Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 12:19
  • Data zakończenia: 7 kwietnia 2025 12:53

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Która z podanych cech nie charakteryzuje się właściwościami idealnego wzmacniacza operacyjnego?

A. Nieskończenie wielka rezystancja wyjściowa
B. Nieskończenie wielkie różnicowe wzmocnienie napięciowe
C. Nieskończenie wielka rezystancja wejściowa
D. Nieskończenie szeroki zakres przenoszenia
Wzmacniacze operacyjne są kluczowym elementem w elektronice analogowej, a znajomość ich właściwości jest niezbędna do ich prawidłowego zastosowania. Jedną z fundamentalnych cech idealnego wzmacniacza operacyjnego jest nieskończenie duża rezystancja wejściowa. Tego rodzaju rezystancja pozwala na minimalizację wpływu wzmacniacza na sygnał wejściowy, co jest istotne w aplikacjach, gdzie istotne są bardzo małe sygnały. W praktyce, oznacza to, że idealny wzmacniacz operacyjny nie pobiera praktycznie żadnego prądu z sygnału wejściowego, co jest pożądane w pomiarach i amplifikacji sygnałów. Szerokie pasmo przenoszenia jest również kluczowym parametrem, który pozwala na efektywne wzmacnianie sygnałów o różnych częstotliwościach, co jest niezbędne w systemach komunikacyjnych i obróbczych. Kolejnym ważnym aspektem jest nieskończenie duże różnicowe wzmocnienie napięciowe, które pozwala na bardzo dużą amplifikację różnicy napięć na wejściach, co jest istotne w zastosowaniach takich jak wzmacniacze instrumentacyjne. Wybierając wzmacniacz operacyjny do konkretnego zastosowania, należy zawsze uwzględnić te parametry, aby zapewnić optymalne działanie systemu. Wstępne założenia dotyczące parametrów idealnych są podstawą do analizy rzeczywistych wzmacniaczy operacyjnych, które zawsze będą miały ograniczenia techniczne i różnice w charakterystyce, ale ich projektowanie powinno dążyć do zbliżenia się do ideału.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Która z wymienionych liczb nie stanowi reprezentacji w systemie BCD8421?

A. 01100110
B. 00000000
C. 10011001
D. 11111111
Liczba 11111111 nie pasuje do kodu BCD8421. Mówiąc prościej, ten kod służy do zapisywania cyfr od 0 do 9 w systemie binarnym, a każda cyfra zajmuje 4 bity. W BCD8421 każda cyfra dziesiętna ma swój własny zapis binarny: 0000 dla 0, 0001 dla 1, 0010 dla 2 itd. A tu mamy osiem jedynek, co jest problematyczne, bo nie ma takiej cyfry dziesiętnej, która mogłaby się tak zapisać. BCD8421 jest szczególnie przydatny w różnych urządzeniach pomiarowych, gdzie ważne jest, żeby dane były dokładnie odwzorowane i łatwe do przetworzenia. Korzystanie z tego kodu pozwala uniknąć błędów w zaokrągleniach, które mogłyby się pojawić w standardowym zapisie binarnym. Tak więc, znajomość BCD8421 i jego prawidłowe użycie naprawdę ułatwia późniejszą pracę z danymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jak wygląda poziom sygnału w.cz. po przejściu przez tłumik o tłumieniu -20 dB, jeżeli poziom sygnału na wejściu wynosi 40 dBmV?

A. 60 dB
B. 20 dBmV
C. 70 dBmV
D. 20 dB
Poprawna odpowiedź to 20 dBmV, co wynika z zastosowania wzoru na poziom sygnału po przejściu przez tłumik. Tłumik o tłumieniu -20 dB oznacza, że sygnał zostaje osłabiony o 20 dB. Wzór do obliczeń wygląda następująco: Poziom sygnału wyjściowego (dBmV) = Poziom sygnału wejściowego (dBmV) - Tłumienie (dB). Zatem, 40 dBmV - 20 dB = 20 dBmV. Tego rodzaju obliczenia są powszechnie stosowane w dziedzinie telekomunikacji, gdzie precyzyjne zarządzanie poziomami sygnałów jest kluczowe dla zapewnienia wysokiej jakości transmisji. W praktyce, znajomość wartości tłumienia jest niezbędna do projektowania systemów antenowych oraz optymalizacji sygnałów w sieciach kablowych i bezprzewodowych. Warto również pamiętać, że w telekomunikacji standardem jest dążenie do minimalizacji strat sygnału, co podkreśla znaczenie wysokiej jakości komponentów oraz staranności w ich instalacji.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie z podanych rodzajów sprzężeń między poszczególnymi stopniami wzmacniacza wielostopniowego gwarantuje separację galwaniczną?

A. Sprzężenia pojemnościowe
B. Sprzężenia transformatorowe
C. Sprzężenia bezpośrednie
D. Sprzężenia rezystancyjne
Sprzężenie transformatorowe w wzmacniaczach wielostopniowych to naprawdę ważna sprawa. Daje to możliwość, żeby każdy etap wzmacniacza był oddzielony galwanicznie. A to z kolei pomaga w eliminacji zakłóceń oraz chroni przed niechcianymi różnicami potencjałów. Transformator działa na zasadzie indukcji elektromagnetycznej, co znaczy, że sygnały mogą być przenoszone, a obwody elektryczne pozostają oddzielone. Wzmacniacze audio często korzystają z tego rozwiązania, bo taka separacja pozwala na lepszą jakość dźwięku i zmniejsza szumy. Z mojej perspektywy, w systemach audiofilskich, sprzężenie transformatorowe to najlepszy wybór, ponieważ minimalizuje zniekształcenia. Od strony norm przemysłowych, to podejście jest zgodne z praktykami, które regulują bezpieczeństwo i stabilność systemów elektronicznych, co czyni je bardzo istotnym w projektowaniu nowoczesnych urządzeń elektronicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Zawarta w programie sekwencja powoduje zmianę stanu diody LED co

A. 10 s
B. 0,01 s
C. 1 s
D. 0,1 s
Odpowiedź "1 s" jest prawidłowa, ponieważ zmiana stanu diody LED co 1 sekundę jest typowym czasem, który umożliwia łatwe zauważenie zachowania diody przez obserwatora. W kontekście programowania mikrokontrolerów, takim jak Arduino, wykorzystuje się funkcje czasowe, aby precyzyjnie kontrolować czas, w którym dioda jest włączona lub wyłączona. Przykład zastosowania takiego cyklu można zobaczyć w prostych projektach, gdzie dioda LED jest używana jako wskaźnik stanu urządzenia lub jako sygnalizator. Zgodnie z dobrymi praktykami, czas ten powinien być na tyle długi, aby użytkownik miał możliwość zauważenia zmiany stanu, ale jednocześnie nie za długi, aby nie wpływać na responsywność urządzenia. Dodatkowo, w przypadku komunikacji w systemach IOT, częstotliwość zmiany stanu diody może wskazywać na różne stany operacyjne, co jest istotne dla użytkowników, którzy muszą szybko ocenić status systemu. Warto również zauważyć, że zbyt krótki czas zmiany stanu, na przykład 0,1 s lub 0,01 s, może prowadzić do efektu migotania, co jest niewygodne dla oka ludzkiego oraz nieefektywne w kontekście zarządzania energią.

Pytanie 19

Stabilność systemu automatycznej regulacji sprawia, że gdy układ zostaje wyprowadzony ze stanu równowagi,

A. sam wraca do tego stanu.
B. nie wraca do tego stanu, oscyluje.
C. wyłącza się automatycznie.
D. resetuje się.
W przypadku nieprawidłowych odpowiedzi można zauważyć pewne powszechne błędy myślowe, które prowadzą do błędnych wniosków o stabilności układów automatycznej regulacji. Przykładowo, sugestia, że układ "resetuje się", wskazuje na niepełne zrozumienie mechanizmów regulacyjnych. Takie podejście może sugerować, że układ przestaje działać w momencie zakłócenia, co jest sprzeczne z ideą ciągłości działania systemu automatyki. Z kolei stwierdzenie, że układ "wyłącza się samoczynnie", implikuje, że w przypadku zakłócenia nie podejmuje on żadnych działań kompensacyjnych, co jest charakterystyczne dla systemów niestabilnych lub awaryjnych, a nie zautomatyzowanych regulacji. Oscylacje, o których mowa w ostatniej nieprawidłowej odpowiedzi, mogą występować w systemach niestabilnych, ale nie są one pożądanym efektem w praktyce inżynieryjnej. W rzeczywistości, dobrym przykładem są systemy, w których odpowiedź na zakłócenie prowadzi do oscylacji, co może wskazywać na niewłaściwe dobranie parametrów regulatora. Zrozumienie tych zasad jest kluczowe w kontekście projektowania układów regulacji, które powinny być zgodne z najlepszymi praktykami w branży, takimi jak dostosowanie parametrów do specyfikacji systemu oraz realnych warunków eksploatacyjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Podczas oceny instalacji cyfrowego domofonu, po włączeniu zasilania stwierdzono, że w słuchawce słychać piski, a rozmowa jest ledwie słyszalna. Jak można usunąć tę usterkę?

A. wyregulować poziom głośności w centrali
B. wyczyścić przyciski w kasecie rozmów
C. podwyższyć napięcie zasilania elektrozaczepu
D. obniżyć poziom głośności dzwonka w unifonie
Regulacja poziomu głośności w centrali jest kluczowym krokiem w diagnozowaniu problemów z jakością dźwięku w systemach domofonowych. W przypadku, gdy w słuchawce domofonu słychać piski lub dźwięk jest słabo słyszalny, jedno z najczęstszych źródeł problemów może wynikać z niewłaściwych ustawień głośności. W centrach domofonowych zazwyczaj znajdują się potencjometry, które pozwalają na precyzyjne dostosowanie głośności zarówno dla dźwięku wywołania, jak i dla rozmowy. Odpowiednia regulacja tych ustawień może znacząco poprawić jakość dźwięku oraz zminimalizować zakłócenia. Warto również zapoznać się z dokumentacją producenta, która często zawiera szczegółowe instrukcje dotyczące optymalnego ustawienia poziomów głośności. Praktyka pokazuje, że niezależnie od typu systemu domofonowego, regularne sprawdzanie i kalibracja tych ustawień są istotnym elementem utrzymania prawidłowego funkcjonowania urządzeń.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m

A. zalania.
B. ruchu.
C. akustycznej.
D. czadu.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Proces polegający na wydobyciu z sygnału zmodulowanego wysokiej częstotliwości sygnału użytecznego o niskiej częstotliwości, to

A. filtrowaniu
B. demodulacji
C. prostownie
D. modulacji
Demodulacja to naprawdę ważny proces w komunikacji. W skrócie, chodzi o to, że wyciągamy sygnał informacyjny z nośnika, który ma wysoką częstotliwość. Dzięki temu możemy później przetwarzać te informacje. Właściwie to bez demodulacji nie byłoby wielu technologii, które znamy, jak na przykład telefonia komórkowa czy systemy satelitarne. Kiedy mamy transmisję FM, demodulator bada zmiany częstotliwości sygnału, żeby odbudować oryginalny dźwięk. Zresztą, demodulacja jest używana w odbiornikach radiowych i telewizyjnych, gdzie pozwala nam odebrać to, co jest przesyłane. Nawet standardy, takie jak Wi-Fi, polegają na tych technikach, żeby skutecznie przesyłać dane. Dlatego, rozumienie demodulacji jest super ważne dla osób zajmujących się telekomunikacją i przetwarzaniem sygnałów.

Pytanie 36

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 5,00 Ω
B. 0,05 Ω
C. 50,0 Ω
D. 0,50 Ω
Analizując błędne odpowiedzi, warto zwrócić uwagę na koncepcje związane z obliczeniami rezystancji wewnętrznej. Wiele osób może pomylić pojęcie napięcia z obciążeniem i jego wpływem na rezystancję, co prowadzi do oszacowania znacznie wyższych wartości, takich jak 5,00 Ω, 50,0 Ω, czy zbyt niskich, jak 0,05 Ω. Rezystancja wewnętrzna baterii jest miarą, jaką opór stawia bateria podczas przepływu prądu. W przypadku znacznej rezystancji, jak w odpowiedziach 5,00 Ω i 50,0 Ω, wskazują one na poważne problemy z akumulatorem, co mogłoby sugerować starzenie się ogniwa bądź jego uszkodzenie. W rzeczywistości dobry akumulator powinien mieć niską rezystancję wewnętrzną, co potwierdza obliczenie 0,5 Ω. Z kolei niska rezystancja wewnętrzna pozwala na większą wydajność energetyczną, co jest istotne w kontekście zasilania urządzeń wymagających wysokich prądów. Odpowiedź 0,05 Ω może wynikać z błędnego przyjęcia zbyt niskiego napięcia, nieadekwatnego do rzeczywiście mierzonych wartości, co pokazuje, jak istotna jest umiejętność analizy i interpretacji danych pomiarowych. Ponadto przy obliczaniu rezystancji wewnętrznej należy pamiętać, by dokładnie odnotować wartości napięcia i prądu oraz zastosować prawidłowe jednostki, co jest kluczowe w każdym pomiarze elektrycznym.

Pytanie 37

Jakie narzędzie powinno zostać użyte do podłączenia czujnika (zasilanie +12 V oraz masa, styki alarmowe i sabotażowe w konfiguracji NC) do centrali alarmowej?

A. Lutownica
B. Zaciskarka
C. Odsysacz
D. Wkrętak
Wkrętak jest narzędziem niezbędnym do podłączenia czujki do centrali alarmowej, szczególnie gdy chodzi o zapewnienie solidnego i stabilnego połączenia elektrycznego. W przypadku czujek, zasilanie oraz styki alarmowe są często zabezpieczone śrubami, które należy odkręcić lub dokręcić. Użycie wkrętaka pozwala na precyzyjne manipulowanie tymi elementami, co jest kluczowe dla prawidłowego działania systemu alarmowego. Zastosowanie wkrętaka w tym kontekście jest zgodne z najlepszymi praktykami branżowymi, które zalecają nie tylko dbałość o poprawność połączeń, ale także ich bezpieczeństwo. Warto również podkreślić, że prawidłowe połączenie czujki z centralą alarmową ma kluczowe znaczenie dla jej funkcjonowania. Nieprawidłowe połączenia mogą prowadzić do fałszywych alarmów bądź całkowitego braku reakcji systemu na zdarzenia. Dlatego wybór odpowiednich narzędzi, takich jak wkrętak, jest fundamentalny w pracy z systemami zabezpieczeń, w których niezawodność i dokładność są kluczowe. Dobrze przeprowadzone połączenia są podstawą dla stabilności i wydajności całego systemu alarmowego.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Parametr Vpp, który znajduje się w dokumentacji technicznej wzmacniacza mocy o niskiej częstotliwości, wskazuje na wartość

A. średnią sygnału
B. między szczytową sygnału
C. skuteczną sygnału
D. maksymalną sygnału
Parametr Vpp, czyli napięcie między szczytowe, definiuje maksymalne napięcie sygnału, jakie wzmacniacz mocy może wygenerować pomiędzy dwoma szczytami. Sygnał ten jest kluczowy w analizie wydajności wzmacniaczy audio, ponieważ pozwala na ocenę ich zdolności do reprodukcji dynamicznych zakresów dźwięku. Przykładem zastosowania tego parametru jest projektowanie systemów audio, gdzie potrzebne jest określenie, czy wzmacniacz będzie w stanie obsłużyć sygnały o dużych amplitudach bez zniekształceń. W kontekście standardów branżowych, Vpp jest często stosowany w dokumentacji technicznej, aby umożliwić inżynierom porównywanie różnych urządzeń. Dobrym przykładem może być sytuacja, w której inżynier projektujący system nagłośnienia wymaga wzmacniacza o określonym Vpp, aby zapewnić odpowiednią moc wyjściową na poziomie, który zaspokoi wymagania konkretnego zastosowania, na przykład w sali koncertowej.