Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 14:22
  • Data zakończenia: 14 maja 2025 14:31

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Amperomierza tablicowego
B. Multimetra analogowego
C. Amperomierza cęgowego
D. Multimetra uniwersalnego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 4

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. T
B. I
C. R
D. Q
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 5

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa

A. silnik hydrauliczny.
B. kompresor olejowy.
C. silnik elektryczny.
D. pompę hydrauliczną.
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Osoba pracująca przy monitorze komputerowym ma prawo do

A. 10-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
B. skrócenia o 5 minut czasu pracy za każdą godzinę pracy
C. zmniejszenia o 10 minut czasu pracy za każdą godzinę pracy
D. 5-minutowej przerwy po każdej godzinie pracy, wliczanej do czasu pracy
Dobra robota! Wskazanie, że powinna być 5-minutowa przerwa po każdej godzinie pracy, to zgodne z tym, co mówią przepisy. Takie przerwy są ważne, bo pomagają zadbać o zdrowie, zwłaszcza kiedy się spędza tyle czasu przed komputerem. Regularne oderwanie wzroku od ekranu to dobry pomysł, bo to może zmniejszyć zmęczenie oczu i poprawić krążenie. Z mojego doświadczenia takie przerwy naprawdę pomagają w pracy, bo pozwalają się zrelaksować i lepiej się skupić. Wiele firm zauważa korzyści płynące z promowania zdrowych nawyków, więc organizują szkolenia na temat ergonomii i przypominają pracownikom o przerwach. Warto to mieć na uwadze, bo to może się przełożyć na lepsze samopoczucie i satysfakcję z pracy.

Pytanie 9

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 10,00 A
B. 5,77 A
C. 7,70 A
D. 13,33 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 3,001 bar
C. 4,001 bar
D. 5,001 bar
Czasami przy przeliczaniu ciśnienia można się pogubić i nie zwrócić uwagi na to, że jednostki są różne. Na przykład, gdy próbujesz przeliczyć 1500 mmHg na bary, możesz po prostu spojrzeć na liczby i myśleć, że coś się zgadza. A to wcale nie jest takie jasne. Musisz pamiętać, że milimetry rtęci i paskale to dwa różne rodzaje jednostek. Bez odpowiedniego przeliczenia, możesz łatwo popełnić błąd. Wiele osób myśli, że same mmHg wystarczą, żeby od razu przejść na bary, ale to nie tak działa. Każda jednostka ma swoje zastosowanie i nie można ich porównywać bez wcześniejszej konwersji. Spoko, że są standardy branżowe, które mówią o tych sprawach, ale chodzi o to, żeby wiedzieć, co robić przed przeliczeniami, żeby nie było nieporozumień w przyszłości.

Pytanie 16

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. zmniejszenia reaktancji uzwojeń silnika
C. wzrostu obrotów silnika
D. spadku obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. imbusowego
B. nasadowego
C. płaskiego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (255)10
B. (254)10
C. (231)10
D. (230)10
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej ściśliwości oleju
B. wysokiego ciśnienia oleju
C. niskiej temperatury oleju
D. wysokiej temperatury oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Weryfikacja sumy kontrolnej
B. Cykliczna redundancja
C. Pomiar napięcia sygnału przesyłanego
D. Sprawdzanie parzystości
Wszystkie metody wymienione w pytaniu, z wyjątkiem pomiaru poziomu napięcia, mają zastosowanie w detekcji błędów transmisji danych. Kontrola parzystości to jedna z najprostszych technik, gdzie do każdego bajtu danych dodawany jest dodatkowy bit, aby wskazać, czy liczba bitów o wartości 1 jest parzysta czy nieparzysta. Metoda ta może wykrywać błędy pojedynczego bitu, jednak nie jest w stanie zidentyfikować błędów wielu bitów, co stanowi jej główną słabość. Z kolei analiza sumy kontrolnej, opierająca się na zliczaniu wartości bajtów, pozwala na wykrycie błędów w transmisji, ale również nie jest w stanie naprawić uszkodzonych danych. Cykliczna kontrola nadmiarowości (CRC) to bardziej złożona metoda, która wykorzystuje algorytmy matematyczne do generowania kodu kontrolnego, co znacznie zwiększa zdolność detekcji błędów w porównaniu do poprzednich metod. Krytycznym błędem w myśleniu jest założenie, że wszystkie wymienione metody są na równi skuteczne w detekcji błędów. W rzeczywistości skuteczność każdej z nich zależy od kontekstu użycia oraz specyfiki przesyłanych danych. Pomiar poziomu napięcia nie jest metodą detekcji błędów, ponieważ koncentruje się na analizie fizycznych właściwości sygnału, a nie na weryfikacji spójności czy integralności danych. Dlatego ważne jest zrozumienie właściwego zastosowania każdej z tych metod w kontekście transmisji danych.

Pytanie 29

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki różnicowoprądowe
B. dławiki blokujące
C. wyłączniki montażowe
D. izolatory długiej osi
Wyłączniki różnicowoprądowe, znane także jako RCD (Residual Current Devices), odgrywają kluczową rolę w systemach niskiego napięcia, zwłaszcza w układach TN. Ich głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom, które mogą być spowodowane upływem prądu do ziemi. Działają na zasadzie wykrywania różnicy prądów między przewodami fazowymi a neutralnym. W przypadku wykrycia takiej różnicy, wyłącznik natychmiast odłącza zasilanie, co może uratować życie w sytuacji zagrożenia. W praktyce, wyłączniki różnicowoprądowe są stosowane w domach, biurach i obiektach przemysłowych, gdzie istnieje ryzyko kontaktu z wodą lub innymi czynnikami, które mogą zwiększyć ryzyko porażenia prądem. Standardy takie jak PN-EN 61008 i PN-EN 61009 określają wymagania dotyczące tych urządzeń, co sprawia, że ich stosowanie jest nie tylko zalecane, ale często obowiązkowe w nowych instalacjach elektrycznych. Ponadto, regularne testowanie wyłączników różnicowoprądowych jest niezbędne dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 30

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Wiele osób myli funkcję filtrów dolnoprzepustowych, co prowadzi do błędnych wniosków. W przypadku pierwszej odpowiedzi, wskazanie, że filtr dolnoprzepustowy przepuszcza sygnały o częstotliwości większej od granicznej jest sprzeczne z definicją jego działania. Filtr dolnoprzepustowy ma na celu eliminację tych wyższych częstotliwości, a nie ich przepuszczanie. W praktyce, może to prowadzić do poważnych problemów w projektowaniu układów elektronicznych, gdzie konieczne jest zachowanie jakości sygnału. Z kolei odpowiedź mówiąca o wzmacnianiu sygnałów o częstotliwości mniejszej od granicznej jest również myląca. Filtry dolnoprzepustowe nie wzmacniają sygnałów, lecz je tłumią lub przepuszczają w zależności od ich częstotliwości. W realnych zastosowaniach, takie nieporozumienia mogą prowadzić do błędnych decyzji w konstrukcji układów, które nie będą działały zgodnie z zamierzeniem. Zrozumienie pracy filtrów dolnoprzepustowych jest kluczowe w inżynierii sygnałowej, gdzie efektywność filtracji wpływa na jakość końcowego sygnału oraz zgodność z normami branżowymi. Typowe błędy myślowe, takie jak mylenie funkcji wzmacniania z przepuszczaniem, mogą prowadzić do poważnych usterek w projektach elektronicznych, a także do obniżenia jakości usług w systemach komunikacyjnych.

Pytanie 31

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie miękkie
B. Lutowanie twarde
C. Sklejanie
D. Zgrzewanie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
D. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. reduktor ciśnienia
B. filtr powietrza
C. sprężarka
D. smarownica
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.

Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły