Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 30 maja 2025 16:53
  • Data zakończenia: 30 maja 2025 17:50

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Najdłuższy czas przydatności do użycia, licząc od momentu połączenia składników, posiada zaprawa

A. cementowa
B. cementowo-gliniana
C. wapienno-cementowa
D. wapienna
Wybór zaprawy cementowej jako najbardziej odpowiedniej nie jest uzasadniony, ponieważ zaprawy cementowe, choć bardzo wytrzymałe i szybkoschnące, mają znacznie krótszy czas przydatności do użycia po zmieszaniu niż zaprawy wapienne. W przypadku zaprawy cementowej, proces wiązania zachodzi w ciągu kilku godzin, co ogranicza czas, w którym można ją skutecznie zastosować. Co więcej, gdy zaprawa cementowa zaczyna twardnieć, staje się znacznie mniej plastyczna, co utrudnia jej aplikację. Podobnie, zaprawy wapienno-cementowe, choć łączą cechy obu materiałów, nadal są ograniczone czasowo przez właściwości cementu. Zaprawa cementowo-gliniana także nie jest odpowiednia, ponieważ glina, w połączeniu z cementem, ma tendencję do wydłużania czasu wiązania, co nie jest korzystne w kontekście praktycznym. Najczęstsze błędy myślowe przy wyborze tych zapraw polegają na przesadnym akcentowaniu ich wytrzymałości, przy jednoczesnym bagatelizowaniu ich właściwości czasowych. W praktyce, wybór odpowiedniego materiału budowlanego powinien bazować na zrozumieniu specyficznych właściwości, zastosowania oraz wymagań projektu, co jest kluczowe dla zapewnienia trwałości i efektywności konstrukcji.

Pytanie 2

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:0,5:4, co powinno zostać zgromadzone?

A. 1 część cementu, 0,5 części piasku i 4 części wapna
B. 1 część piasku, 0,5 części cementu i 4 części wapna
C. 1 część piasku, 0,5 części wapna i 4 części cementu
D. 1 część cementu, 0,5 części wapna i 4 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:0,5:4 oznacza, że na każdą część cementu przypada 0,5 części wapna oraz 4 części piasku. Przygotowanie zaprawy w takich proporcjach zapewnia odpowiednią wytrzymałość i trwałość materiału budowlanego. W praktyce, zaprawa cementowo-wapienna jest powszechnie stosowana w budownictwie do murowania, tynkowania oraz jako materiał do łączenia różnorodnych elementów konstrukcyjnych. Dobrze zbilansowane proporcje składników wpływają na właściwości fizyczne i chemiczne zaprawy, co jest zgodne z normami PN-EN 998-1, które określają wymagania dotyczące zapraw murarskich. Warto również zaznaczyć, że odpowiednie przygotowanie zaprawy, w tym staranne wymieszanie składników, jest kluczowe dla uzyskania pożądanej konsystencji oraz właściwości użytkowych. Przykładem zastosowania zaprawy cementowo-wapiennej jest budowa ścian nośnych z bloczków betonowych, gdzie zaprawa zapewnia stabilność i trwałość konstrukcji przez długie lata.

Pytanie 3

Jaką metodę stosujemy do badania konsystencji zaprawy?

A. stożka diamentowego
B. objętości omierza
C. penetrometru
D. prasy hydraulicznej
Wybór innej metody pomiaru konsystencji zaprawy, jak stożek diamentowy, prasa hydrauliczna czy objętość omierza, jest nieadekwatny do rzeczywistych potrzeb oceny właściwości świeżych zapraw. Stożek diamentowy, choć stosowany w innych kontekstach, nie jest narzędziem do pomiaru konsystencji zapraw budowlanych. Zamiast tego, jego zastosowanie bardziej odnosi się do testów dotyczących twardości materiałów, co może prowadzić do błędnych wniosków w przypadku zapraw, które wymagają oceny urabialności. Prasa hydrauliczna, choć skuteczna w ocenie wytrzymałości materiałów, nie mierzy bezpośrednio ich konsystencji. Tego rodzaju urządzenia służą do testowania wytrzymałości na ściskanie, a nie do oceny, jak łatwo materiał można rozprowadzić. Podobnie, objętość omierza to metoda, która nie daje informacji o konsystencji, lecz o objętości materiału, co jest zupełnie innym parametrem. W praktyce, błędne zrozumienie roli każdego z tych narzędzi może prowadzić do nieprawidłowych ocen jakości zapraw, co z kolei wpływa na bezpieczeństwo i trwałość konstrukcji. Znajomość standardów i zastosowań odpowiednich narzędzi pomiarowych jest kluczowa dla profesjonalistów w branży budowlanej, aby uniknąć takich nieporozumień.

Pytanie 4

Jaką minimalną grubość powinny mieć ścianki oddzielające kanały dymowe w kominach wykonanych z cegły?

A. 3/4 cegły
B. 1/4 cegły
C. 1 cegła
D. 1/2 cegły
Grubość przegródek między kanałami dymowymi w kominach murowanych z cegły, która wynosi 1/2 cegły, jest czymś, co naprawdę powinno być brane pod uwagę. Taka grubość to nie tylko wymóg norm budowlanych, ale także świetna praktyka, jeśli chodzi o budowę kominów. Dzięki temu mamy zapewnioną dobrą izolację termiczną, co jest ważne, żeby nie było problemów z przegrzewaniem się konstrukcji i niskim ryzykiem pożaru. Oprócz tego, taka grubość sprawia, że kanały dymowe działają efektywnie, co pozwala na odpowiedni ciąg kominowy i odprowadzanie spalin. Moim zdaniem, projektując kominy, zawsze warto trzymać się wymagań norm, na przykład PN-EN 1443, bo to pomaga w zapewnieniu bezpieczeństwa i funkcjonalności systemów kominowych. Generalnie rzecz biorąc, trzymając się tych wytycznych, można mieć pewność, że cały system będzie działał jak należy i nie będzie problemów w użytkowaniu.

Pytanie 5

Perlit to lżejsze kruszywo stosowane w budownictwie do wytwarzania zapraw

A. ciepłochronnych
B. szamotowych
C. kwasoodpornych
D. krzemionkowych
Wybór złej odpowiedzi może oznaczać, że nie do końca rozumiesz, jakie właściwości ma perlit. To kruszywo jest znane przede wszystkim ze swoich niezwykłych właściwości cieplnych, co czyni je idealnym do zapraw ciepłochronnych. Szamotowe czy kwasoodporne zaprawy mają zupełnie inne zastosowania. Szamotowe są na przykład stosowane w miejscach narażonych na wysokie temperatury. A kruszywa krzemionkowe? Te są bardziej związane z produkcją betonu, a nie z izolacją, jaką daje perlit. Wydaje mi się, że niektóre materiały mają swoje specyficzne cechy, i to właśnie one decydują o tym, gdzie je użyjemy. Jak już wspomniałem, perlit jest super, jeżeli zależy nam na efektywnej izolacji termicznej, a to z kolei może pomóc w redukcji kosztów energii i zwiększeniu komfortu mieszkańców budynków. Dlatego dobrze jest znać właściwości materiałów, które wybieramy do różnych projektów.

Pytanie 6

Ile maksymalnie godzin od momentu przygotowania należy wykorzystać zaprawę cementowo-wapienną?

A. 8 godzin
B. 5 godzin
C. 2 godzin
D. 3 godzin
Odpowiedź '3 godzin' jest prawidłowa, ponieważ zaprawa cementowo-wapienna powinna być zużyta w ciągu maksymalnie trzech godzin od momentu jej przygotowania. W tym czasie zachowuje odpowiednią konsystencję oraz właściwości robocze, co jest kluczowe dla osiągnięcia wymaganej wytrzymałości i trwałości. Po upływie tego terminu zaprawa zaczyna twardnieć, co skutkuje utratą zdolności do dalszego formowania i aplikacji. W praktyce, w przypadku wykonywania tynków, murów czy wypełnień, zachowanie tego czasu ma kluczowe znaczenie dla jakości finalnego produktu. Warto również pamiętać, że w warunkach wysokiej temperatury lub przy intensywnej wentylacji czas ten może być skrócony, dlatego zaleca się bieżące monitorowanie warunków pracy. Dobrą praktyką jest przygotowanie mniejszych ilości zaprawy, które można wykorzystać w pełni w wyznaczonym czasie, co minimalizuje straty materiałowe i zapewnia lepsze wyniki zastosowania. W zgodzie z normami PN-EN 998-1, które regulują zastosowanie zapraw murarskich, należy ściśle przestrzegać zalecanych terminów wykorzystania materiałów budowlanych.

Pytanie 7

Ścianę nośną w piwnicy powinno się wymurować z

A. bloczków z betonu zwykłego
B. cegieł dziurawek
C. cegieł kratówek
D. bloczków z betonu komórkowego
Ściany nośne kondygnacji piwnicznej powinny być wymurowane z bloczków z betonu zwykłego z kilku powodów. Po pierwsze, beton zwykły charakteryzuje się wysoką nośnością, co jest niezbędne w przypadku ścian, które muszą przenosić obciążenia z wyższych kondygnacji budynku. Ponadto, bloczki te są odporne na wilgoć, co jest kluczowe w przypadku piwnic, gdzie istnieje ryzyko podciągania wilgoci z gruntu. W praktyce, zastosowanie bloczków z betonu zwykłego pozwala na uzyskanie solidnej i trwałej konstrukcji, która spełnia wymagania norm budowlanych, takich jak PN-EN 1992-1-1 dotycząca projektowania konstrukcji betonowych. Dodatkowo, bloczki te są stosunkowo łatwe w obróbce i montażu, co przyspiesza proces budowy. W kontekście praktycznych zastosowań, wiele nowoczesnych budynków mieszkalnych i komercyjnych opiera swoje fundamenty na solidnych ścianach piwnicznych wykonanych z bloczków z betonu zwykłego, co potwierdza ich efektywność i niezawodność w długoterminowym użytkowaniu.

Pytanie 8

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)

A. 5 pojemników wapna i 2,5 pojemnika cementu.
B. 4 pojemniki cementu i 2 pojemniki wapna.
C. 5 pojemników cementu i 2,5 pojemnika wapna.
D. 4 pojemniki wapna i 2 pojemniki cementu.
Odpowiedź, która wskazuje na zużycie 5 pojemników cementu i 2,5 pojemnika wapna jest właściwa, ponieważ opiera się na poprawnych proporcjach składników potrzebnych do przygotowania zaprawy. W opisie technicznym podano, że proporcje objętościowe składników wynoszą 1:0,5:4, co oznacza, że na każdy 1 pojemnik cementu przypada 0,5 pojemnika wapna i 4 pojemniki piasku. Zgodnie z planowanym użyciem 20 pojemników piasku, można obliczyć ilość pozostałych składników. 20 pojemników piasku podzielone przez 4 (czwartą część proporcji) daje 5 pojemników cementu, co odpowiada proporcji 1:4. Współczynnik dla wapna wynosi 0,5, więc 5 pojemników cementu pomnożone przez 0,5 daje 2,5 pojemnika wapna. Takie podejście nie tylko zapewnia zgodność z podanymi proporcjami, ale także wpisuje się w najlepsze praktyki budowlane, które gwarantują odpowiednią wytrzymałość i trwałość zaprawy. W praktyce, stosowanie się do tych proporcji pozwala uniknąć problemów związanych z niedostatecznym wiązaniem materiałów, co ma kluczowe znaczenie dla późniejszej jakości prac budowlanych.

Pytanie 9

Na podstawie danych z KNR oblicz, ile pustaków ceramicznych Max220 potrzeba do wymurowania ścian o grubości 19 cm i powierzchni 35 m2.

Nakłady na 1 m² ścian wykonanych
z pustaków ceramicznych Max220
(wyciąg z KNR)
Grubość ścianLiczba pustaków
19 cm14,90 sztuk
39 cm22,40 sztuk

A. 784 szt.
B. 522 szt.
C. 426 szt.
D. 665 szt.
Odpowiedź 522 szt. jest prawidłowa, ponieważ obliczenia oparte na danych z KNR (Katalog Norm Rzeczowych) wskazują, że do wymurowania ściany o grubości 19 cm i powierzchni 35 m² potrzeba 14,90 pustaków ceramicznych Max220 na każdy metr kwadratowy. Aby uzyskać całkowitą ilość pustaków, wystarczy pomnożyć tę wartość przez powierzchnię ściany: 14,90 szt./m² x 35 m² = 521,5 szt. Zgodnie z dobrymi praktykami budowlanymi, zawsze zaokrąglamy do najbliższej pełnej liczby, co w tym przypadku daje 522 sztuki. Dobrze jest również uwzględnić ewentualny zapas materiałów budowlanych na wypadek uszkodzeń czy błędów podczas montażu. W praktyce, znajomość tych zasad jest niezbędna do efektywnego planowania i zarządzania projektami budowlanymi, co pozwala uniknąć opóźnień i dodatkowych kosztów.

Pytanie 10

Jakie właściwości techniczne wyróżniają stwardniałą zaprawę murarską?

A. Wytrzymałość na ściskanie i nasiąkliwość
B. Nasiąkliwość oraz urabialność
C. Proporcje oraz urabialność
D. Wytrzymałość na ściskanie i proporcje
Analiza cech technicznych zaprawy murarskiej daje jasny obraz ich funkcji i znaczenia w budownictwie. W kontekście nasiąkliwości i urabialności, choć oba te elementy są istotne, nie są one kluczowe dla stwardniałej zaprawy. Nasiąkliwość sama w sobie odnosi się do zdolności materiału do wchłaniania wody, co jest ważne w kontekście wpływu wilgoci na trwałość konstrukcji, jednak urabialność, odnosząca się do łatwości, z jaką zaprawa może być formowana i aplikowana, ma mniejsze znaczenie dla stabilności gotowego produktu. Również konsystencja, będąca miarą plastyczności i jednorodności mieszanki, nie jest kluczowym czynnikiem w kontekście stwardniałej zaprawy murarskiej. Istotność wytrzymałości na ściskanie jest niezaprzeczalna, gdyż odpowiednia wartość tej cechy pozwala na tworzenie solidnych i długoterminowych struktur. Przy ocenie zapraw murarskich, powinno się zwracać głównie uwagę na parametry, które mają bezpośredni wpływ na ich funkcjonalność w warunkach eksploatacyjnych. W praktyce, zaprawa o niskiej wytrzymałości na ściskanie może prowadzić do katastrofalnych skutków, takich jak osuwanie się ścian, co podkreśla, jak kluczowe jest wybieranie zaprawy, która spełnia określone normy wytrzymałościowe, takie jak PN-EN 998-2. Dlatego zrozumienie znaczenia wytrzymałości na ściskanie i nasiąkliwości jest kluczowe dla prawidłowego wyboru materiałów budowlanych oraz zapewnienia ich długotrwałej funkcjonalności.

Pytanie 11

Jak powinny wyglądać spoiny w murach z kanałami dymowymi?

A. niekompletne i równo wykończone od wnętrza kanału
B. kompletne i nierówno wykończone od wnętrza kanału
C. niekompletne i nierówno wykończone od wnętrza kanału
D. kompletne i równo wykończone od wnętrza kanału
Spoiny w murach z kanałami dymowymi powinny być pełne i gładko wyrównane od wnętrza kanału, co jest zgodne z zasadami dobrych praktyk budowlanych oraz normami technicznymi. Pełne spoiny zapewniają odpowiednią szczelność, co jest kluczowe w kontekście odprowadzania spalin i dymu. Gładkie wyrównanie spoin zapobiega osadzaniu się zanieczyszczeń oraz minimalizuje ryzyko tworzenia się miejsc, w których może dochodzić do gromadzenia się sadzy, co z kolei mogłoby prowadzić do zatorów w kominie. Przykładem zastosowania tych zasad jest budowa systemów kominowych w domach jednorodzinnych, gdzie odpowiednie wykonanie spoin wpływa na bezpieczeństwo użytkowania pieców oraz efektowność odprowadzania spalin. W kontekście norm, odpowiednie dokumenty, takie jak PN-EN 12056 dotyczące systemów kominowych, podkreślają znaczenie pełnych i gładkich połączeń w zachowaniu bezpieczeństwa i trwałości konstrukcji kominowych.

Pytanie 12

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. skucia wypełnienia stropowego
B. rozebrania górnej części stropu, czyli podłogi
C. zbicia tynku z powierzchni stropu
D. wycięcia belek wzdłuż ścian
Zbicie tynku ze stropu jest kluczowym pierwszym krokiem w procesie ręcznej rozbiórki stropu ceglanego na belkach stalowych. Tynk pełni funkcję wykończeniową, ale jego usunięcie pozwala na dokładną ocenę stanu konstrukcji stropu oraz belek. Bez tego etapu, można napotkać nieprzewidziane trudności, które mogą prowadzić do uszkodzenia pozostałych elementów budynku. W praktyce, przed rozpoczęciem rozbiórki, ważne jest również zapewnienie odpowiedniego zabezpieczenia obszaru roboczego oraz użycie odpowiednich narzędzi, takich jak młoty pneumatyczne czy łomy, aby skutecznie usunąć tynk. Dobrą praktyką jest także sporządzenie dokumentacji fotograficznej stanu przed rozpoczęciem prac, co może być przydatne w późniejszych etapach oraz ewentualnych analizach odpowiadających za bezpieczeństwo budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, przed rozpoczęciem rozbiórki powinno się przeprowadzić ocenę stanu technicznego konstrukcji, aby zminimalizować ryzyko związane z pracami rozbiórkowymi.

Pytanie 13

Tynki 1-warstwowe obejmują tynki

A. selektywne
B. powszechne
C. wytworne
D. surowe
Tynki surowe to rodzaj tynków 1-warstwowych, które charakteryzują się prostotą wykonania i szybkim czasem aplikacji. Są one najczęściej stosowane w budownictwie jako podkład pod dalsze warstwy wykończeniowe, a dzięki swojej naturalnej strukturze i porowatości, zapewniają dobrą przyczepność dla kolejnych warstw. W praktyce, tynki surowe mogą być wykonane z tradycyjnych materiałów, takich jak cement, wapno czy gips, które po nałożeniu tworzą jednolitą powłokę. Warto zaznaczyć, że tynki surowe mogą być również stosowane w pomieszczeniach o podwyższonej wilgotności, gdyż odpowiednio przygotowane materiały mogą minimalizować ryzyko pojawienia się pleśni. W budownictwie ekologicznym, tynki surowe zyskują na popularności, ponieważ są produkowane z lokalnych surowców i mają niską emisję CO2. Zgodnie z normami PN-EN 998-1, tynki surowe muszą spełniać określone wymagania dotyczące wytrzymałości i trwałości, co czyni je kluczowym elementem w kontekście długoterminowej eksploatacji budynków.

Pytanie 14

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 4 000,00 zł
B. 7 600,00 zł
C. 3 600,00 zł
D. 3 800,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 15

Do realizacji tynków zewnętrznych na elewacji budynku pięciokondygnacyjnego należy zastosować rusztowanie

A. stolikowego
B. stojakowego
C. warszawskiego
D. kozłowego
Wybór nieodpowiedniego typu rusztowania może prowadzić do poważnych problemów podczas wykonywania tynków zewnętrznych. Rusztowanie kozłowe, mimo że może być użyteczne w niektórych sytuacjach, nie jest przeznaczone do pracy na większych wysokościach. Jego konstrukcja ogranicza stabilność i może stwarzać realne zagrożenie dla pracowników, zwłaszcza w przypadku 5-kondygnacyjnego budynku. Podobnie, rusztowanie stolikowe jest dostosowane do prac na poziomie podłogi, a jego zastosowanie w kontekście elewacji budynku nie tylko ogranicza mobilność, ale także nie zapewnia odpowiedniego wsparcia dla materiałów i narzędzi. Co więcej, rusztowanie warszawskie, choć popularne w niektórych aplikacjach, nie spełnia wymagań dla złożonych prac budowlanych, zwłaszcza na wysokości, gdzie kluczowe jest zapewnienie bezpieczeństwa. W praktyce, decyzja o wyborze rusztowania powinna być oparta na analizie jego przeznaczenia oraz zgodności z normami i regulacjami. Wybranie niewłaściwego rozwiązania nie tylko zwiększa ryzyko wypadków, ale również może prowadzić do opóźnień w realizacji projektu z powodu konieczności wprowadzenia zmian w organizacji pracy. W związku z tym kluczowe jest, aby osoby odpowiedzialne za organizację tynkowania miały jasną wiedzę na temat specyfiki różnych typów rusztowań oraz ich zastosowania, co jest niezbędne do zapewnienia efektywności i bezpieczeństwa pracy na budowie.

Pytanie 16

Jakim narzędziem należy oceniać konsystencję zapraw budowlanych?

A. aparatem Vicata
B. młotkiem Szmidta
C. stożkiem pomiarowym
D. czerpakiem murarskim
Stożek pomiarowy jest standardowym narzędziem używanym do oceny konsystencji zapraw budowlanych, takich jak zaprawy cementowe czy tynki. Metoda ta polega na wypełnieniu stożka zaprawą i następnie podniesieniu go, co powoduje, że materiał osiada. Głębokość osiadania zaprawy pozwala na ocenę jej płynności i konsystencji. Zgodnie z normami, takimi jak PN-EN 1015-3, właściwa konsystencja zaprawy ma kluczowe znaczenie dla trwałości budowli oraz jakości wykonania. W praktyce, pomiar konsystencji wykonuje się przed aplikacją zaprawy, co umożliwia dostosowanie proporcji składników, jeśli okazuje się, że materiał jest zbyt suchy lub zbyt płynny. Przykładowo, w przypadku tynków zewnętrznych, odpowiednia konsystencja jest niezbędna, aby zapewnić ich przyczepność oraz odporność na warunki atmosferyczne.

Pytanie 17

Proporcje objętościowe 1:3:12 składników zaprawy cementowo-glinianej typu M 0,6 wskazują na następujący jej skład objętościowy:

A. cement : zawiesina gliniana : wapno
B. cement : zawiesina gliniana : piasek
C. cement : wapno : zawiesina gliniana
D. cement : piasek : zawiesina gliniana
Odpowiedź 'cement : zawiesina gliniana : piasek' jest prawidłowa, ponieważ proporcje 1:3:12 wskazują, że na każdą jednostkę cementu przypada 3 jednostki zawiesiny glinianej oraz 12 jednostek piasku. Taki skład zaprawy cementowo-glinianej charakteryzuje się odpowiednim balansem między wytrzymałością a elastycznością, co czyni go idealnym do zastosowań w budownictwie, na przykład przy murowaniu ścian czy tynkowaniu. W praktyce, stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości mechanicznych zaprawy, takich jak przyczepność, plastyczność i odporność na działanie czynników atmosferycznych. Warto również zwrócić uwagę na normy PN-EN dotyczące zapraw murarskich, które precyzują wymagania dla różnych typów zapraw, co pozwala na dobór odpowiedniego składu w zależności od specyfikacji projektu budowlanego. Przykłady zastosowań to zarówno budowa nowych obiektów, jak i renowacja istniejących, gdzie kluczowe jest zachowanie zarówno estetyki, jak i trwałości."}

Pytanie 18

Oblicz płatność dla tynkarza za nałożenie tynku zwykłego z obu stron ściany o wymiarach 5×3 m, jeśli stawka za godzinę pracy tynkarza wynosi 15,00 zł, a norma wykonania tego tynku to
1,2 r-g/m2.

A. 540,00 zł
B. 270,00 zł
C. 450,00 zł
D. 225,00 zł
Aby obliczyć wynagrodzenie tynkarza za wykonanie tynku zwykłego, należy najpierw określić powierzchnię ściany, którą należy otynkować. Ściana o wymiarach 5 m na 3 m ma powierzchnię wynoszącą 15 m². Ponieważ tynk ma być nałożony po obu stronach ściany, całkowita powierzchnia do tynkowania wynosi 30 m² (15 m² x 2). Następnie, patrząc na normę pracy, która wynosi 1,2 r-g/m², możemy obliczyć, ile roboczogodzin jest potrzebnych do wykonania tynku na tej powierzchni. Obliczamy to mnożąc 30 m² przez 1,2 r-g/m², co daje 36 roboczogodzin. Przy stawce 15,00 zł za godzinę, całkowite wynagrodzenie tynkarza wyniesie 36 r-g x 15,00 zł/r-g, co daje 540,00 zł. Praktyczne zastosowanie tej wiedzy jest istotne w zakresie budownictwa i wykończeń wnętrz, gdzie precyzyjne obliczenia kosztów pracy i materiałów są kluczowe dla efektywnego zarządzania projektem.

Pytanie 19

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
B. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
C. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
D. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
Poprawna odpowiedź dotyczy proporcji składników betonu, które zostały opisane w formacie 1 : 2 : 4. Oznacza to, że dla każdej jednostki cementu używamy dwóch jednostek piasku i czterech jednostek żwiru. W praktyce, jeśli murarz użył jednego wiadra cementu, powinien zastosować dwa wiadra piasku i cztery wiadra żwiru, co jest zgodne z zasadami dozowania objętościowego. Użycie tych proporcji zapewnia odpowiednią wytrzymałość, trwałość i jednolitość betonu, co jest szczególnie istotne na małych budowach. Dobre praktyki w budownictwie zalecają stosowanie sprawdzonych proporcji, aby uzyskać beton o pożądanych właściwościach mechanicznych. Na przykład, beton w proporcjach 1 : 2 : 4 jest często stosowany w konstrukcjach takich jak chodniki, mury oporowe czy małe fundamenty, gdzie nie jest wymagana wyjątkowa wytrzymałość, ale stabilność i odporność na warunki atmosferyczne są kluczowe. Znajomość i zastosowanie odpowiednich proporcji w mieszankach betonowych jest kluczowe dla realizacji projektów budowlanych zgodnie z obowiązującymi normami oraz praktykami inżynieryjnymi.

Pytanie 20

Ile pojemników zawierających 25 kg tynku cienkowarstwowego akrylowego będzie potrzebnych do pokrycia dwóch ścian osłonowych budynku o wymiarach 12 m × 8 m każda, jeżeli zużycie wynosi 3,5 kg na 1 m2 powierzchni ściany?

A. 27 pojemników
B. 28 pojemników
C. 14 pojemników
D. 42 pojemniki
Wybór błędnej odpowiedzi może wynikać z nieprawidłowego zrozumienia obliczeń związanych z powierzchnią ścian lub zużyciem tynku. Na przykład, niektórzy mogą pomylić jednostki podczas obliczania powierzchni lub niewłaściwie zastosować współczynnik zużycia tynku. Często zdarza się, że użytkownicy pomijają istotny krok, jakim jest obliczenie całkowitej powierzchni ścian, co prowadzi do przyjęcia niepoprawnych wartości. Niektórzy mogą również zakładać, że ich doświadczenie w pracy z tynkiem pozwala im na intuicyjne oszacowanie materiałów, co jest podejściem nieoptymalnym, ponieważ każda aplikacja jest unikalna. Również błędy w zaokrąglaniu mogą skumulować się i prowadzić do błędnych decyzji odnośnie zakupu materiałów. W praktyce ważne jest, aby zawsze wykonywać precyzyjne obliczenia oraz uwzględniać straty materiałowe, a także różnice w zużyciu tynku, które mogą wystąpić w zależności od techniki aplikacji, stanu podłoża i warunków atmosferycznych. Ostatecznie, właściwe zrozumienie i zastosowanie matematyki oraz zasad chemii materiałów budowlanych jest kluczowe dla skutecznego i bezproblemowego przeprowadzenia prac budowlanych, co pozwala na uzyskanie trwałych i estetycznych efektów końcowych.

Pytanie 21

Wylicz koszt wymiany pięciu okien o wymiarach 120×150 cm każde, jeśli cena jednostkowa tej usługi to 65,00 zł/m.

A. 1755,00 zł
B. 1950,00 zł
C. 1404,00 zł
D. 1560,00 zł
Jak się przyjrzysz błędom w obliczeniach kosztów wymiany okien, to warto pomyśleć o tym, jak ważne jest dobrze policzyć powierzchnię. Wiele osób zakłada, że można po prostu pomnożyć liczbę okien przez koszt jednostkowy i to wszystko, a to wcale nie jest prawda. Ignoruje to bardzo istotny krok, jakim jest pole powierzchni okna. Często ludzie nie rozumieją, jak przeliczać jednostki z centymetrów na metry kwadratowe, co jest kluczowe, żeby móc użyć podanego kosztu. No i jeszcze jest ten temat, że niektórzy nie uwzględniają dodatkowych kosztów, jak montaż, demontaż starych okien, czy inne materiały potrzebne przy montażu. Brak wiedzy o tych rzeczach sprawia, że mogą zaniżać lub zawyżać całkowite koszty. W budownictwie trzeba znać nie tylko ceny jednostkowe, ale też jak dobrze i dokładnie obliczać koszty całkowite, żeby móc sensownie planować budżety. Dobre praktyki w planowaniu finansowym, z uwzględnieniem wszystkich kosztów, są naprawdę ważne dla sukcesu projektów budowlanych.

Pytanie 22

Pręty stalowe, które mają być zastosowane do zbrojenia konstrukcji żelbetowej, powinny być wcześniej

A. pokryć farbą olejną podkładową
B. nanaszać preparat wodoodporny
C. zaimpregnować środkiem zapobiegającym przywieraniu
D. oczyścić z rdzy oraz zabrudzeń tłuszczowych
Pręty stalowe, które będą używane do zbrojenia elementów żelbetowych, muszą być odpowiednio przygotowane przed ich zastosowaniem. Oczyszczenie z rdzy oraz tłustych plam ma kluczowe znaczenie dla zapewnienia odpowiedniej adhezji między stalą a betonem. Proces ten zapobiega osłabieniu połączenia, co mogłoby prowadzić do problemów strukturalnych w przyszłości. Rdza, jako produkt korozji, może osłabiać stal, a obecność tłuszczu ogranicza przyleganie betonu do zbrojenia. Zgodnie z normą PN-EN 1992-1-1, która określa zasady projektowania konstrukcji z żelbetu, powierzchnie zbrojenia powinny być czyste i suche. W praktyce, często stosuje się szczotki druciane lub środki chemiczne do usuwania rdzy. Zastosowanie takich metod nie tylko poprawia jakość wykonania, ale także wydłuża trwałość konstrukcji. Należy również pamiętać, że odpowiednie przygotowanie prętów zbrojeniowych jest wymagane na każdym etapie budowy, aby uniknąć późniejszych komplikacji.

Pytanie 23

Oblicz całkowity koszt realizacji tynku maszynowego gipsowego na obu bokach ściany o wymiarach 7×3 m, jeśli koszt robocizny wynosi 19,00 zł/m2, a wydatki na materiały to 7,00 zł/m2?

A. 1092,00 zł
B. 945,00 zł
C. 546,00 zł
D. 1386,00 zł
Aby obliczyć koszt całkowity wykonania tynku maszynowego gipsowego, należy najpierw ustalić powierzchnię ściany, która ma być pokryta tynkiem. Ściana o wymiarach 7 m na 3 m ma powierzchnię wynoszącą 21 m². Ponieważ tynk ma być wykonany po obu stronach, całkowita powierzchnia do pokrycia wynosi 21 m² x 2 = 42 m². Następnie obliczamy koszty robocizny i materiałów. Koszt jednostkowy robocizny wynosi 19,00 zł/m², co daje 42 m² x 19,00 zł/m² = 798,00 zł. Koszt materiałów wynosi 7,00 zł/m², co daje 42 m² x 7,00 zł/m² = 294,00 zł. Suma kosztów robocizny i materiałów wynosi 798,00 zł + 294,00 zł = 1092,00 zł. Taki sposób obliczeń jest zgodny z standardami branżowymi, gdzie uwzględnia się zarówno koszty pracy, jak i koszty materiałów, co jest kluczowe w procesie przygotowania kosztorysu budowlanego. Praktyczne zastosowanie tej wiedzy pozwala na dokładne zaplanowanie budżetu na prace budowlane i remontowe.

Pytanie 24

Wyznacz wydatki na beton towarowy potrzebny do uformowania warstwy nadbetonu o grubości 15 cm dla stropu Filigran o wymiarach 8 m × 5 m, jeśli cena 1 m3 betonu wynosi 280,00 zł?

A. 1 680,00 zł
B. 33 600,00 zł
C. 168 000,00 zł
D. 11 200,00 zł
Błędne odpowiedzi, takie jak 33 600,00 zł, 11 200,00 zł oraz 168 000,00 zł, wynikają z niewłaściwego podejścia do obliczenia objętości betonu oraz błędnych przeliczeń kosztów. Często można spotkać się z pomyłkami w obliczeniach objętości, gdzie osoby biorą pod uwagę nieprawidłowe jednostki miary lub nie uwzględniają konwersji grubości z centymetrów na metry. Na przykład, użycie grubości 15 cm bez jej przeliczenia na metry prowadzi do niepoprawnych wyników, które następnie wpływają na końcowy koszt. Podobnie, pomyłka przy obliczaniu powierzchni stropu może doprowadzić do znacznych różnic w objętości i, w konsekwencji, w kosztach. Kluczowe jest, aby w takich obliczeniach zawsze dbać o poprawność jednostek oraz stosować wzory zgodne z zasadami matematyki budowlanej. W praktyce, dla zwiększenia dokładności, zaleca się również stosowanie programów komputerowych lub kalkulatorów budowlanych, które pozwalają na uniknięcie błędów wynikających z ręcznego liczenia. Cały proces oszacowania kosztów betonu jest nie tylko istotny dla budżetu, ale także dla efektywności realizacji projektu budowlanego.

Pytanie 25

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. < 10o
B. 25o - 30o
C. 15o - 20o
D. w dowolnej
Pytanie o temperaturę prowadzenia robót tynkarskich jest kluczowe dla jakości i trwałości wykonanych prac, jednak niektóre z proponowanych odpowiedzi wskazują na istotne nieporozumienia w tej kwestii. Wybór temperatury poniżej 10o jako odpowiedniej do robót tynkarskich jest błędny, ponieważ niskie temperatury powodują, że zaprawa nie osiąga wymaganego wiązania i przyczepności do podłoża. W takich warunkach może dochodzić do odwodnienia zaprawy, co prowadzi do osłabienia i pęknięć. Z kolei odpowiedź sugerująca, że tynkowanie można prowadzić w temperaturze 25o - 30o, również jest myląca. Chociaż w takich warunkach tynk może być łatwiejszy w aplikacji, zbyt wysoka temperatura powoduje szybkie parowanie wody, co skutkuje powstawaniem rys oraz słabszym wiązaniem materiału. Ostatecznie, wskazanie, że prace tynkarskie mogą być prowadzone w dowolnej temperaturze, jest skrajnie nieodpowiedzialne. Tego rodzaju podejście może prowadzić do poważnych problemów z jakością wykonania, a w skrajnych przypadkach do odpadania tynku. Zrozumienie wpływu temperatury na proces tynkowania jest niezbędne do zapewnienia właściwego wykonania i długowieczności prac budowlanych, dlatego tak istotne jest przestrzeganie zalecanych zakresów temperaturowych.

Pytanie 26

Jeśli koszty robocizny związane z ręcznym nałożeniem tynku szlachetnego nakrapianego na ścianach wynoszą 99,70 r-g na 100 m2, a ustalona stawka godzinowa to 15,00 zł, to całkowity koszt robocizny za 300 m2 wynosi?

A. 4 486,50 zł
B. 4 500,00 zł
C. 1 495,50 zł
D. 1 500,00 zł
Obliczenie kosztu robocizny przy tynku szlachetnym nakrapianym można przeprowadzić na podstawie podanych danych. Jeśli nakłady robocizny wynoszą 99,70 zł na 100 m², to dla 300 m² koszt robocizny można obliczyć mnożąc tę stawkę przez trzy. Obliczenia wyglądają następująco: 99,70 zł * 3 = 299,10 zł. Następnie, aby uzyskać całkowity koszt robocizny, musimy policzyć liczbę godzin pracy. Przy stawce godzinowej wynoszącej 15,00 zł, całkowity koszt robocizny wynosi 299,10 zł * 15,00 zł = 4 486,50 zł. Taki sposób obliczania kosztów robocizny jest zgodny z praktykami branżowymi, które zalecają dokładne oszacowanie nakładów na podstawie jednostkowych stawek robocizny na określone powierzchnie. Zrozumienie tych obliczeń jest kluczowe w zarządzaniu kosztami i planowaniu budżetu w projektach budowlanych.

Pytanie 27

Który typ cegieł charakteryzuje się wysoką odpornością na oddziaływanie warunków atmosferycznych?

A. Klinkierowe
B. Ceramiczne pełne
C. Sylikatowe
D. Poryzowane
Cegły klinkierowe charakteryzują się wyjątkową odpornością na działanie czynników atmosferycznych, co czyni je idealnym materiałem budowlanym do zastosowań zewnętrznych. Wytwarzane są z wysokiej jakości gliny, która jest wypalana w wysokotemperaturowych piecach, co prowadzi do ich twardości i niskiej porowatości. Dzięki tym właściwościom, cegły klinkierowe nie tylko doskonale znoszą zmiany temperatury, ale również są odporne na działanie wody, co minimalizuje ryzyko ich deformacji czy zniszczenia. Stosowane są powszechnie na elewacjach budynków, chodnikach, tarasach oraz w infrastrukturze, takiej jak mosty czy mury oporowe. W zgodzie z normą PN-EN 771-1, klinkierowe cegły spełniają wymagania dotyczące wytrzymałości i trwałości w różnych warunkach klimatycznych. Dodatkowo, ich estetyka oraz szeroka gama kolorystyczna sprawiają, że są chętnie wybierane przez architektów i inwestorów, co podkreśla ich uniwersalność i zastosowanie w nowoczesnym budownictwie.

Pytanie 28

Stosunek objętościowy 1:3:12 określa składniki zaprawy cementowo-glinianej M 0,6:

A. cement: woda: zawiesina gliniana
B. cement: piasek: zawiesina gliniana
C. cement: zawiesina gliniana: piasek
D. cement: zawiesina gliniana: woda
Odpowiedź 'cement: zawiesina gliniana: piasek' jest prawidłowa, ponieważ proporcja objętościowa 1:3:12 odnosi się do składników zaprawy cementowo-glinianej M 0,6, gdzie cement jest jednym z głównych składników, a jego ilość w mieszance wynosi 1 część. Zawiesina gliniana, będąca materiałem wiążącym, ma 3 części, a piasek, który pełni rolę wypełniacza, stanowi 12 części. Zastosowanie takiej proporcji jest zgodne z najlepszymi praktykami w budownictwie, gdzie kluczowe jest uzyskanie odpowiednich właściwości mechanicznych oraz trwałości zaprawy. Przykładowo, w kontekście budowy murów czy tynków, stosowanie zaprawy o takiej proporcji przyczynia się do lepszej przyczepności i wytrzymałości na czynniki atmosferyczne. Zgodnie z normami, właściwe stosunki składników mogą znacznie wpłynąć na jakość konstrukcji, co podkreśla znaczenie przestrzegania tych proporcji w praktyce budowlanej.

Pytanie 29

Do czego jest używana poziomica wężowa?

A. Do określania zewnętrznej krawędzi warstw muru
B. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
C. Do sprawdzania pionowości murowanej ściany
D. Do kontrolowania grubości muru w ścianie
Rozumienie, jak działa poziomica wężowa, jest naprawdę ważne w budownictwie. Wiele osób myśli, że służy ona do mierzenia grubości murów, ale tak nie jest. Ta poziomica skupia się na wyznaczaniu poziomu, a nie na pomiarze odległości czy grubości. Na pewno lepiej do tego użyć miarki albo kątownika. Również pomysł, że poziomica wężowa kontroluje pion murowanych ścian, jest błędny. Do tego są inne narzędzia, jak pion, które są stworzone do takich zadań. Jeśli chodzi o wyznaczanie krawędzi murowanych warstw, to znów lepszą opcją będą łaty murarskie albo poziomice libelowe, bo są bardziej precyzyjne. Często ludzie mylą funkcje różnych narzędzi, co może prowadzić do późniejszych problemów na budowie. Dlatego trzeba wiedzieć, do czego służy każde narzędzie, żeby uniknąć błędów w pracy.

Pytanie 30

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. pokryć mleczkiem cementowym
B. owinąć siatką stalową ocynkowaną
C. wyłożyć matami trzcinowymi
D. obłożyć listewkami drewnianymi
Owinięcie elementów stalowych siatką stalową ocynkowaną jest najlepszym rozwiązaniem przed nałożeniem tynku, ponieważ zabezpiecza stal przed korozją oraz zapewnia odpowiednią przyczepność tynku do powierzchni. Siatka stalowa działa jako zbrojenie, które zwiększa wytrzymałość tynku, minimalizując ryzyko pęknięć oraz odspajania materiału od podłoża. Zastosowanie siatki ocynkowanej jest zgodne z zasadami dobrych praktyk budowlanych, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz chemikaliów. W praktyce, siatka powinna być przytwierdzona do elementów stalowych w sposób zapewniający jej stabilność, co dodatkowo można osiągnąć przez użycie specjalnych kołków montażowych. Przykład zastosowania to budowa ścianek działowych, gdzie stalowa konstrukcja wymaga trwałego i solidnego podłoża do nałożenia tynku, co jest istotne w kontekście długoterminowej eksploatacji budynku oraz jego estetyki.

Pytanie 31

Gdzie można wykorzystać zaprawy gipsowe?

A. do murowania fundamentów z elementów betonowych
B. do tynkowania elewacji budynków
C. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
D. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
Odpowiedź dotycząca murowania ścian z elementów gipsowych w pomieszczeniach suchych jest poprawna, ponieważ zaprawy gipsowe charakteryzują się odpowiednimi właściwościami do stosowania w takich warunkach. Gips jest materiałem, który ma dobre właściwości klejące oraz szybko wiąże, co czyni go idealnym do murowania elementów gipsowych, które są lekkie i łatwe w obróbce. W praktyce, zaprawy gipsowe są często wykorzystywane do tworzenia ścianek działowych oraz do zabudów, które nie są narażone na wilgoć. W kontekście dobrych praktyk budowlanych, zastosowanie zaprawy gipsowej w suchych pomieszczeniach przyczynia się do poprawy efektywności energetycznej budynku oraz zwiększa komfort akustyczny. Ponadto, elementy gipsowe, takie jak płyty gipsowo-kartonowe, współpracują z zaprawami gipsowymi, co zapewnia trwałość i estetykę wykończenia. Warto również zwrócić uwagę na normy takie jak PN-EN 13279, które określają wymagania dla materiałów budowlanych na bazie gipsu.

Pytanie 32

Cena realizacji 1 m2 tynku cementowo-wapiennego to 15,50 zł, natomiast przygotowanie 1 m2 podłoża pod tynk wymaga wydatku 7,70 zł. Oblicz całkowity koszt otynkowania ścian o łącznej powierzchni 250 m2.

A. 1 925,00 zł
B. 2 900,00 zł
C. 5 800,00 zł
D. 3 875,00 zł
Koszt otynkowania ścian o powierzchni 250 m² można obliczyć poprzez zsumowanie kosztów przygotowania podłoża oraz wykonania tynku. Przygotowanie podłoża pod tynk kosztuje 7,70 zł za m², co dla 250 m² daje 1 925,00 zł. Natomiast koszt wykonania tynku cementowo-wapiennego wynosi 15,50 zł za m², co dla tej samej powierzchni daje 3 875,00 zł. Suma tych dwóch kosztów to: 1 925,00 zł + 3 875,00 zł = 5 800,00 zł. Jest to poprawne podejście, ponieważ uwzględnia wszystkie etapy prac budowlanych, które są kluczowe w procesie otynkowania. W praktyce, takie wyliczenia są istotne dla budżetowania projektów budowlanych oraz dla zapewnienia, że wszystkie aspekty kosztowe są odpowiednio zaplanowane i zrealizowane zgodnie z obowiązującymi standardami branżowymi.

Pytanie 33

Cementową zaprawę wykorzystuje się do budowy ścian

A. fundamentowych
B. nośnych wewnętrznych
C. nośnych zewnętrznych
D. działowych
Zaprawa cementowa jest kluczowym materiałem budowlanym, szczególnie w kontekście murowania fundamentów. Jej zastosowanie w fundamentach wynika z konieczności zapewnienia stabilności i wytrzymałości konstrukcji. Zaprawy cementowe charakteryzują się dużą odpornością na działanie sił zewnętrznych oraz na wilgoć, co jest szczególnie istotne w przypadku fundamentów, które są narażone na działanie wód gruntowych i zmienne warunki atmosferyczne. W praktyce często stosuje się zaprawy o odpowiedniej klasie wytrzymałości, zgodnej z normami budowlanymi, co zapewnia ich długotrwałość. Ważnym aspektem jest również prawidłowe przygotowanie zaprawy, które powinno odbywać się zgodnie z zaleceniami producenta, aby osiągnąć optymalne właściwości mechaniczne i fizyczne. Dobrą praktyką jest również zastosowanie dodatków chemicznych, które mogą poprawić właściwości zaprawy, takie jak jej plastyczność czy odporność na wodę. Warto również zwrócić uwagę na techniki murowania, które mają kluczowe znaczenie dla trwałości i stabilności fundamentów.

Pytanie 34

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 1 350,00 zł
B. 1 500,00 zł
C. 750,00 zł
D. 600,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 35

W trakcie murowania ścian w zimowych warunkach należy podgrzać

A. jedynie piasek
B. wszystkie składniki zaprawy przed ich połączeniem
C. tylko wodę i piasek
D. zaprawę po połączeniu wszystkich składników
Podgrzewanie wody i piasku przed murowaniem w warunkach zimowych ma kluczowe znaczenie dla zapewnienia odpowiedniej aplikacji zaprawy. Woda jest najważniejszym składnikiem, który wpływa na właściwości zaprawy, a jej temperatura bezpośrednio oddziałuje na proces wiązania. Zimne warunki mogą spowolnić czas wiązania zaprawy, co prowadzi do osłabienia strukturalnego muru. Podgrzewanie piasku ma na celu zwiększenie temperatury całej mieszanki, co przyspiesza proces hydratacji cementu. W praktyce, aby uzyskać najlepsze rezultaty, wodę należy podgrzać do temperatury nieprzekraczającej 60°C, co zapewnia optymalne warunki do mieszania. Dobrą praktyką jest również zabezpieczenie murów przed mrozem w pierwszych dniach po zakończeniu murowania, aby uniknąć ryzyka uszkodzeń spowodowanych niską temperaturą. Takie działania są zgodne z normami budowlanymi, które zalecają szczególnie staranne podejście do prac w trudnych warunkach atmosferycznych, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 36

Nierównomierne osiadanie budynków może prowadzić do

A. korozji murów
B. zawilgocenia murów
C. pęknięcia murów
D. erozji fundamentów
Odpowiedzi "korozja murów", "erozja fundamentów" oraz "zawilgocenie murów" są wynikiem niepełnego zrozumienia procesów związanych z osiadaniem budynków. Korozja murów odnosi się do chemicznych procesów degradacji materiału budowlanego, które są zazwyczaj efektem działania wody, wilgoci czy też zanieczyszczeń chemicznych, a nie bezpośrednio związane z nierównomiernym osiadaniem. Erozja fundamentów z kolei dotyczy procesów hydrologicznych, które mogą występować w wyniku działania wody gruntowej lub deszczowej, lecz nie są efektem osiadania budynków. Zawilgocenie murów jest problemem, który zazwyczaj wiąże się z wadliwą izolacją przeciwwilgociową czy zbyt dużą wilgotnością w otoczeniu, jednak nie jest to bezpośredni skutek nierównomiernego osiadania. W praktyce zdarza się, że nieprawidłowa interpretacja objawów może prowadzić do błędnych decyzji dotyczących konserwacji i napraw budynków. Należy pamiętać, że każde zjawisko w budownictwie ma swoje specyficzne przyczyny i skutki, a znajomość tych procesów jest kluczowa dla prawidłowego projektowania i utrzymania obiektów budowlanych. Stosowanie odpowiednich badań, takich jak analiza gruntów oraz monitorowanie osiadania, jest niezbędne dla zapobiegania problemom związanym z konstrukcją budynków.

Pytanie 37

Gdy na powierzchni tynku występują liczne oznaki po przeprowadzonych naprawach związanych z pęknięciami, co powinno się zrobić?

A. pokryć powierzchnię siatką z tworzywa sztucznego i wykonać gładź
B. pokryć powierzchnię siatką stalową i wykonać gładź
C. pomalować całą powierzchnię białą farbą
D. położyć na powierzchni nową gładź
Pomalowanie całej powierzchni białą farbą może wydawać się prostym rozwiązaniem, jednak nie jest to właściwa metoda w przypadku powierzchni z widocznymi uszkodzeniami. Malowanie nie rozwiązuje problemu pęknięć, a jedynie maskuje je, co prowadzi do pogorszenia stanu technicznego tynku w dłuższym okresie. Podobnie, pokrycie powierzchni siatką stalową jest niewłaściwe, ponieważ stal nie jest odporna na korozję w warunkach wilgotności, co może prowadzić do powstawania rdzy i dalszego uszkodzenia tynku. Siatki stalowe są stosowane w innych kontekstach budowlanych, ale nie w przypadku gładzi, gdzie preferencje kierują się ku siatkom z tworzywa sztucznego z uwagi na ich właściwości elastyczne i odporność na czynniki atmosferyczne. Położenie nowej gładzi na starszej, uszkodzonej powierzchni bez wcześniejszego wzmocnienia nie przyniesie oczekiwanych rezultatów, ponieważ nowa warstwa gładzi przyspieszy degradację istniejącego tynku, a pęknięcia mogą się powtórzyć. Takie podejście często wynika z błędnego przeświadczenia, że wystarczy jedynie odświeżyć wierzchnią warstwę, co jest niezgodne z zasadami trwałej renowacji. Skuteczność naprawy wynika przede wszystkim z właściwego przygotowania podłoża, co jest kluczowym etapem w pracy z tynkami.

Pytanie 38

Jaką ilość zaprawy należy przygotować do otynkowania sufitu o wymiarach 4,0 m x 5,0 m, jeśli zapotrzebowanie na zaprawę tynkarską wynosi 4,5 kg na 1 m2?

A. 94,5 kg
B. 22,5 kg
C. 90,0 kg
D. 18,0 kg
Aby obliczyć ilość zaprawy potrzebnej do otynkowania sufitu, najpierw musimy obliczyć jego powierzchnię. Sufit o wymiarach 4,0 m x 5,0 m ma powierzchnię równą 20 m². Następnie, wiedząc, że zużycie zaprawy tynkarskiej wynosi 4,5 kg na 1 m², możemy pomnożyć tę wartość przez powierzchnię sufitu. Wzór na obliczenie zaprawy to: 20 m² x 4,5 kg/m² = 90 kg. Takie obliczenia są kluczowe w pracy budowlanej, ponieważ pozwalają na precyzyjne planowanie materiałów, co z kolei wpływa na efektywność i oszczędności w projekcie. W praktyce, znajomość kosztów materiałów i ich ilości pozwala na lepsze zarządzanie budżetem oraz uniknięcie nadmiarowych wydatków na niepotrzebne zakupy. Ważne jest także, aby przy planowaniu zaprawy tynkarskiej uwzględnić dodatkowe czynniki, takie jak rodzaj podłoża czy technika tynkowania, które mogą wpływać na rzeczywiste zużycie zaprawy. W związku z tym, zawsze warto konsultować się z fachowcami w tej dziedzinie oraz korzystać z wytycznych producentów materiałów budowlanych.

Pytanie 39

Kiedy powinno się dokonać pomiaru robót rozbiórkowych ścian?

A. W trakcie wykonywania robót rozbiórkowych
B. Po finalizacji rozbiórki ścian
C. Przed przystąpieniem do robót rozbiórkowych
D. Po zakończeniu rozbiórki ścian oraz usunięciu gruzu
Przeprowadzenie obmiaru robót rozbiórkowych ścian przed rozpoczęciem prac jest kluczowym krokiem w procesie planowania i realizacji projektu budowlanego. Obmiar pozwala na dokładne określenie zakresu prac, co jest niezbędne do wyceny projektu oraz przygotowania odpowiednich zasobów. W praktyce, przed rozpoczęciem rozbiórki, należy zmierzyć nie tylko powierzchnię ścian, ale również uwzględnić dodatkowe czynniki, takie jak izolacje, rodzaj materiałów użytych w budowie oraz wszelkie elementy instalacyjne, które mogą wpłynąć na proces rozbiórki. Dobrą praktyką jest sporządzenie dokumentacji fotograficznej i rysunkowej stanu istniejącego, co pomoże w analizie i późniejszym rozliczeniu prac. Zgodnie z normami budowlanymi, obmiar powinien być przeprowadzany zgodnie z obowiązującymi przepisami, co zapewnia nie tylko bezpieczeństwo, ale również zgodność z projektem. Takie podejście pozwala na identyfikację potencjalnych problemów przed rozpoczęciem prac, co z kolei może prowadzić do ograniczenia kosztów i czasu realizacji projektu.

Pytanie 40

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Poręcz środkowa
B. Poręcz górna
C. Ograniczniki ochronne
D. Bortnica
Poręcz środkowa stanowi jeden z kluczowych elementów zabezpieczeń stosowanych na rusztowaniach, jednak nie jest częścią trzyczęściowego zabezpieczenia bocznego. Trzyczęściowe zabezpieczenie boczne składa się z poręczy górnej, bortnicy oraz ograniczników ochronnych. Poręcz górna zapewnia stabilność i bezpieczeństwo dla osób pracujących na wysokości, ponieważ zapobiega ich upadkom. Bortnica, z kolei, jest elementem zamykającym przestrzeń roboczą, co dodatkowo zwiększa bezpieczeństwo. Ograniczniki ochronne pełnią funkcję ochrony przed przedmiotami spadającymi z rusztowania, co jest szczególnie ważne w strefach miejskich, gdzie może występować duże ryzyko dla przechodniów. Znajomość tych elementów oraz ich właściwe zastosowanie są kluczowe dla zapewnienia bezpieczeństwa na placach budowy i w okolicach rusztowań zgodnie z normami, takimi jak PN-EN 12811, które regulują projektowanie i wykorzystanie rusztowań.