowo-powietrzna jest zbyt bogata, co może prowadzić do niepełnego spalania i wzrostu emisji szkodliwych substancji. W praktyce, dane te pozwalają na dynamiczną korekcję parametru mieszanki przez jednostkę sterującą silnika, co przekłada się na lepszą wydajność, mniejsze zużycie paliwa oraz niższe emisje. Warto zauważyć, że stosowanie sondy lambda w połączeniu z katalizatorem przyczynia się do minimalizacji negatywnego wpływu na środowisko, zgodnie z normami Euro dotyczących emisji spalin.

Pytanie 10

Po zainstalowaniu nowej pompy cieczy chłodzącej trzeba

A. uzupełnić poziom płynu chłodzącego
B. ustawić zbieżność kół
C. ustawić luz zaworowy
D. wyczyścić układ chłodzenia
Uzupełnienie płynu chłodzącego po wymianie pompy to naprawdę ważna sprawa, żeby silnik działał jak należy. Jak już wymienisz pompę, musisz zadbać o to, żeby cały układ był dobrze napełniony. Bez tego może się zdarzyć, że silnik się przegrzeje, a to może być kosztowne. Po wymianie pompy warto też odpowietrzyć układ, żeby pozbyć się powietrza, które może powodować przegrzewanie w niektórych miejscach. Nie zapomnij też regularnie sprawdzać poziomu płynu w zbiorniku, a także zajrzeć, czy nie ma jakiś wycieków. Rada dla Ciebie - lepiej używać płynów chłodzących, które producent zaleca, bo dzięki temu silnik będzie miał lepsze właściwości termiczne i ochroni sobie przed korozją. No i oczywiście, regularne kontrolowanie stanu płynu to klucz do dłuższego życia silnika i jego efektywności.

Pytanie 11

10W-30 to kod oleju

A. przekładniowego
B. silnikowego wielosezonowego
C. silnikowego letniego
D. silnikowego zimowego
Wszystkie pozostałe odpowiedzi, które sugerują, że 10W-30 to olej letni, zimowy lub przekładniowy, są błędne z kilku powodów. Oleje silnikowe letnie mają zazwyczaj wyższe klasy lepkości, co nie odpowiada oznaczeniu '10W-30', które wskazuje na zastosowanie w zmieniających się warunkach atmosferycznych, a więc jest klasyfikowane jako olej wielosezonowy. W przypadku olejów zimowych, oznaczenie 'W' wskazuje na ich zoptymalizowaną lepkość do niskich temperatur, co również nie pasuje do opisanego oleju. Z kolei oleje przekładniowe, używane w skrzyniach biegów, mają zupełnie inną klasyfikację i nie są opisane w ten sam sposób jak oleje silnikowe. Oleje silnikowe i przekładniowe mają różne właściwości chemiczne i fizyczne, co czyni je nieodpowiednimi do zamiany ich zastosowań. W praktyce, często spotykanym błędem jest mylenie klas lepkości lub rodzaju oleju, co może prowadzić do niewłaściwego doboru oleju i potencjalnie uszkodzić silnik lub inne elementy pojazdu. Kluczowe jest stosowanie oleju zgodnego z zaleceniami producenta, które zwykle można znaleźć w instrukcji obsługi pojazdu, aby zapewnić optymalne warunki pracy silnika i jego długowieczność.

Pytanie 12

Badanie zadymienia spalin przeprowadza się w silnikach

A. z zapłonem iskrowym
B. z zapłonem samoczynnym
C. zasilanych paliwem LPG
D. zasilanych paliwem CNG
Pomiar zadymienia spalin to naprawdę ważna sprawa, szczególnie w silnikach Diesla, bo tam spalanie zachodzi inaczej niż w silnikach benzynowych. W silnikach z zapłonem samoczynnym, jak te dieslowskie, temperatura i ciśnienie są wyższe, co prowadzi do większej produkcji cząstek stałych. Dlatego normy emisji, takie jak Euro 6, mają tu swoje mocne restrykcje. Oprócz tego, monitorowanie zadymienia jest kluczowe dla diagnostyki silnika i może pomóc w optymalizacji spalania. Z własnego doświadczenia mogę powiedzieć, że dobrze przeprowadzone pomiary zadymienia nie tylko zmniejszają zużycie paliwa, ale też pomagają w walce z zanieczyszczeniami powietrza. Użycie odpowiednich analizatorów zadymienia to podstawa, żeby wszystko działało zgodnie z normami.

Pytanie 13

Zanim przystąpisz do regulacji luzów zaworowych w silniku z zapłonem iskrowym, powinieneś

A. wykręcić wszystkie świece zapłonowe
B. zweryfikować szczelność silnika
C. sprawdzić poziom naładowania akumulatora
D. wykonać pomiar ciśnienia sprężania
Sprawdzanie stanu naładowania akumulatora przed regulacją luzów zaworowych nie ma bezpośredniego wpływu na ten proces. Akumulator jest istotny dla ogólnego funkcjonowania silnika, jednak regulacja luzów dotyczy głównie mechaniki zaworowej i nie wymaga interakcji z systemem elektrycznym pojazdu. Pomiar ciśnienia sprężania może być użyteczny w diagnostyce silnika, ale nie jest to krok wymagany przed regulacją luzów zaworowych. Z kolei sprawdzanie szczelności silnika również nie jest bezpośrednio związane z samym procesem ustawiania luzów. Prawidłowe ustawienie luzów zaworowych powinno być wykonywane w oparciu o specyfikacje producenta i najlepiej w warunkach, gdzie silnik jest w stanie spoczynku. Ignorowanie wykręcenia świec zapłonowych może prowadzić do błędnych odczytów i potencjalnych uszkodzeń, co podkreśla znaczenie stosowania się do ustalonych procedur. Warto pamiętać, że nieprzestrzeganie tych praktyk może prowadzić do poważnych konsekwencji, takich jak uszkodzenie zaworów, co znacząco wpłynie na wydajność silnika.

Pytanie 14

Po dokonaniu wymiany klocków hamulcowych na jednej stronie pojazdu konieczne jest

A. sprawdzenie poziomu płynu hamulcowego
B. zweryfikowanie siły hamowania na stanowisku diagnostycznym
C. odpowietrzenie układu hamulcowego
D. wymiana klocków hamulcowych na drugiej stronie pojazdu
Po przeprowadzeniu wymiany klocków hamulcowych na jednej osi pojazdu, sprawdzenie poziomu płynu hamulcowego jest niezbędnym krokiem, ponieważ układ hamulcowy działa w oparciu o ciśnienie płynu. Wymiana klocków może wiązać się z ich zużyciem, co wpływa na poziom płynu w zbiorniczku. W przypadku zużycia klocków, płyn hamulcowy może być wciągany z powrotem do układu, co prowadzi do obniżenia jego poziomu. Niski poziom płynu hamulcowego może negatywnie wpływać na skuteczność hamowania. Dobrą praktyką jest regularne kontrolowanie poziomu płynu, zwłaszcza po wymianie komponentów układu hamulcowego. Zgodnie z zaleceniami producentów pojazdów, poziom płynu powinien znajdować się między znacznikami „min” i „max” na zbiorniku. Ponadto, przy każdej wymianie klocków zaleca się również kontrolę stanu przewodów hamulcowych oraz szczelności układu, co dodatkowo zapewnia bezpieczeństwo użytkowników pojazdu.

Pytanie 15

Podczas kontroli czopów głównych wału korbowego zauważono, że wymiary czopów I, II i IV są zbliżone do wymiarów nominalnych, natomiast czop III został zakwalifikowany do szlifowania na wymiar naprawczy. Jak powinien przebiegać dalszy proces naprawy?

A. Szlifowanie czopa III na wymiar naprawczy i montaż z nadwymiarowymi panewkami
B. Szlifowanie czopów I, II, III i IV na wymiar naprawczy i montaż z nadwymiarowymi panewkami
C. Szlifowanie czopa III na wymiar naprawczy i montaż z nominalnymi panewkami
D. Szlifowanie czopów II i III (współbieżnych) na wymiar naprawczy i montaż z nadwymiarowymi panewkami
Odpowiedź, w której sugeruje się szlifowanie czopów I, II, III i IV na wymiar naprawczy i montaż z nadwymiarowymi panewkami, jest poprawna, ponieważ uwzględnia stan wszystkich czopów wału korbowego. W przypadku, gdy jeden z czopów, w tym przypadku czop III, wymaga szlifowania, warto zadbać o to, aby pozostałe czopy również miały odpowiednie wymiary. Szlifowanie czopów na wymiar naprawczy pozwala na przywrócenie ich odpowiednich parametrów, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania silnika. Zastosowanie nadwymiarowych panewków jest standardową praktyką w naprawie wałów korbowych, gdyż umożliwia dostosowanie względem szlifowanych czopów, co przyczynia się do ich dłuższej żywotności. Dobry mechanik powinien również przeprowadzić kontrolę wymiarów po szlifowaniu, aby upewnić się, że osiągnięto wymagane tolerancje. Ponadto, wdrożenie takich praktyk jest zgodne z normami producentów i branżowymi standardami, co potwierdza ich skuteczność w długofalowych naprawach silników.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Honowanie to zabieg wykańczający, który stosuje się w procesie naprawy

A. gniazd zaworów
B. powierzchni krzywek wału rozrządu
C. tulei cylindrowych
D. czopów wału korbowego
Honowanie to precyzyjna obróbka wykańczająca, która ma na celu uzyskanie powierzchni o bardzo wysokiej jakości, szczególnie w przypadku tulei cylindrowych. Proces ten polega na usuwaniu niewielkich ilości materiału, co pozwala na poprawę wymiarów, kształtu oraz chropowatości powierzchni. W przypadku tulei cylindrowych honowanie jest kluczowe, ponieważ zapewnia odpowiednią geometrię, co jest niezbędne dla prawidłowego działania silnika. Przykładem zastosowania honowania może być przygotowanie tulei cylindrowych silnika spalinowego, gdzie precyzyjne dopasowanie do tłoków ma kluczowe znaczenie dla efektywności pracy silnika oraz jego żywotności. Dobrze przeprowadzone honowanie wpływa na zmniejszenie zużycia paliwa, obniżenie emisji spalin oraz zwiększenie mocy silnika. W branży motoryzacyjnej honowanie jest standardem, który pozwala na uzyskanie wysokiej jakości komponentów, co przekłada się na lepsze osiągi i niezawodność pojazdów.

Pytanie 18

Jaką informację zawartą w dowodzie rejestracyjnym pojazdu powinien wykorzystać mechanik przy zamawianiu części zamiennych do naprawy pojazdu?

A. Data ważności przeglądu technicznego
B. Data pierwszej rejestracji w kraju
C. Numer identyfikacyjny pojazdu
D. Numer rejestracyjny
Numer identyfikacyjny pojazdu (VIN) jest kluczowym elementem przy zamawianiu części zamiennych, ponieważ stanowi unikalny identyfikator każdego pojazdu. VIN zawiera informacje dotyczące producenta, modelu, roku produkcji oraz specyfikacji technicznych pojazdu. Mechanik, korzystając z tego numeru, ma pewność, że zamawiane części będą dokładnie pasować do konkretnego pojazdu, co jest niezwykle istotne, aby uniknąć problemów z kompatybilnością. Na przykład, jeśli mechanik zamawia części do silnika, to różnice między modelami mogą być na tyle znaczące, że użycie niewłaściwego komponentu mogłoby doprowadzić do awarii lub obniżenia wydajności pojazdu. Korzystanie z VIN jest zgodne z najlepszymi praktykami w branży, ponieważ zapewnia także łatwy dostęp do historii serwisowej pojazdu, co może być pomocne w diagnozowaniu problemów oraz planowaniu przyszłych napraw. Znajomość i wykorzystanie VIN to zatem standard, który każdy profesjonalny mechanik powinien stosować w swojej pracy.

Pytanie 19

Podczas przeglądu układu zawieszenia, co należy sprawdzić, aby ocenić stan amortyzatorów?

A. Kolor płynu chłodzącego
B. Szczelność i wycieki oleju
C. Napięcie pasków klinowych
D. Stan przewodów elektrycznych
Sprawdzanie szczelności i wycieków oleju w amortyzatorach jest kluczowe, ponieważ te komponenty zawierają ciecz hydrauliczną, która tłumi drgania. Jeśli amortyzator jest nieszczelny, ciecz może wyciekać, co prowadzi do utraty jego efektywności. To może skutkować gorszym tłumieniem nierówności drogi, co wpływa na komfort jazdy oraz bezpieczeństwo. Nieszczelność amortyzatora może prowadzić do niestabilności pojazdu, szczególnie podczas pokonywania zakrętów lub jazdy po nierównościach. W praktyce, kontrola amortyzatorów jest standardową procedurą podczas przeglądów technicznych pojazdów, a wykrycie wycieków oleju jest sygnałem do ich wymiany. Prawidłowo działające amortyzatory są niezbędne dla zachowania optymalnej przyczepności kół, co ma bezpośrednie przełożenie na drogę hamowania oraz ogólną kontrolę nad pojazdem. Dobrym zwyczajem jest regularne monitorowanie stanu amortyzatorów, nie czekając na pierwsze objawy zużycia, co może zapobiec poważniejszym problemom z zawieszeniem.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakiej wielkości nie można określić, korzystając z metody pomiaru bezpośredniego?

A. Objętości cylindra
B. Średnicy tłoka
C. Średnicy sworznia tłokowego
D. Grubości pierścienia
Objętości cylindra nie można zmierzyć metodą pomiaru bezpośredniego, ponieważ wymaga ona zastosowania bardziej skomplikowanych technik obliczeniowych. Objętość cylindryczna zależy od jego wymiarów, takich jak średnica i wysokość, ale sama w sobie nie jest wymiarem, który można bezpośrednio zmierzyć. W praktyce pomiar objętości często przeprowadza się za pomocą metod pośrednich, takich jak wypełnienie cylindra cieczą czy gazem, a następnie obliczenie objętości na podstawie zmierzonych wartości. W branży inżynieryjnej i mechanicznej standardem jest stosowanie równań matematycznych, takich jak V = πr²h, gdzie V to objętość, r to promień podstawy, a h to wysokość. Przykłady zastosowań obejmują projektowanie silników spalinowych, gdzie precyzyjne obliczenia objętości cylindrów są kluczowe dla efektywności silnika oraz jego wydajności.

Pytanie 23

Częścią układu hamulcowego nie jest

A. wysprzęglik
B. pompa ABS
C. korektor siły hamowania
D. hamulec ręczny
Wysprzęglik nie jest elementem układu hamulcowego, ponieważ jego główną funkcją jest wspomaganie działania sprzęgła w pojazdach mechanicznych. To urządzenie, znane również jako wysprzęglik hydrauliczny, odpowiada za odłączenie napędu silnika od skrzyni biegów, umożliwiając płynne zmiany biegów. W kontekście układu hamulcowego, do jego głównych elementów należą m.in. pompa ABS, hamulec ręczny oraz korektor siły hamowania, które wspólnie pracują nad bezpieczeństwem i efektywnością hamowania. Wysprzęglik nie wpływa na proces hamowania, lecz na działanie sprzęgła, co jest kluczowe dla prawidłowego funkcjonowania przekładni w pojazdach. Wiedza o tym, jakie komponenty są odpowiedzialne za dane funkcje w pojeździe, jest istotna dla mechaników i inżynierów, gdyż pozwala na skuteczniejszą diagnostykę oraz serwis pojazdów.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Nadmierny luz pierścieni w gniazdach tłoka silnika spalinowego może prowadzić do

A. wzrostu ciśnienia sprężania
B. wzrostu zużycia oleju silnikowego
C. wzrostu zużycia paliwa
D. spadku stopnia sprężania
Luz pierścieni tłokowych nie wpływa bezpośrednio na ciśnienie sprężania w silniku, co jest mylnym przekonaniem. Zwiększone ciśnienie sprężania jest wynikiem efektywnego uszczelnienia komory spalania, co osiąga się poprzez prawidłowo dopasowane pierścienie. Nadmierny luz pierścieni może prowadzić do ich niewłaściwego przylegania do ścian cylindrów, co z kolei obniża ciśnienie sprężania, a nie je zwiększa. Takie nieprawidłowe zrozumienie roli pierścieni prowadzi do niebezpiecznych błędów w diagnostyce usterek silników. Z kolei zmniejszony stopień sprężania również nie jest bezpośrednio związany z luzem pierścieni, choć może być skutkiem ich zużycia. Kluczowe jest zrozumienie, że stopień sprężania zależy od wielu czynników, w tym geometrii komory spalania oraz stanu zaworów. Warto również zauważyć, że nadmierny luz pierścieni nie prowadzi automatycznie do większego zużycia paliwa; to zjawisko może być spowodowane innymi czynnikami, takimi jak ustawienia wtrysku paliwa czy problemy z układem zapłonowym. W praktyce, zamiast diagnozować problemy na podstawie niepoprawnych założeń, inżynierowie powinni korzystać z systematycznych metod analizy, takich jak testy ciśnienia sprężania oraz inspekcje wizualne stanu pierścieni i tłoków.

Pytanie 26

EGR to skrót oznaczający system

A. zmiennych faz rozrządu
B. wspomagania układu kierowniczego
C. wspomagania układu hamulcowego
D. recyrkulacji spalin
EGR, czyli układ recyrkulacji spalin, odgrywa kluczową rolę w redukcji emisji szkodliwych gazów w silnikach spalinowych. Działa na zasadzie wprowadzania części spalin z powrotem do komory spalania, co obniża temperaturę spalania i zmniejsza powstawanie tlenków azotu (NOx). Zastosowanie EGR jest zgodne z normami emisji, takimi jak Euro 6, które wymagają od producentów samochodów wdrażania technologii redukujących emisję zanieczyszczeń. Przykładowo, w silnikach diesel'owych, efektywność układu EGR może zmniejszyć emisję NOx nawet o 30-50%, co znacząco wpływa na jakość powietrza. W praktyce, system EGR może być realizowany na różne sposoby, w tym poprzez EGR chłodzony, który dodatkowo obniża temperaturę spalin przed ich ponownym wprowadzeniem do silnika, co zwiększa wydajność. Z tego względu, zrozumienie działania EGR jest niezbędne dla inżynierów zajmujących się projektowaniem i optymalizacją silników spalinowych oraz w kontekście przepisów dotyczących ochrony środowiska.

Pytanie 27

Szarpak płytowy pozwala na ocenę

A. charakterystyki kąta wyprzedzenia zwrotnicy
B. charakterystyki tłumienia drgań amortyzatora
C. luzu ruchu jałowego kierownicy
D. luzów w węzłach kulistych drążków kierowniczych
Szarpak płytowy, znany również jako urządzenie do pomiaru luzów, jest kluczowym narzędziem w diagnostyce układów kierowniczych pojazdów. Jego głównym celem jest ocena luzów w węzłach kulistych drążków kierowniczych. Te węzły, jeżeli są zużyte, mogą prowadzić do nieprawidłowego działania układu kierowniczego, co z kolei wpływa na bezpieczeństwo jazdy. Praktyczne zastosowanie szarpaka płytowego polega na precyzyjnym pomiarze luzów, co pozwala na ich szybką identyfikację i ewentualną wymianę uszkodzonych komponentów. Zgodnie z normami branżowymi, regularne kontrole luzów w układzie kierowniczym są zalecane, aby zapewnić optymalne warunki jazdy oraz zminimalizować ryzyko awarii. Właściwe użytkowanie szarpaka płytowego umożliwia mechanikom ocenę stanu technicznego pojazdu oraz planowanie odpowiednich działań serwisowych, co przyczynia się do dłuższej żywotności elementów układu kierowniczego. Warto również zaznaczyć, że pomiar luzów za pomocą tego urządzenia powinien być realizowany zgodnie z wytycznymi producentów oraz obowiązującymi standardami diagnostyki, co gwarantuje dokładność i wiarygodność wyników.

Pytanie 28

Oprogramowanie ESI tronie to nazwa programu komputerowego służącego do

A. diagnozowania pojazdu
B. wynajmu samochodów
C. przechowywania części
D. sporządzania kosztorysu napraw
Odpowiedź "diagnostyki pojazdu" jest poprawna, ponieważ ESI tronie to zaawansowany system diagnostyczny wykorzystywany w branży motoryzacyjnej do analizy stanu technicznego pojazdów. Program ten umożliwia mechanikom oraz technikom dostęp do szczegółowych informacji na temat błędów i usterek, co pozwala na szybsze i bardziej precyzyjne diagnozowanie problemów. Przykładowo, ESI tronie może być używane do skanowania kodów błędów, co jest istotnym elementem nowoczesnej diagnostyki. W praktyce, mechanicy mogą korzystać z tego narzędzia do identyfikacji problemów elektrycznych, układu paliwowego czy systemów sterowania silnikiem. Standardy branżowe, takie jak SAE J1939 czy ISO 15765, są często stosowane w programach diagnostycznych, co czyni ESI tronie nie tylko narzędziem, ale także zgodnym z międzynarodowymi normami. Warto zaznaczyć, że prawidłowe wykorzystanie ESI tronie przyczynia się do zwiększenia efektywności pracy warsztatów samochodowych oraz skrócenia czasu naprawy, co w efekcie przekłada się na zadowolenie klientów.

Pytanie 29

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. nitowanie
B. kucie
C. spawanie
D. tulejowanie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 30

W trakcie prowadzenia pojazdu zaświeciła się kontrolka ładowania. Jakie mogą być tego powody?

A. wadliwy akumulator
B. uszkodzony przekaźnik kontrolki
C. zerwanie paska napędowego alternatora
D. zbyt wysokie napięcie podczas ładowania
Zerwanie paska napędu alternatora to jedna z najczęstszych przyczyn zapalenia się lampki kontrolnej ładowania w samochodzie. Pasek ten jest odpowiedzialny za przenoszenie napędu z silnika do alternatora, który generuje prąd potrzebny do ładowania akumulatora i zasilania systemów elektrycznych pojazdu. W sytuacji, gdy pasek ulegnie zerwaniu, alternator przestaje pracować, co prowadzi do braku ładowania akumulatora oraz do sygnalizacji tego problemu przez lampkę kontrolną. Praktycznie, jeśli zauważysz zapaloną lampkę kontrolną ładowania, powinieneś natychmiast sprawdzić stan paska napędu alternatora oraz alternatora. Warto również pamiętać o regularnym przeglądaniu paska oraz jego wymianie zgodnie z zaleceniami producenta, co jest integralną częścią dobrych praktyk w eksploatacji pojazdów. Regularne sprawdzanie parametrów napędu alternatora i stanu akumulatora jest zalecane w celu zapewnienia niezawodności układu elektrycznego samochodu.

Pytanie 31

Przegub homokinetyczny zapewnia

A. stałą prędkość obrotową oraz kątową wałów napędzającego i napędzanego
B. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów są w tej samej linii
C. zmienną prędkość obrotową a także kątową wałów napędzającego i napędzanego
D. przenoszenie napędu jedynie w przypadku, gdy osie obrotu wałów nie są w tej samej linii
Przegub równobieżny, czyli przegub homokinetyczny, jest naprawdę ważnym elementem w układach napędowych, szczególnie w autach. Jego największą zaletą jest to, że pozwala na zachowanie stałej prędkości obrotowej, niezależnie od tego, jak są ustawione osie. Dlatego właśnie wykorzystuje się go w autach osobowych i różnych maszynach. Na przykład, w napędach na cztery koła, te przeguby pozwalają na pokonywanie zakrętów bez straty mocy, co wpływa na lepszą stabilność i przyczepność. Przeguby te są też projektowane według branżowych standardów, jak ISO 9001, co daje pewność ich jakości. Gdyby osie obrotu były nierównoległe, inne typy przegubów mogłyby wprowadzać wibracje lub zmieniać prędkość, co mogłoby zaszkodzić systemowi napędowemu.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Aby poluzować zapieczoną śrubę w układzie zawieszenia, należy użyć

A. młotka.
B. rurhaka.
C. podgrzewacza indukcyjnego.
D. szlifierki kątowej.
Podgrzewacz indukcyjny to narzędzie, które wykorzystuje pole elektromagnetyczne do podgrzewania metalowych obiektów, co czyni go idealnym rozwiązaniem do poluzowywania zapieczonych śrub w układzie zawieszenia. Gdy śruba staje się zardzewiała lub zapieczona, zwykle wynika to z korozji lub osadów, które utrudniają jej odkręcenie. W takich przypadkach podgrzanie śruby do wysokiej temperatury powoduje rozszerzenie metalu, co może znacząco ułatwić jej poluzowanie. W kontekście standardów branżowych, korzystanie z podgrzewacza indukcyjnego jest zalecane, ponieważ nie wprowadza on dodatkowych uszkodzeń mechanicznych, jak ma to miejsce w przypadku użycia młotka lub szlifierki kątowej. Zastosowanie podgrzewacza indukcyjnego powinno być zawsze zgodne z zaleceniami producentów narzędzi oraz normami bezpieczeństwa, co pozwala na efektywne i bezpieczne przeprowadzenie operacji. Przykładem zastosowania może być sytuacja, gdzie podczas wymiany amortyzatorów w samochodzie, śruby mocujące okazują się być zardzewiałe. Wtedy podgrzewacz indukcyjny staje się niezastąpiony, ponieważ jego szybkie działanie pozwala na bezpieczne i skuteczne rozwiązanie problemu.

Pytanie 34

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. użycie smaru do uszczelnienia
B. naciśnięcie tłoczka głębiej do cylindra
C. wymianę pierścienia uszczelniającego
D. dodanie dodatkowej uszczelki
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 35

Wartości sił hamowania kół na jednej osi pojazdu nie mogą różnić się o więcej niż 30%, przyjmując 100% jako standard

A. zmierzoną siłę niższą
B. suma zmierzonych sił
C. zmierzoną siłę wyższą
D. siłę określoną przez producenta
Pomiar sił hamowania kół na jednej osi pojazdu jest kluczowym parametrem w zapewnieniu bezpieczeństwa oraz prawidłowego działania systemu hamulcowego. Zgodnie z obowiązującymi normami, różnice w zmierzonych siłach hamowania kół nie powinny przekraczać 30%. Wybór zmierzonej siły większej jako poprawnej odpowiedzi odnosi się do faktu, że w sytuacji, gdy jedna z sił jest wyraźnie większa, może to wskazywać na problemy z równomiernym rozkładem siły hamowania, co prowadzi do ryzyka wypadku. Przykładem zastosowania tej wiedzy w praktyce jest testowanie pojazdów w laboratoriach badawczo-rozwojowych, gdzie inżynierowie analizują różnice w siłach hamowania w kontekście określonych norm, takich jak te zdefiniowane przez ECE R13. Utrzymanie odpowiedniego poziomu sił hamowania na poziomie 30% jest istotne dla stabilności pojazdu oraz jego zdolności do zatrzymania się w bezpieczny sposób.

Pytanie 36

Gdzie wykorzystywana jest przekładnia planetarna?

A. w prądnicy
B. w pompie wtryskowej
C. w alternatorze
D. w rozruszniku
Alternator, pompa wtryskowa oraz prądnica to urządzenia, które pełnią różne funkcje w systemach zasilania i napędu, jednak nie wykorzystują przekładni planetarnych w takim samym zakresie jak rozrusznik. Alternator, odpowiedzialny za generowanie energii elektrycznej, stosuje zasadę indukcji elektromagnetycznej, a jego budowa opiera się na wirniku i statorze, co nie wymaga zastosowania przekładni planetarnych. Z kolei pompy wtryskowe, które mają na celu dostarczenie paliwa do silników spalinowych, operują na zasadzie ciśnienia i nie potrzebują złożonych mechanizmów przekładniowych do działania. Prądnica, podobnie jak alternator, służy do produkcji energii elektrycznej w oparciu o ruch obrotowy. W tych urządzeniach, przy użyciu przekładni planetarnych, mogłoby to wprowadzać niepotrzebne komplikacje oraz zwiększać masę i koszty produkcji. Typowym błędem myślowym jest założenie, że każde urządzenie mechaniczne, które wymaga przekształcenia momentu obrotowego, powinno korzystać z przekładni planetarnej, podczas gdy w rzeczywistości dobór mechanizmów zależy od specyficznych wymagań konstrukcyjnych i funkcjonalnych danego systemu. Stąd w przypadku alternatora, pompy wtryskowej czy prądnicy, inne rozwiązania mechaniczne są bardziej odpowiednie, co wpływa na efektywność oraz ekonomikę ich działania.

Pytanie 37

Jak przeprowadza się pomiar gęstości elektrolitu?

A. z użyciem aerografu
B. za pomocą analizatora
C. przy użyciu areometru
D. z wykorzystaniem amperomierza
Pomiar gęstości elektrolitu wykonuje się areometrem, który jest prostym i skutecznym narzędziem stosowanym w laboratoriach oraz w zastosowaniach przemysłowych. Areometr działa na zasadzie wyporu, co oznacza, że jego pomiar opiera się na zasadzie Archimedesa. Przy pomiarze gęstości elektrolitu, areometr zanurza się w cieczy, a jego wynik odczytuje się na skali umieszczonej na jego korpusie. W praktyce, dokładność pomiarów gęstości elektrolitu jest istotna, szczególnie w przypadku akumulatorów kwasowo-ołowiowych, gdzie gęstość elektrolitu informuje o stanie naładowania akumulatora. Standardy branżowe, takie jak ISO 2871, zalecają stosowanie areometrów do tego typu pomiarów, gdyż zapewniają one powtarzalność i dokładność wyników. Warto również zwrócić uwagę na to, że gęstość elektrolitu jest parametrem krytycznym w ocenie jego właściwości elektrochemicznych, co ma kluczowe znaczenie dla efektywności i długowieczności systemów zasilania.

Pytanie 38

Na korbowodowych czopach wałów korbowych silników czterosuwowych wykorzystuje się łożyska

A. ślizgowe
B. stożkowe
C. igłowe
D. kulowe
Łożyska ślizgowe używane w czopach korbowodowych wałów korbowych silników czterosuwowych odgrywają kluczową rolę w zapewnieniu efektywnego przenoszenia obciążeń oraz minimalizacji tarcia. W przeciwieństwie do innych typów łożysk, łożyska ślizgowe nie mają elementów tocznych, co pozwala na lepsze dostosowanie do warunków pracy w silniku oraz zapewnia dłuższą żywotność przy odpowiednim smarowaniu. W silnikach czterosuwowych, gdzie występują duże obciążenia dynamiczne i zmienne warunki pracy, łożyska ślizgowe redukują hałas i drgania, co jest szczególnie istotne w kontekście nowoczesnych standardów emisji oraz komfortu użytkowania. Przykłady zastosowań obejmują nie tylko silniki spalinowe, ale także aplikacje w przemyśle, gdzie wymagana jest wysoka precyzja ruchu przy minimalnym tarciu. Zgodnie z najlepszymi praktykami, łożyska te powinny być regularnie smarowane odpowiednimi lubrykantami, aby zwiększyć ich efektywność i trwałość.

Pytanie 39

Jak dokonuje się bezkontaktowego pomiaru temperatury elementów silnika?

A. multimetrem
B. stroboskopem
C. refraktometrem
D. pirometrem
Pirometr to urządzenie, które umożliwia bezdotykowy pomiar temperatury obiektów, co czyni go idealnym narzędziem w kontekście monitorowania elementów silnika. Działa na zasadzie pomiaru promieniowania podczerwonego emitowanego przez obiekty, co pozwala na ocenę ich temperatury bez fizycznego kontaktu. Przykładowo, w silnikach spalinowych, pirometry wykorzystywane są do kontrolowania temperatury głowicy cylindrów oraz układu wydechowego, co jest kluczowe dla optymalizacji wydajności silnika oraz zapobiegania uszkodzeniom spowodowanym przegrzaniem. Obecnie pirometry są standardem w diagnostyce silników, ponieważ pozwalają na szybkie i dokładne pomiary, eliminując ryzyko uszkodzenia komponentów. W przemyśle motoryzacyjnym, stosowanie pirometrów zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ISO 9001, zapewnia nie tylko wysoką jakość procesów, ale także bezpieczeństwo operacyjne. Dodatkowo, nowoczesne pirometry często wyposażone są w funkcje umożliwiające rejestrowanie i analizowanie danych, co wspiera procesy predykcyjnego utrzymania ruchu, zmniejszając koszty eksploatacji.

Pytanie 40

W mechanizmie silnika tłokowo-korbowego występują zmieniające się obciążenia, które prowadzą do uszkodzeń śrub korbowodowych na skutek

A. zużycia mechanicznego
B. starzenia się materiału
C. zmęczenia struktury materiałowej
D. zużycia w wyniku erozji
Zmęczenie materiału to proces, w którym materiał ulega uszkodzeniu wskutek cyklicznych obciążeń, co jest typowe w mechanizmie tłokowo-korbowym. W silnikach spalinowych, śruby korbowodowe narażone są na zmienne siły, które działają na nie podczas pracy silnika. Te siły powodują, że mikrodefekty w strukturze materiału zaczynają się powiększać, co w końcu prowadzi do pęknięć i zniszczenia elementu. Przykładem wpływu zmęczenia materiału jest zjawisko zmęczenia zmiennego, które można obserwować przy silnikach pracujących w trybie o zmiennej prędkości obrotowej. W praktyce, inżynierowie muszą projektować elementy silników zgodnie z normami, takimi jak ISO 1099, które dotyczą wytrzymałości na zmęczenie, aby zapewnić ich długotrwałą funkcjonalność. Używanie materiałów o wysokiej trwałości oraz odpowiednich powłok ochronnych również przyczynia się do wydłużenia żywotności takich komponentów.