Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 czerwca 2025 11:51
  • Data zakończenia: 3 czerwca 2025 12:04

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawiony na rysunku element pneumatyczny to

Ilustracja do pytania
A. rozdzielacz czterodrogowy.
B. zawór zwrotno-dławiący.
C. zawór z popychaczem.
D. przełącznik obiegu.
Zawór z popychaczem to kluczowy element w systemach pneumatycznych, który pozwala na manualne sterowanie przepływem powietrza. Posiada charakterystyczny popychacz znajdujący się na górze, który umożliwia włączenie lub wyłączenie przepływu powietrza poprzez nacisk. Tego rodzaju zawory są często używane w aplikacjach, gdzie wymagana jest szybka i intuicyjna kontrola, na przykład w automatyzacji procesów przemysłowych. Standardy dotyczące elementów pneumatycznych, takie jak ISO 1219, określają zasady projektowania i klasyfikacji tych urządzeń, co zapewnia ich niezawodność i bezpieczeństwo. W praktyce zawory z popychaczem są wykorzystywane w systemach napędowych, w maszynach pakujących, a także w urządzeniach stosowanych w przemyśle motoryzacyjnym. Zrozumienie funkcji i zastosowania tego typu zaworów jest niezbędne dla prawidłowego projektowania i eksploatacji systemów pneumatycznych.

Pytanie 2

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Ustawić szczotki w strefie neutralnej
B. Zamienić łożyska
C. Obtoczyć oraz przeszlifować komutator
D. Znormalizować nacisk szczotek
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 3

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz

A. napięcie zasilania 15 V DC i prąd pracy 0,02 A
B. napięcie zasilania 24 V DC i prąd pracy 30 mA
C. napięcie zasilania 20 V AC i prąd pracy 0,02 A
D. napięcie zasilania 24 V DC i prąd pracy 0,02 A
Wybór innych wartości napięcia zasilania i prądu pracy wskazuje na brak zrozumienia specyfiki pracy czujników indukcyjnych oraz ich parametrów technicznych. Na przykład, napięcie zasilania 15 V DC jest poniżej standardowego zasilania stosowanego w nowoczesnych systemach automatyki, co może prowadzić do niewłaściwego działania czujnika lub jego całkowitego braku reakcji. Prąd pracy 0,02 A, będący równy 20 mA, również może nie być dostateczny dla niektórych zastosowań, w których wymagane są wyższe wartości prądów, co może skutkować niestabilnością działania urządzenia. W przypadku napięcia 20 V AC, pojawia się dodatkowy problem związany z typem prądu – czujniki indukcyjne zazwyczaj są projektowane do pracy z prądem stałym (DC), a niewłaściwe zasilanie prądem zmiennym (AC) może skutkować ich uszkodzeniem. Odpowiedź z napięciem zasilania 24 V DC i prądem pracy 30 mA jest zgodna z normami IEC oraz najlepszymi praktykami stosowanymi w branży, które zapewniają optymalne warunki pracy czujników oraz ich długotrwałą żywotność. Dodatkowo, stosowanie nieodpowiednich wartości może prowadzić do nieprawidłowych odczytów i błędnych decyzji w automatyzacji procesów, co podkreśla konieczność przemyślanej konfiguracji zasilania w systemach automatyki.

Pytanie 4

Jaką rolę pełni multiplekser?

A. Przesyłanie danych z jednego wejścia do wybranego wyjścia
B. Kodowanie sygnałów na wejściach
C. Porównywanie sygnałów podawanych na wejścia
D. Przesyłanie danych z wybranego wejścia na jedno wyjście
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 5

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Silikon
B. Olej
C. Proszek
D. Pastę
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 6

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. krzemowo-manganowych
B. chromowych
C. chromowo-krzemowych
D. krzemowych
Rdzenie maszyn elektrycznych wykonuje się głównie ze stali krzemowej, ponieważ jej właściwości ferromagnetyczne zapewniają efektywność energetyczną oraz minimalizują straty energii w postaci ciepła. Stal krzemowa charakteryzuje się niskim współczynnikiem strat magnetycznych, co jest kluczowe w zastosowaniach takich jak silniki elektryczne czy transformatory. Dodatkowo, dzięki swojej strukturze krystalicznej, stal krzemowa ma dużą przewodność magnetyczną. W praktyce oznacza to, że rdzenie wykonane z tego materiału są bardziej kompaktowe i lżejsze, co przyczynia się do zmniejszenia wymiarów urządzeń elektrycznych. Standardy branżowe, takie jak IEC 60404, określają wymagania dotyczące rodzajów stali używanej w rdzeniach, podkreślając znaczenie stali krzemowej w produkcji zaawansowanych technologicznie maszyn elektrycznych. W związku z tym, stosowanie stali krzemowej jest zgodne z najlepszymi praktykami w zakresie projektowania i produkcji maszyn elektrycznych.

Pytanie 7

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. termoelement
B. resolver
C. sensor ultradźwiękowy
D. tachometr
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 8

Cyfrowy tachometr jest narzędziem do mierzenia

A. naprężeń w metalach
B. lepkości cieczy
C. natężenia przepływu powietrza
D. prędkości obrotowej wału silnika
Analizując nieprawidłowe odpowiedzi, warto zaznaczyć, że pomiar naprężeń w metalu oraz natężenia przepływu powietrza nie mają związku z zastosowaniem tachometru cyfrowego. Naprężenia w metalu mierzy się za pomocą tensometrów, które bazują na zmianach oporu elektrycznego materiału pod wpływem obciążenia. Jest to technika stosowana w materiałoznawstwie i inżynierii mechanicznej, gdzie kluczowe jest zrozumienie, jak materiały reagują na różne siły. Natomiast natężenie przepływu powietrza najczęściej OCENIA się przy użyciu anemometrów, które mogą przybierać różne formy, jak na przykład anemometry cieplne lub wirnikowe, które są dostosowane do pomiaru prędkości ruchu powietrza w danym obszarze. Lepkość cieczy, z kolei, jest mierzona za pomocą lepkościomierzy, które służą do określenia oporu, jaki ciecz stawia podczas przepływu. Każda z tych metod pomiarowych jest zdefiniowana przez odrębne zasady i techniki, różniące się znacznie od reguł dotyczących pomiaru prędkości obrotowej. W rezultacie, nieodpowiednie przyporządkowanie funkcji do tachometru cyfrowego może prowadzić do poważnych nieporozumień i błędnych decyzji w praktyce inżynieryjnej, co podkreśla znaczenie zrozumienia podstawowych zasad działania różnych narzędzi pomiarowych oraz ich zastosowania w odpowiednich kontekstach.

Pytanie 9

W sytuacji krwawienia zewnętrznego dłoni pracownika po upadku z wysokości (pracownik jest przytomny, oddycha, tętno jest wyczuwalne, wezwano pogotowie), należy

A. nałożyć opatrunek, a po chwili zmienić go sprawdzając, czy krwawienie ustąpiło
B. zatamować krew stosując opaskę poniżej rany i zabezpieczyć ranę bandażem
C. przygotować jałowy opatrunek i mocno nacisnąć go na ranę
D. zatamować krew używając opaski powyżej rany i owinąć ranę bandażem
W przypadku krwotoku zewnętrznego, kluczowe jest podjęcie odpowiednich działań, aby zminimalizować utratę krwi i wspierać dalsze leczenie. Przygotowanie jałowego opatrunku i mocne uciskanie go na ranie to prawidłowa metoda postępowania, ponieważ ucisk na ranę pomaga zatrzymać krwawienie. Takie działanie jest zgodne z zasadami pierwszej pomocy, które zalecają stosowanie ucisku w miejscach krwawienia, zwłaszcza w przypadku krwotoków tętniczych i żylnych. W praktyce, zastosowanie jałowego opatrunku eliminuje ryzyko zakażenia, a mocne uciskanie sprzyja tworzeniu się skrzepu i stabilizuje ranę. Ważne jest również, aby nie zakładać opaski uciskowej powyżej rany, ponieważ może to prowadzić do dalszych uszkodzeń tkanek. W sytuacji, gdy krwawienie nie ustępuje, należy kontynuować ucisk oraz wezwać pomoc medyczną. Ponadto, znajomość techniki użytku opatrunków i ich właściwego stosowania w praktycznych sytuacjach jest niezbędna dla każdego, kto może być narażony na sytuacje wymagające udzielenia pierwszej pomocy.

Pytanie 10

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy na ranę
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. umieścić poszkodowanego w bezpiecznej pozycji bocznej
D. założyć poszkodowanemu opatrunek uciskowy poniżej rany
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 11

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 2,3 ?
B. 460 ?
C. 529 ?
D. 23 k?
Odpowiedź 529 Ω jest całkiem trafna. Użyliśmy wzoru Ohma, by połączyć moc (P), napięcie (U) i rezystancję (R). Jak to się zapisuje? Łatwo, P = U²/R i stąd mamy R = U²/P. Dla napięcia 230 V i mocy 100 W, jak to obliczyłeś, wychodzi nam 529 Ω. To mówi nam, że żarówka przy takim napięciu ma opór 529 Ω, co jest istotne przy układaniu obwodów elektrycznych. Z mojego doświadczenia, wiedza o rezystancji żarówek pozwala lepiej zaplanować cały obwód, zwłaszcza kiedy chodzi o dobór przewodów i zabezpieczeń. W oświetleniu ważne, żeby przewody były odpowiednio dostosowane do obciążenia, a te obliczenia są kluczowe dla bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych. W sumie, te standardy, jak IEC 60598, przypominają, jak ważne są te rzeczy w praktyce.

Pytanie 12

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. prądnica tachometryczna.
B. galwanometr.
C. tensometr.
D. resolver.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.

Pytanie 13

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
B. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
C. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
D. podnieść poszkodowanego i opatrzyć ranę głowy
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 14

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Warystor.
C. Termistor.
D. Gaussotron.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 15

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
C. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
D. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
Natężenie przepływu Q w rurociągu jest często mylone z innymi pojęciami związanymi z dynamiką cieczy. Przykładowo, odniesienie do stosunku pola przekroju rurociągu do prędkości przepływu cieczy jest błędne, ponieważ nie uwzględnia ono istoty natężenia jako miary objętości w jednostce czasu. Z kolei iloczyn ciśnienia cieczy i pola przekroju rurociągu odnosi się do mocy hydraulicznej, a nie do natężenia przepływu. Ten błąd w interpretacji może prowadzić do nieporozumień w projektowaniu systemów hydraulicznych, gdzie kluczowe jest zrozumienie różnic pomiędzy tymi wielkościami. Podobnie, iloczyn prędkości i czasu przepływu cieczy nie odpowiada definicji natężenia, ponieważ czas musi być rozumiany jako jednostka, a nie jako wartość, która w sposób bezpośredni łączy się z prędkością. Typowym błędem myślowym w tym kontekście jest skupienie się na jednostkach zamiast na fizycznym znaczeniu przepływu. W praktyce inżynieryjnej, właściwe zrozumienie i stosowanie definicji natężenia przepływu jest kluczowe dla obliczeń związanych z projektowaniem rur, pomp oraz całych instalacji, co wpływa na ich efektywność i funkcjonalność.

Pytanie 16

Jakim przyrządem pomiarowym można zmierzyć wartość napięcia zasilającego cewkę elektrozaworu?

A. Miernik prądu
B. Miernik mocy
C. Miernik oporności
D. Woltomierz
Woltomierz jest przyrządem pomiarowym, który służy do pomiaru napięcia elektrycznego w obwodach. W przypadku cewki elektrozaworu, której działanie zależy od odpowiedniego napięcia zasilającego, użycie woltomierza pozwala na precyzyjne określenie wartości tego napięcia. Prawidłowy pomiar napięcia jest kluczowy, ponieważ zbyt niskie napięcie może prowadzić do nieprawidłowego działania cewki, a w konsekwencji do awarii systemu. W praktyce, aby zmierzyć napięcie na cewce elektrozaworu, należy podłączyć woltomierz równolegle do cewki, co pozwala na odczyt wartości napięcia, które w danym momencie jest dostarczane do cewki. Standardowe woltomierze cyfrowe, zgodne z normami IEC 61010, charakteryzują się wysoką dokładnością i bezpieczeństwem użytkowania, co czyni je niezastąpionym narzędziem w pracy technika. Użycie woltomierza powinno być wykonywane zgodnie z dobrymi praktykami, takimi jak zapewnienie, że urządzenie jest odpowiednio skalibrowane i że przewody pomiarowe są w dobrym stanie, aby uniknąć błędów pomiarowych.

Pytanie 17

Czy obniżenie temperatury czynnika w sprężarkach prowadzi do

A. powiększania objętości sprężonego powietrza
B. wzrostu ciśnienia sprężonego powietrza
C. skraplania pary wodnej oraz osuszania powietrza
D. osadzania zanieczyszczeń na dnie zbiornika
Analizując inne odpowiedzi, warto zauważyć, że wzrost ciśnienia sprężonego powietrza nie jest bezpośrednio związany z ochładzaniem czynnika w sprężarkach. W rzeczywistości, sprężanie powietrza prowadzi do wzrostu jego ciśnienia, a nie ochładzanie. Często pojawia się mylne założenie, że obniżenie temperatury czynnika roboczego automatycznie prowadzi do wzrostu ciśnienia, co jest w rzeczywistości nieprawidłowe. Zwiększanie objętości sprężonego powietrza jest także mylnym wnioskiem, ponieważ po sprężeniu objętość powietrza maleje, a nie rośnie. Typowym błędem jest mylenie sprężania z rozprężaniem gazu; w procesie sprężania powietrze jest kompresowane, co obniża jego objętość, a nie ją zwiększa. Osadzanie zanieczyszczeń na dnie zbiornika jest również błędnym stwierdzeniem, gdyż to zjawisko jest wynikiem dłuższego zatrzymywania powietrza w zbiorniku, a nie ochładzania czynnika. Odpowiednie zarządzanie jakością powietrza i jego wilgotnością jest istotne w kontekście skutecznego funkcjonowania systemów sprężania, a ich analiza powinna być wykonana w kontekście całego cyklu pracy sprężarki, a nie tylko pojedynczych procesów.

Pytanie 18

Potrojenie natężenia prądu przepływającego przez rezystor o niezmiennej rezystancji spowoduje, że ilość ciepła wydzielającego się w nim wzrośnie

A. trzykrotnie
B. dwukrotnie
C. sześciokrotnie
D. dziewięciokrotnie
Odpowiedź "dziewięciokrotnie" jest poprawna, ponieważ zgodnie z prawem Joule'a, moc wydzielająca się w rezystorze jest proporcjonalna do kwadratu natężenia prądu płynącego przez ten rezystor. Prawo to można zapisać jako P = I²R, gdzie P to moc, I to natężenie prądu, a R to rezystancja. Jeśli natężenie prądu wzrasta trzykrotnie (I -> 3I), moc wydzielająca się w rezystorze staje się P' = (3I)²R = 9I²R, co oznacza, że moc wzrasta dziewięciokrotnie. W praktyce, takie zjawisko ma kluczowe znaczenie w projektowaniu obwodów elektrycznych i systemów grzewczych, gdzie kontrola wydzielanego ciepła jest istotna dla bezpieczeństwa i efektywności energetycznej. Zrozumienie tej zależności pozwala inżynierom na odpowiednie dobieranie wartości rezystancji oraz zabezpieczeń, aby uniknąć przegrzewania się elementów w obwodach elektronicznych, co może prowadzić do awarii lub uszkodzeń sprzętu. W branży elektronicznej i elektrycznej, przestrzeganie tych zasad jest niezbędne dla zapewnienia niezawodności i trwałości urządzeń.

Pytanie 19

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Dynamometrycznego
B. Płaskiego
C. Nasadowego
D. Imbusowego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 20

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%

A. 25 V DC
B. 15 V DC
C. 20 V DC
D. 30 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 21

Aby chronić silnik przed wystąpieniem napięcia zasilającego po krótkim zgaśnięciu, należy użyć przekaźnika

A. podnapięciowy zwłoczny
B. nadprądowy zwłoczny
C. różnicowoprądowy
D. nadnapięciowy zwłoczny
Wybór innych typów przekaźników, takich jak nadnapięciowy zwłoczny, nadprądowy zwłoczny czy różnicowoprądowy, nie jest odpowiedni w kontekście zabezpieczania silnika przed pojawieniem się napięcia zasilania po krótkotrwałym zaniku. Przekaźnik nadnapięciowy zwłoczny jest zaprojektowany do wyłączania obwodu, gdy napięcie przekracza ustaloną wartość, co w przypadku zaniku napięcia nie zabezpiecza silnika, lecz może doprowadzić do niebezpiecznej sytuacji, gdy napięcie powraca. Nadprądowy zwłoczny z kolei ma na celu zabezpieczenie przed przeciążeniem, a nie przed zanikami napięcia, więc jego funkcjonalność w tym kontekście będzie niewystarczająca. Przekaźnik różnicowoprądowy wykrywa różnice w prądzie między przewodami roboczymi, chroniąc przed porażeniem elektrycznym, ale nie zareaguje na zmiany w napięciu zasilania. Wybór niewłaściwego przekaźnika może prowadzić do potencjalnych uszkodzeń silnika, a także stwarzać ryzyko dla osób pracujących w pobliżu. Dlatego istotne jest zrozumienie specyfiki działania różnych typów przekaźników, aby skutecznie zabezpieczyć urządzenia w warunkach zmienności napięcia zasilania.

Pytanie 22

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. proszek gaśniczy
B. woda
C. dwutlenek węgla
D. piana gaśnicza
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 23

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. drgań
B. szumów
C. temperatury
D. prędkości
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 24

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Zwiększa prąd
B. Wytwarza sygnały sinusoidalne
C. Izoluje galwanicznie sygnały
D. Dodaje napięcia
Transoptor, czyli optoizolator, jest naprawdę ważnym elementem w elektronice. Jego główną rolą jest zapewnienie izolacji galwanicznej pomiędzy różnymi częściami układu. Działa to w ten sposób, że dzięki zjawisku fotonowemu możemy przesyłać sygnały elektryczne bez potrzeby bezpośredniego połączenia. To znaczy, że wrażliwe części obwodu są chronione przed wysokimi napięciami i zakłóceniami, co jest mega przydatne. Widzę, że transoptory są powszechnie stosowane w automatyce – świetnie izolują sygnały sterujące od obwodów zasilających. Dodatkowo w interfejsach komunikacyjnych zapewniają bezpieczeństwo przesyłanym danym. Korzystanie z transoptorów to naprawdę dobra praktyka w inżynierii, bo zmniejsza ryzyko uszkodzeń przez różnice potencjałów, zwiększając tym samym niezawodność systemu. Warto także dodać, że potrafią pracować w różnych częstotliwościach, co sprawia, że są dosyć uniwersalne w nowoczesnych układach elektronicznych.

Pytanie 25

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. wymiana przyłącza
B. dokręcenie przyłącza kluczem dynamometrycznym
C. uszczelnienie przyłącza taśmą teflonową
D. wymiana uszczelki pomiędzy przyłączem a siłownikiem
Użycie taśmy teflonowej do uszczelnienia przyłącza może wydawać się szybkim sposobem na rozwiązanie problemu, ale w rzeczywistości to podejście nie załatwia wszystkich spraw związanych z nieszczelnością w systemach pneumatycznych. Ta taśma jest raczej do uszczelniania połączeń gwintowych, a w przypadku zużytych lub uszkodzonych elementów, jak przyłącza, to tak naprawdę nie rozwiązuje problemu. Może to prowadzić do dodatkowych kłopotów, jak zatykanie przepływu powietrza, co wpływa na całą wydajność systemu. Wymiana uszczelki między przyłączem a siłownikiem też nie jest właściwą odpowiedzią, bo to nie wyeliminuje nieszczelności, jeśli same przyłącze jest uszkodzone. Dokręcanie przyłącza kluczem dynamometrycznym może dać chwilowe rezultaty, ale jeśli siła jest za duża, to jeszcze bardziej uszkodzi elementy, a na dłuższą metę i tak będziesz musiał wymienić całe przyłącze. W inżynierii mechatronicznej ważne jest, żeby korzystać z dobrych komponentów i przestrzegać standardów jakości. Dlatego zawsze lepiej wymienić uszkodzony element na nowy, zgodny z wymaganiami producenta, żeby to rzeczywiście miało sens.

Pytanie 26

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
B. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
C. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
D. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 27

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fototranzystorze
B. Fotoogniwie
C. Fotorezystorze
D. Fotodiodzie
Fotodioda, fototranzystor i fotorezystor to urządzenia, które również reagują na światło, ale ich głównym celem nie jest przekształcanie energii promieniowania słonecznego na energię elektryczną w taki sposób, jak ma to miejsce w fotoogniwie. Fotodioda działa na zasadzie generacji prądu w odpowiedzi na naświetlenie, jednak jej zastosowanie jest głównie w detekcji światła i w systemach komunikacji optycznej, a nie w produkcji energii elektrycznej. W przypadku fototranzystora, który jest bardziej zaawansowaną formą fotodiody, także możemy mówić o detekcji światła, ale jego działanie polega na wzmocnieniu sygnału, co czyni go mniej odpowiednim do konwersji energii słonecznej na prąd. Fotorezystor, z drugiej strony, jest elementem, którego oporność zmienia się w zależności od natężenia światła, a jego zastosowanie koncentruje się na detekcji zmian oświetlenia, takich jak w automatycznych systemach oświetleniowych. Warto zauważyć, że mylenie tych technologii z fotoogniwem może wynikać z niepełnego zrozumienia podstawowych różnic w ich funkcjonalności i zastosowaniu. Każde z wymienionych urządzeń ma swoje unikalne zastosowania, ale w kontekście przekształcania energii promieniowania słonecznego w energię elektryczną, to tylko fotoogniwa spełniają tę funkcję.

Pytanie 28

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
B. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
C. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 29

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. nadmierne obciążenie silnika
B. wysyłanie impulsów sterujących w błędnej kolejności
C. zbyt wysokie napięcie zasilające
D. brak modyfikacji częstotliwości impulsów z kontrolera
Podawanie impulsów sterujących w niewłaściwej kolejności może wpływać na działanie silnika krokowego, jednak nie jest to przyczyna braku zmiany prędkości obrotowej w kontekście tego pytania. Silniki krokowe działają na zasadzie sekwencyjnego przełączania poszczególnych cewek, które odpowiadają za obrót wirnika. Jeśli impulsy są podawane w niewłaściwej kolejności, może to skutkować zablokowaniem silnika lub nieprawidłowym ruchem, jednak nie wstrzyma to samej zmiany prędkości. Zbyt duże obciążenie silnika również może prowadzić do problemów, takich jak nadmierne grzanie lub zmniejszenie momentu obrotowego, ale nie bezpośrednio do braku zmiany prędkości - silnik może wciąż reagować na zmiany prędkości, nawet jeśli z trudnością. Z kolei zbyt wysokie napięcie zasilania przynosi ryzyko uszkodzenia silnika i nie jest standardem pracy silników krokowych, które powinny być zasilane napięciem zgodnym z ich specyfikacją. Te koncepcje często prowadzą do nieporozumień. Kluczowe jest zrozumienie, że silnik krokowy wymaga odpowiedniej częstotliwości impulsów, aby móc swobodnie zmieniać swoją prędkość obrotową. Osoby zajmujące się projektowaniem systemów automatyki powinny zwracać szczególną uwagę na konfigurację systemów sterowania, aby uniknąć takich błędów w przyszłości.

Pytanie 30

Silnik liniowy przekształca

A. ruch obrotowy w ruch liniowy
B. energię elektryczną w energię mechaniczną
C. energię mechaniczną w energię elektryczną
D. ruch liniowy w ruch obrotowy
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 31

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Brązowym
C. Czarnym
D. Żółtym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 32

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 7,5 V
B. 4,5 V
C. 3,0 V
D. 10,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 33

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. omomierz
B. amperomierz
C. watomierz
D. woltomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 34

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. efektywności siłownika
B. natężenia przepływu medium roboczego do siłownika
C. powierzchni roboczej tłoka
D. wydajności siłownika
Wybór odpowiedzi dotyczącej sprawności siłownika, mocy wyjściowej lub natężenia przepływu czynnika roboczego jako czynników wpływających na prędkość tłoczyska siłownika hydraulicznego ilustruje kilka błędnych koncepcji w zakresie zrozumienia zasad hydrauliki. Sprawność siłownika odnosi się do efektywności przetwarzania energii hydraulicznej na energię mechaniczną, która nie ma bezpośredniego wpływu na prędkość tłoczyska, a raczej na to, jak efektywnie siłownik wykonuje pracę w danym cyklu. Można zauważyć, że wysoka sprawność może prowadzić do lepszej wydajności systemu, ale nie zmienia samego związku między natężeniem przepływu a prędkością tłoczyska. Z kolei moc wyjściowa siłownika, która jest produktem ciśnienia i wydajności, również nie jest bezpośrednio powiązana z prędkością tłoczyska, ponieważ moc może być zachowana przy różnych prędkościach w zależności od warunków pracy. Ostatecznie, natężenie przepływu czynnika roboczego jest zwarcie związane z prędkością tłoczyska, jednak to powierzchnia tłoka decyduje o tym, jak to natężenie wpływa na ruch tłoczyska. W wielu przypadkach, błędne wnioski prowadzą do nieoptymalnych wyborów w projektowaniu układów hydraulicznych, co może skutkować zmniejszoną efektywnością i zwiększonym zużyciem energii.

Pytanie 35

Stal używana do wytwarzania zbiorników ciśnieniowych oznaczana jest w symbolu głównym literą

A. E
B. L
C. S
D. P
Odpowiedzi oznaczone literami 'L', 'E' oraz 'S' są nieprawidłowe w kontekście klasyfikacji stali do produkcji zbiorników ciśnieniowych. Stal oznaczona literą 'L' jest zazwyczaj wykorzystywana w konstrukcjach stalowych, które nie są narażone na wysokie ciśnienia, co może prowadzić do błędnych założeń co do jej zastosowania w krytycznych aplikacjach. Wybór stali, która nie spełnia norm PN-EN 10028, może skutkować awarią strukturalną, co stawia pod znakiem zapytania bezpieczeństwo operacyjne. Z kolei stal oznaczona literą 'E' jest często związana z materiałami stosowanymi w elektrotechnice i nie ma zastosowania w kontekście konstrukcji ciśnieniowych. Natomiast litera 'S' zwykle odnosi się do stali konstrukcyjnej, która nie jest przystosowana do pracy w warunkach wysokiego ciśnienia. Użycie nieodpowiednich materiałów może prowadzić do poważnych konsekwencji, takich jak wycieki, eksplozje czy inne niebezpieczne sytuacje, dlatego kluczowe jest zrozumienie właściwego oznaczenia i zastosowania stali w kontekście ich przeznaczenia. Wiedza na temat właściwych symboli i standardów jest niezbędna dla inżynierów i techników zajmujących się projektowaniem oraz eksploatacją instalacji ciśnieniowych.

Pytanie 36

Które z wymienionych materiałów sztucznych jest najbardziej odpowiednie do wytwarzania kół zębatych?

A. Lateks
B. Silikon
C. Poliuretan
D. Poliamid
Poliamid, znany również jako nylon, jest jednym z najlepszych tworzyw sztucznych do produkcji kół zębatych ze względu na swoje doskonałe właściwości mechaniczne. Ma wysoką wytrzymałość na rozciąganie oraz odporność na ścieranie, co czyni go idealnym materiałem do zastosowań, gdzie występują znaczne obciążenia. Dzięki niskiemu współczynnikowi tarcia, poliamid zmniejsza zużycie energii i przedłuża żywotność elementów mechanicznych. Przykłady zastosowania obejmują przemysł motoryzacyjny, gdzie koła zębate z poliamidu są używane w układach przekładniowych, a także w urządzeniach przemysłowych, takich jak maszyny CNC. Poliamid jest także odporny na działanie olejów i rozpuszczalników, co dodatkowo zwiększa jego wszechstronność. Zgodnie z dobrymi praktykami inżynieryjnymi, wybór poliamidu do produkcji kół zębatych jest zgodny z wieloma normami branżowymi, co potwierdza jego zalety w kontekście efektywności i trwałości w aplikacjach inżynieryjnych.

Pytanie 37

W tabeli podano dane techniczne sterownika PLC Jakim maksymalnym prądem można obciążyć sterownik dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalnyDC 20,4 ... 28,8 V
Przy sygnale „0"maks. AC/DC 5 V
Przy sygnale „1"min. AC/DC 12 V
Prąd wejściowy2,5 mA
Wyjścia:
Rodzaj4 przekaźnikowe
Prąd ciągły10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 3 A
B. 0,75 A
C. 10 A
D. 2,5 A
Wybór odpowiedzi, które wskazują na inne wartości prądu, może wynikać z kilku typowych błędów myślowych obowiązujących w temacie doboru komponentów do systemów automatyki. Podawanie wartości takich jak 0,75 A, 2,5 A czy 10 A może sugerować nieporozumienie dotyczące charakterystyki silników indukcyjnych oraz ich wymagań prądowych. Na przykład, wybranie niskiego prądu, jak 0,75 A, może wynikać z założenia, że silnik o niewielkiej mocy wymaga niewielkiego prądu. Jednakże, nawet małe silniki mogą mieć prąd rozruchowy, który jest znacznie wyższy od prądu nominalnego, co może prowadzić do uszkodzenia sterownika, jeśli jego maksymalny prąd nie jest wystarczający. Z kolei podanie 10 A jako limitu jest całkowicie błędne, ponieważ wiele typowych sterowników PLC nie jest zaprojektowanych do obsługi tak dużych obciążeń bez dodatkowych urządzeń zabezpieczających. Zrozumienie zasadności obliczeń dotyczących prądu oraz ich konsekwencji w praktyce jest kluczowe w doborze odpowiednich komponentów. W automatyce przemysłowej, ignorowanie tych zasad może prowadzić do poważnych uszkodzeń sprzętu, co z kolei wiąże się z kosztami naprawy oraz przestojami w produkcji. Dlatego, przed podłączeniem jakiegokolwiek obciążenia do sterownika, zawsze należy dokładnie zapoznać się z jego specyfikacjami technicznymi i warunkami pracy.

Pytanie 38

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Tworzą przeszkodę elektryczną
B. Tworzą przeszkodę optyczną
C. Zbierają energię w polu magnetycznym
D. Zbierają energię w polu elektrycznym
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 39

Aby zredukować prędkość ruchu tłoczyska w pneumatycznym siłowniku dwustronnego działania, jakie urządzenie należy zastosować?

A. zawór dławiąco zwrotny
B. zawór podwójnego sygnału
C. przełącznik obiegu
D. zawór szybkiego spustu
Zawór dławiąco-zwrotny jest kluczowym elementem stosowanym w systemach pneumatycznych do regulacji prędkości ruchu tłoczyska siłownika dwustronnego działania. Działa na zasadzie ograniczenia przepływu powietrza, co pozwala na płynne i kontrolowane ruchy. Dzięki tej funkcji, procesy związane z załadunkiem, rozładunkiem oraz innymi operacjami mechanicznymi stają się bardziej precyzyjne i bezpieczne. W praktyce, zawory te są szeroko stosowane w automatyzacji przemysłowej, gdzie wymagania dotyczące powtarzalności i niezawodności są kluczowe. Na przykład, w maszynach pakujących, zawór dławiąco-zwrotny może spowolnić ruch tłoczyska, co zmniejsza ryzyko uszkodzenia produktów. Standardy, takie jak ISO 4414 dotyczące systemów pneumatycznych, zalecają stosowanie takich rozwiązań, aby zapewnić optymalne warunki pracy. Używanie odpowiednich zaworów przyczynia się również do zmniejszenia zużycia energii oraz wydłużenia żywotności systemów pneumatycznych.

Pytanie 40

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozchodzenie się mgły olejowej w instalacji
B. spływ kondensatu wodnego do najniższego punktu instalacji
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. odfiltrowanie cząstek stałych z powietrza
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.