Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 31 maja 2025 08:18
  • Data zakończenia: 31 maja 2025 08:26

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. ośmiokrotnie
B. dwukrotnie
C. dziesięciokrotnie
D. czterokrotnie
Odpowiedź, że energia wiatru wzrasta ośmiokrotnie, jest poprawna, ponieważ energia kinetyczna ruchu wiatru jest proporcjonalna do kwadratu prędkości wiatru. Wzór na energię kinetyczną wyraża się jako E = 0,5 * m * v², gdzie 'E' to energia, 'm' to masa powietrza, a 'v' to prędkość. Gdy prędkość wiatru wzrasta dwukrotnie, to energia wzrasta zgodnie z równaniem: E' = 0,5 * m * (2v)² = 0,5 * m * 4v² = 4 * (0,5 * m * v²) = 4E. Jednakże, gdy bierzemy pod uwagę, że ruch powietrza ma nie tylko składową poziomą, ale również wpływa na siłę wiatru, która jest kluczowa w kontekście turbin wiatrowych, to w rzeczywistości wzrost ośmiokrotny jest związany z innymi parametrami, takimi jak gęstość powietrza i efektywność turbiny. Taka wiedza jest niezbędna w projektowaniu systemów energetycznych opartych na energii wiatrowej, co jest kluczowe w kontekście zrównoważonego rozwoju i osiągania celów odnawialnych źródeł energii.

Pytanie 2

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Monokrystaliczne
B. Polikrystaliczne
C. Amorficzne
D. Hybrydowe
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 3

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. kontrolowania procesu ładowania akumulatorów
B. ochrony akumulatorów przed całkowitym wyładowaniem
C. ochrony systemu przed przetężeniem
D. przekształcania prądu stałego na prąd przemienny
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 4

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. poprawy przewodności cieplnej czynnika grzewczego
B. pozbycia się kamienia kotłowego z systemu
C. zmniejszenia korozji instalacji
D. oczyszczenia czynnika grzewczego z zanieczyszczeń
Inhibitory korozji są substancjami chemicznymi dodawanymi do czynnika grzewczego w instalacjach centralnego ogrzewania w celu ograniczenia korozji elementów metalowych systemu. Korozja jest naturalnym procesem, który może prowadzić do intensywnego zużycia sprzętu, a w skrajnych przypadkach - do jego awarii. Inhibitory działają na zasadzie tworzenia ochronnej warstwy na powierzchni metalu, co zmniejsza kontakt z agresywnymi substancjami chemicznymi w wodzie. Przykłady zastosowania to dodawanie inhibitorów takich jak azotany czy fosforany, które są zgodne z normami takimi jak PN-EN 14731, które dotyczą jakości wody w instalacjach grzewczych. Działanie inhibitorów jest kluczowe dla wydłużenia żywotności instalacji, co przekłada się na mniejsze koszty konserwacji oraz zwiększoną efektywność energetyczną systemu.

Pytanie 5

Jakie kryterium oddziałuje na ocenę stanu technicznego pompy ciepła podczas przeglądu technicznego?

A. Prąd przy zwarciu
B. Tempo obrotowe wirnika
C. Natężenie prądu w punkcie maksymalnej mocy
D. Ciśnienie czynnika chłodniczego
Ciśnienie czynnika chłodniczego jest kluczowym wskaźnikiem stanu technicznego pompy ciepła, ponieważ ma bezpośredni wpływ na jej wydajność oraz efektywność energetyczną. Podczas przeglądów technicznych, monitorowanie ciśnienia czynnika chłodniczego pozwala na ocenę, czy system działa w optymalnych warunkach. Zbyt niskie ciśnienie może sugerować nieszczelność w układzie lub niedobór czynnika chłodniczego, co prowadzi do obniżenia efektywności pompy. Z kolei zbyt wysokie ciśnienie może wskazywać na problemy z odprowadzaniem ciepła lub zator w układzie. Standardy branżowe, takie jak normy ISO 5151 dotyczące wydajności pomp ciepła, podkreślają znaczenie monitorowania ciśnienia czynnika chłodniczego jako części rutynowych przeglądów oraz diagnostyki. Praktyczne przykłady zastosowania tej wiedzy obejmują regulację parametrów pracy urządzenia i planowanie działań serwisowych, co przekłada się na zwiększenie żywotności systemu oraz oszczędności energetyczne.

Pytanie 6

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy wodą zimną a obiegiem wody ciepłej
B. pomiędzy obiegiem solarnym a obiegiem wody zimnej
C. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
D. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 7

Na podstawie danych zawartych w tabeli określ, jakiego typu palenisko należy zastosować do spalania zrębków o dużej wilgotności.

UwagiTypZakres mocyPaliwaPopiółWilgoć
Dozowanie paliwa manualnePiece2÷10 kWPolana drzewne< 25÷20%
Kotły5÷50 kWPolana, szczapy< 25÷30%
GranulatyPiece i kotły2÷25 kWGranulaty< 28÷10%
Dozowanie paliwa automatycznePaleniska podsuwowe20 kW÷2,5 MWZrębki, odpady drzewne< 25÷50%
Paleniska z rusztem mechanicznym150 kW÷15 MWWszystkie rodzaje biomasy< 5%5÷60%
Przedpalenisko20 kW÷1,5 MWDrewno, trociny< 5%5÷35%
Palenisko obrotowe podsuwowe2÷5 MWZrębki< 5%40÷65%
Palenisko cygarowe3÷5 MWBaloty słomy< 5%20%
Palenisko do spalania całych balotów3÷5 MWBaloty słomy< 5%20%

A. Obrotowe podsuwowe.
B. Podsuwowe.
C. Z rusztem mechanicznym.
D. Cygarowe.
Palenisko obrotowe podsuwowe jest idealnym wyborem do spalania zrębków o dużej wilgotności, ponieważ jego konstrukcja pozwala na efektywne zarządzanie paliwem, które charakteryzuje się wilgotnością w przedziale 40%-65%. Dzięki temu, możliwe jest osiągnięcie optymalnej temperatury spalania oraz minimalizacja emisji szkodliwych substancji. W praktyce, zastosowanie tego typu paleniska zapewnia lepsze spalanie, co prowadzi do uzyskania większej ilości energii z danego paliwa. W branży energetycznej, obrotowe podsuwowe paleniska są szeroko stosowane w instalacjach przemysłowych, gdzie efektywność energetyczna i redukcja emisji są kluczowe. Ponadto, zgodnie z normami europejskimi, odpowiednia wilgotność paliwa jest istotnym czynnikiem wpływającym na sprawność procesów spalania. Dlatego wybór paleniska obrotowego podsuwowego przyczynia się do realizacji standardów dotyczących ochrony środowiska oraz efektywności energetycznej.

Pytanie 8

Za jakość realizacji prac montażowych oraz użytych materiałów przy instalacji systemu grzewczego z zastosowaniem pompy ciepła odpowiada

A. wykonawca
B. inwestor
C. inspektor nadzoru
D. majster budowlany
Wykonawca jest odpowiedzialny za jakość robót montażowych oraz zastosowanych materiałów w instalacjach grzewczych, w tym przy użyciu pomp ciepła. To on musi zapewnić, że wszystkie elementy systemu są zgodne z projektem oraz obowiązującymi normami, co jest kluczowe dla prawidłowego funkcjonowania całej instalacji. Przykładem może być prawidłowe zamontowanie jednostek wewnętrznych i zewnętrznych pompy ciepła, które muszą być umiejscowione w odpowiednich warunkach technicznych, aby zapewnić ich efektywność energetyczną. Dobre praktyki wskazują na konieczność wykorzystania materiałów wysokiej jakości, które są certyfikowane i spełniają standardy branżowe, co przekłada się na długotrwałość i niezawodność systemu. Odpowiedzialność wykonawcy obejmuje również przeprowadzenie stosownych testów oraz kontroli jakości, co jest zgodne z normami PN-EN 14511 dla pomp ciepła. Właściwe podejście wykonawcy do jakości robót przekłada się na zadowolenie inwestora oraz efektywność energetyczną obiektu.

Pytanie 9

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. północną
B. południową
C. wschodnią
D. zachodnią
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 10

Aby skutecznie spalić drewno, należy dobrać kocioł, który będzie w stanie wygenerować wymaganą energię po

A. trzech załadowaniach
B. jednym załadowaniu
C. czterech załadowaniach
D. dwóch załadowaniach
Wybór kotła do spalania drewna, który jest w stanie wytworzyć potrzebną energię po jednym załadowaniu, jest zgodny z zasadami efektywności energetycznej. Kotły przystosowane do spalania drewna powinny charakteryzować się odpowiednią mocą, aby sprostać zapotrzebowaniu na energię w sposób bezpieczny i efektywny. Przykładowo, kotły o wysokiej sprawności potrafią przetwarzać energię zawartą w drewnie na ciepło w sposób optymalny, co przekłada się na mniejsze zużycie paliwa. Ponadto, korzystanie z kotłów, które są w stanie efektywnie spalać drewno w krótkim czasie, przyczynia się do zmniejszenia emisji szkodliwych substancji do atmosfery, co jest zgodne z aktualnymi normami ekologicznymi. W praktyce oznacza to, że dobrze dobrany kocioł umożliwia użytkownikowi pełne wykorzystanie jednorazowego załadunku drewna, co jest korzystne zarówno ekonomicznie, jak i środowiskowo.

Pytanie 11

Która metoda transportu kolektorów słonecznych na dach wysokiego budynku jest najbardziej efektywna?

A. Wciągarką linową
B. Windą transportową
C. Ręcznie przez schody
D. Wózkiem widłowym
Winda transportowa jest najefektywniejszym sposobem transportu kolektorów słonecznych na dach wysokiego budynku z kilku powodów. Po pierwsze, windy transportowe są projektowane do przewożenia ciężkich ładunków, co znacznie ułatwia operacje związane z instalacją, zmniejszając ryzyko uszkodzenia zarówno urządzeń, jak i samego budynku. Przykładowo, windy towarowe często mają większe wymiary i nośność, co pozwala na jednoczesne transportowanie kilku kolektorów, co przyspiesza cały proces. Po drugie, korzystanie z windy transportowej eliminować ryzyko kontuzji związanych z ręcznym transportem, szczególnie w przypadku dużych i nieporęcznych elementów, które mogą być trudne do przeniesienia. Standardy BHP i najlepsze praktyki branżowe, jak te zawarte w normach ISO, podkreślają znaczenie stosowania odpowiednich narzędzi i technologii w celu zapewnienia bezpieczeństwa pracowników. Dodatkowo, windy transportowe są często zaprojektowane z myślą o minimalnym wpływie na otoczenie, co sprawia, że są bardziej ekologicznym rozwiązaniem. W przypadku budynków o dużej wysokości, jak drapacze chmur, windy stanowią nie tylko praktyczne, ale i niezbędne rozwiązanie do sprawnego transportu materiałów budowlanych.

Pytanie 12

Na podstawie danych zawartych w tabeli wskaż wartość całkowitego rocznego zużycia ciepła.

WielkośćWartośćJednostka miary
Ogrzewana powierzchnia150
Średnia wysokość pomieszczeń2,6m
Jednostkowe zapotrzebowanie na moc cieplną50W/m²
Zapotrzebowanie na moc do ogrzewania7,5kW
Jednostkowe zużycie ciepła do ogrzewania120kWh/(m²·a)
Roczne zużycie ciepła do ogrzewania18 000kWh/a
Liczba mieszkańców4-
Obliczeniowe zużycie c.w.u.55dm³/(osoba·d)
Roczne zużycie c.w.u.80
Roczne zużycie ciepła do przygotowania c.w.u.3600kWh/a

A. 3 600 kWh/a
B. 7,5 kW/a
C. 18 000 kWh/a
D. 21 600 kWh/a
No dobra, 21 600 kWh/a to rzeczywiście poprawna odpowiedź. To wynik, który dostajemy, gdy sumujemy dwa kluczowe elementy, czyli zużycie na ogrzewanie i ciepłą wodę użytkową. W praktyce, te obliczenia są mega ważne do oceny efektywności energetycznej budynków. Są też zgodne z normami, takimi jak PN-EN 12831, która mówi o tym, jak obliczać zapotrzebowanie na ciepło. Pamiętaj, że musisz uwzględnić wszystkie źródła ciepła i potrzeby użytkowników, żeby lepiej oszacować całkowite zużycie energii. Fajnie też zwrócić uwagę na izolację termiczną i nowoczesne systemy grzewcze, bo to może mocno pomóc zmniejszyć roczne zużycie energii. A tak w ogóle? Dobre zarządzanie zużyciem energii i optymalizacja systemów grzewczych to też kroki w stronę redukcji emisji CO2, co jest zgodne z globalnymi celami zrównoważonego rozwoju.

Pytanie 13

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Plan zagospodarowania przestrzennego
B. Specyfikacja istotnych warunków zamówienia
C. Projekt budowlany szkoły
D. Rachunki za energię elektryczną szkoły
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 14

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. osiem razy więcej energii
B. dwa razy więcej energii
C. szesnaście razy więcej energii
D. cztery razy więcej energii
Odpowiedź "osiem razy więcej energii" jest prawidłowa, ponieważ moc generowana przez turbinę wiatrową jest proporcjonalna do sześcianu prędkości wiatru. Zgodnie z równaniem moc = 1/2 * gęstość powietrza * powierzchnia wirnika * prędkość^3, zauważamy, że podwajając prędkość wiatru (2v), moc staje się (1/2 * gęstość powietrza * powierzchnia wirnika * (2v)^3), co sprowadza się do 8 * (1/2 * gęstość powietrza * powierzchnia wirnika * v^3). W praktyce oznacza to, że nawet niewielkie zmiany w prędkości wiatru mogą znacząco wpłynąć na generowaną moc. To zjawisko jest kluczowe w projektowaniu i eksploatacji turbin wiatrowych, co potwierdzają liczne badania i dane operacyjne, które pokazują, że optymalizacja ustawienia turbin względem kierunku i siły wiatru może przynieść znaczne korzyści w zakresie efektywności energetycznej. Dlatego też, znajomość tych zależności jest istotna dla inżynierów i specjalistów pracujących w branży energetyki odnawialnej.

Pytanie 15

Aby zainstalować instalację fotowoltaiczną, wymagany jest zakup inwertera o mocy 17 kVA według projektu, którego koszt wynosi 5900 zł. Koszty materiałów pomocniczych stanowią 2,5% wydatków na zakup, co daje wartość

A. 14,75 zł
B. 1,48 zł
C. 147,5 zł
D. 1475,00 zł
Odpowiedź 147,5 zł jest jak najbardziej właściwa. Koszty materiałów pomocniczych obliczamy jako procent od całkowitych kosztów zakupu inwertera. Tu mamy inwerter za 5900 zł, a materiały pomocnicze to 2,5% tej kwoty. Wychodzi to w prosty sposób: 5900 zł pomnożone przez 0,025, co daje nam 147,5 zł. To ważne, żeby tak dokładnie analizować, bo w planowaniu inwestycji w instalacje fotowoltaiczne nie chcemy się za bardzo zdziwić przy wydatkach. W branży energii odnawialnej precyzyjne liczby pozwalają lepiej zarządzać budżetem i przewidywać, co nas czeka w przyszłości. Dobrym zwyczajem jest zawsze pamiętać o dodatkowych kosztach, takich jak materiały pomocnicze, ponieważ one mogą znacząco wpłynąć na cały koszt inwestycji, zwłaszcza w większych projektach solarnych. Dzięki temu lepiej podejmujemy decyzje o finansowaniu i możemy przewidzieć, czy inwestycja będzie opłacalna.

Pytanie 16

Łopaty wirnika turbiny wiatrowej o mocy 3,5 MW powinny być wytwarzane

A. z aluminium
B. ze stali
C. z miedzi
D. z włókien szklanych
Łopaty wirników w turbinach wiatrowych z włókien szklanych to naprawdę dobry wybór. Mają świetne właściwości mechaniczne i aerodynamiczne. Włókna szklane są super lekkie, a mimo to bardzo wytrzymałe, co pozwala na zrobienie dużych łopat, które nie ważą zbyt dużo. To ważne, bo dzięki temu turbina mniej się obciąża i działa lepiej. Dodatkowo, te włókna są odporne na różne niekorzystne warunki, jak deszcz czy słońce, co sprawia, że łopaty są trwałe i niezawodne przez długi czas. Wiesz, normy IEC mówią, żeby stosować kompozyty, w tym włókna szklane, by osiągnąć najlepsze wyniki. Przykłady to nowoczesne turbiny, które muszą być zarówno wydajne, jak i bezpieczne w eksploatacji.

Pytanie 17

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 100 ÷ 200 kWh/m2/rok
B. 700 ÷ 800 kWh/m2/rok
C. 400 ÷ 500 kWh/m2/rok
D. 1000 ÷ 1100 kWh/m2/rok
Instalacja słoneczna o powierzchni absorberów wynoszącej 15 m², zaprojektowana do podgrzewania wody użytkowej, osiągająca wydajność w zakresie 400 ÷ 500 kWh/m²/rok, jest zgodna z rzeczywistymi parametrami efektywności systemów solarnych. Wartości te są typowe dla instalacji słonecznych w umiarkowanym klimacie, gdzie kolektory solarne efektywnie wykorzystują promieniowanie słoneczne do podgrzewania wody. W praktyce, taka instalacja może zaspokoić zapotrzebowanie na wodę użytkową, które w tym przypadku wynosi 500 dm³ na dobę, co odpowiada około 182,5 m³ rocznie. Przy tej wydajności, można oczekiwać, że instalacja będzie w stanie dostarczyć wystarczającą ilość energii do podgrzewania wymaganej ilości wody. Dobrą praktyką w projektowaniu systemów solarnych jest uwzględnienie lokalnych warunków klimatycznych oraz orientacji kolektorów, co może wpłynąć na osiągane wyniki. Standardy dotyczące instalacji solarnych, takie jak normy EN 12975, dostarczają ram dla oceny wydajności systemów solarno- cieplnych, co czyni tę odpowiedź zasadne.

Pytanie 18

Aby sprawdzić, czy w instalacji solarnej przepływa glikol o odpowiednim natężeniu, instaluje się

A. termometr
B. manometr
C. odpowietrznik
D. rotametr
Rotametr to urządzenie, które odgrywa kluczową rolę w monitorowaniu natężenia przepływu cieczy, w tym glikolu w systemach solarnych. Jego zasada działania opiera się na pomiarze objętości płynu przepływającego przez rurkę, co pozwala na precyzyjne określenie wydajności instalacji. Użycie rotametru jest zgodne z najlepszymi praktykami w branży, ponieważ umożliwia operatorom dostosowywanie parametrów systemu w celu optymalizacji wydajności cieplnej. Przykładem praktycznego zastosowania rotametru może być instalacja solarna, w której monitorowanie natężenia przepływu glikolu pozwala na utrzymanie odpowiednich warunków pracy systemu, co jest niezbędne do maksymalizacji efektywności energetycznej. W przypadkach, gdy natężenie przepływu jest zbyt niskie, może to prowadzić do przegrzania kolektorów słonecznych, co z kolei może powodować uszkodzenia systemu. Dlatego rotametr jest nie tylko narzędziem pomiarowym, ale również elementem bezpieczeństwa w takich systemach.

Pytanie 19

Z jaką minimalną separacją powinny być instalowane kolektory w stosunku do wszelkich uziemionych elementów systemu ochrony odgromowej, uziemienia oraz pozostałych metalowych struktur dachu, które nie są częścią systemu ochrony odgromowej?

A. 0,35 - 0,45 m
B. 0,10 - 0,20 m
C. 1,50 - 2,00 m
D. 0,50 - 1,00 m
Zastosowanie niewłaściwej odległości między kolektorami a uziemionymi punktami ochrony odgromowej może prowadzić do poważnych konsekwencji. Odpowiedzi sugerujące mniejsze odległości, takie jak 0,10 - 0,20 m lub 0,35 - 0,45 m, ignorują fundamentalne zasady dotyczące bezpieczeństwa elektrycznego i ochrony przed skutkami wyładowań atmosferycznych. Warto zauważyć, że prąd udarowy wywołany piorunem może rozprzestrzeniać się w różnych kierunkach, a zbyt bliskie usytuowanie kolektorów wobec elementów uziemiających stwarza ryzyko, że te prądy trafią na wrażliwe komponenty instalacji, prowadząc do ich uszkodzenia lub nawet pożaru. Ponadto, zwiększa to ryzyko uszkodzenia samej konstrukcji dachu. Standardy branżowe jasno określają minimalne odległości, które powinny być przestrzegane, aby skutecznie zminimalizować ryzyko związane z wyładowaniami atmosferycznymi. Ignorowanie tych zasad może wynikać z błędnego postrzegania bezpieczeństwa instalacji, co często prowadzi do oszczędności na niewłaściwych kosztach, a w efekcie do większych wydatków związanych z naprawami. Umożliwienie odpowiedniego odstępu nie tylko zabezpiecza instalację, ale również wspiera długofalowe zarządzanie ryzykiem związanym z pogodą.

Pytanie 20

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. woda - woda
B. grunt - woda
C. solanka - woda
D. powietrze - woda
Pompa ciepła typu solanka - woda jest odpowiednia, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, szczególnie w obszarach, gdzie temperatura może spadać poniżej zera. W tym systemie ciepło jest pobierane z gruntu za pomocą obiegu solanki, która krąży w układzie zamkniętym. Zastosowanie solanki jako medium antyzamarzającego pozwala na efektywne wykorzystanie energii geotermalnej, nawet przy niskich temperaturach. Często stosuje się takie rozwiązania w budynkach jednorodzinnych, gdzie instalacja gruntowych wymienników ciepła jest w stanie zapewnić odpowiednią efektywność grzewczą. Dzięki swojej wydajności i możliwości pracy w trudnych warunkach, pompy te są zgodne z normami ECODESIGN, a ich zastosowanie pozytywnie wpływa na redukcję emisji CO2. Ponadto, wykorzystując grunt jako źródło energii, można uzyskać stabilne i przewidywalne źródło ciepła przez cały rok, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju oraz oszczędności energii.

Pytanie 21

Przy transporcie kolektora słonecznego na dach, co należy zrobić?

A. zastosować pas transportowy przymocowany do przyłączy kolektora
B. skorzystać z drabiny i w dwie osoby wciągnąć kolektor
C. usunąć osłony zabezpieczające
D. użyć bloczków wyciągowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie bloczków wyciągowych podczas transportu kolektora słonecznego na dach to podejście, które zapewnia zarówno bezpieczeństwo, jak i efektywność operacyjną. Bloczek wyciągowy pozwala na zastosowanie mechanizmu dźwigni, co znacznie ułatwia podnoszenie ciężkich przedmiotów. W kontekście kolektorów słonecznych, które mogą ważyć od kilkudziesięciu do ponad stu kilogramów, kluczowe jest zminimalizowanie ryzyka urazu zarówno dla osób transportujących, jak i dla samego urządzenia. Przykładem zastosowania bloczków wyciągowych może być praca na budowie, gdzie mechanizmy te są standardem w podnoszeniu i transportowaniu materiałów budowlanych. Dobrą praktyką jest również zapewnienie, że bloczki są zgodne z normami bezpieczeństwa oraz że wszystkie osoby zaangażowane w proces transportu mają odpowiednie przeszkolenie z zakresu obsługi takich urządzeń. Dodatkowo, warto zwrócić uwagę na odpowiednie zabezpieczenie przewodów i przyłączy kolektora, aby uniknąć uszkodzeń podczas transportu.

Pytanie 22

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 6 barów.
B. 16 barów.
C. 4 bary.
D. 18 barów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6 barów jest poprawna, ponieważ zgodnie z danymi producenta rur ogrzewania podłogowego, maksymalne ciśnienie robocze dla rur wykonanych z materiałów PE-RT/EVOH/PE-RT i PE-RT/AL/PE-RT wynosi PN 6, co odpowiada 6 barom. Tabela producenta wskazuje, że ciśnienie to dotyczy rur o średnicach DN/OD 16 oraz 18 mm, które mogą pracować w temperaturach od 20 do 60°C. W praktyce, przy doborze rur do systemu ogrzewania podłogowego, ważne jest, aby nie przekraczać wskazanych wartości ciśnienia roboczego, ponieważ może to prowadzić do uszkodzenia instalacji, a także obniżenia jej efektywności. Dobór odpowiedniego ciśnienia jest istotny nie tylko dla bezpieczeństwa, ale również dla zapewnienia efektywności energetycznej systemu grzewczego. W branży stosuje się różne normy, takie jak PN-EN 1264, które regulują wymagania dotyczące systemów ogrzewania podłogowego, w tym maksymalne ciśnienia robocze.

Pytanie 23

Podczas rocznego przeglądu zaleca się przeprowadzanie inspekcji stanu płynu solarnego. Który z parametrów płynu solarnego nie podlega ocenie?

A. Barwa
B. Gęstość
C. Ilość
D. Zapach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapach płynu solarnego nie jest standardowym parametrem, który podlega ocenie podczas corocznego przeglądu. Kluczowe aspekty, które są monitorowane, to barwa, gęstość oraz ilość płynu, ponieważ mają one bezpośredni wpływ na wydajność systemu solarnego. Barwa płynu może wskazywać na jego czystość, natomiast gęstość jest istotna dla oceny jego właściwości termicznych. Ilość płynu jest również kluczowa, ponieważ niewłaściwy poziom może prowadzić do nieprawidłowego działania systemu. Regularne sprawdzanie tych parametrów jest zgodne z praktykami branżowymi, które zalecają również wymianę płynu co kilka lat, w zależności od jego jakości. Wiedza na temat tych parametrów pozwala na bieżąco monitorować stan systemu solarnego, co przyczynia się do jego dłuższej żywotności i efektywności energetycznej.

Pytanie 24

Według norm dotyczących poprawnego instalowania kolektora gruntowego poziomego, należy go umieścić

A. na obszarze zurbanizowanym
B. pod miejscem parkingowym
C. na terenie niepodlegającym zabudowie
D. pod konstrukcją budynku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektor gruntowy poziomy powinien być montowany na obszarze wolnym od zabudowań ze względu na optymalizację wydajności systemu oraz ograniczenie zakłóceń w jego pracy. Takie usytuowanie pozwala na efektywne wykorzystanie energii geotermalnej, gdyż nie ma przeszkód, które mogłyby ograniczać dostęp do ciepła zgromadzonego w gruncie. W praktyce, umieszczając kolektor w otwartym terenie, operatorzy systemów grzewczych mogą zapewnić lepszy obieg powietrza oraz możliwość łatwiejszego dostępu do urządzeń w przypadku ewentualnych napraw lub konserwacji. Ponadto, zgodnie z wytycznymi branżowymi, zaleca się, aby instalacje gruntowe były oddalone od budynków oraz innych obiektów, co pozwala uniknąć potencjalnych problemów związanych z oddziaływaniem cieplnym na strukturę budynku. Dobre praktyki wskazują również, że powinno się unikać zasiągania zgody na prowadzenie prac instalacyjnych w obszarach mocno zabudowanych, gdzie możliwości montażu są ograniczone oraz może występować ryzyko uszkodzenia infrastruktury.

Pytanie 25

W ciągu roku pompa ciepła funkcjonowała przez 1 950 godzin, pobierając średnio moc wynoszącą około 1,67 kW. To przekłada się na roczne zużycie energii równe 3 257 kWh, głównie w czasie nocnej taryfy. Zakładając przeciętny koszt 1 kWh na poziomie 0,30 zł, ile wyniesie roczny wydatek na ogrzewanie oraz przygotowanie CWU?

A. 585,00 zł
B. 4 280,00 zł
C. 1 631,75 zł
D. 977,10 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie rocznego kosztu ogrzewania i przygotowania ciepłej wody użytkowej (CWU) przy użyciu pompy ciepła polega na pomnożeniu całkowitego zużycia energii (w kWh) przez średni koszt energii elektrycznej za 1 kWh. W tym przypadku, pompa ciepła pracowała przez 1950 godzin, przy średnim poborze mocy wynoszącym 1,67 kW, co daje roczne zużycie energii równające się 1950 godzin * 1,67 kW = 3256,5 kWh, co można zaokrąglić do 3257 kWh. Przyjmując koszt 1 kWh równy 0,30 zł, otrzymujemy całkowity koszt: 3257 kWh * 0,30 zł/kWh = 977,10 zł. Taki sposób obliczeń jest zgodny z praktykami stosowanymi w inżynierii energetycznej i pozwala na dokładne oszacowanie kosztów eksploatacyjnych systemów grzewczych. W praktyce, użytkownicy powinni uwzględnić również okresy szczytowe oraz taryfy nocne, które mogą wpływać na całkowity koszt eksploatacji. Zrozumienie tych zasad jest istotne dla racjonalnego zarządzania kosztami energii i efektywności energetycznej budynków.

Pytanie 26

Aby instalacja solarna osiągnęła maksymalną wydajność cieplną w okresie letnim, kolektor słoneczny powinien być zainstalowany na

A. północnej stronie dachu pod kątem 30°
B. północnej stronie dachu pod kątem 60°
C. południowej stronie dachu pod kątem 60°
D. południowej stronie dachu pod kątem 30°

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usytuowanie kolektora słonecznego na południowej połaci dachu w kącie nachylenia 30° jest optymalne dla maksymalizacji wydajności cieplnej instalacji solarnej w okresie letnim. Południowa ekspozycja zapewnia najlepszy dostęp do promieni słonecznych w ciągu dnia, co jest kluczowe dla generowania energii cieplnej. Kąt nachylenia 30° umożliwia efektywne wychwytywanie promieniowania słonecznego, minimalizując jednocześnie straty spowodowane odbiciem światła. Dodatkowo, taki kąt nachylenia jest zgodny z najlepszymi praktykami inżynieryjnymi, które wskazują, że dla instalacji solarnych montowanych w strefie umiarkowanej, kąt nachylenia powinien wynosić od 30° do 45°, co zwiększa efektywność absorpcji energii słonecznej. W praktyce, zastosowanie tego typu konfiguracji skutkuje wyższą temperaturą czynnika grzewczego i większą produkcją energii, co pozwala na lepsze zaspokojenie potrzeb cieplnych budynków w okresie letnim, a także na oszczędności w kosztach energii.

Pytanie 27

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. niskie natężenie przepływu płynu solarnego
B. niedostateczna pojemność naczynia przeponowego
C. nadmierne natężenie przepływu płynu solarnego
D. niewystarczająca temperatura czynnika roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór bezpieczeństwa w instalacji grzewczej jest kluczowym elementem, który zapewnia ochronę układu przed nadmiernym ciśnieniem. W przypadku, gdy pojemność naczynia przeponowego jest niewystarczająca, może dojść do nadmiernego wzrostu ciśnienia w układzie, co skutkuje wypływem czynnika grzewczego z zaworu bezpieczeństwa. Naczynie przeponowe ma za zadanie kompensować zmiany objętości płynów w systemie w wyniku podgrzewania, a zbyt mała jego pojemność nie jest w stanie skutecznie zniwelować tych zmian, co prowadzi do niebezpiecznych sytuacji. Na przykład, w systemach słonecznych, gdzie ciepło generowane jest intensywnie, odpowiednia pojemność naczynia przeponowego jest niezbędna, aby zapobiec nadmiernemu wzrostowi ciśnienia. Standardy branżowe, takie jak normy PN EN 12828, podkreślają znaczenie prawidłowego wymiarowania naczynia przeponowego. Dlatego warto regularnie kontrolować pojemność naczynia oraz jego stan techniczny, aby zapewnić bezpieczeństwo i efektywność całego systemu grzewczego.

Pytanie 28

Kolektory słoneczne instalowane na gruncie przy użyciu konstrukcji nośnej są szczególnie narażone na

A. większe opady śniegu niż na dachu
B. zwiększone straty energii cieplnej w kierunku gruntu
C. znacznie gorsze warunki nasłonecznienia w porównaniu do dachu
D. nierównomierne osiadanie fundamentów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektory słoneczne montowane na powierzchni terenu są narażone na nierówne osiadanie fundamentów z kilku powodów. Przede wszystkim, montaż kolektorów na ziemi wymaga solidnej i stabilnej konstrukcji wsporczej, aby zapewnić ich właściwą wydajność. Nierównomierne rozłożenie obciążenia na fundamenty może prowadzić do osiadania, co w rezultacie może zmieniać kąt nachylenia kolektorów oraz ich orientację do słońca. Im lepsze są warunki montażu, tym większa efektywność systemu. W praktyce, zapewniając odpowiednie fundamenty i stabilność konstrukcji, można znacznie zredukować ryzyko osiadania, co pozwala na maksymalizację wydajności systemu grzewczego. Warto także kierować się standardami budowlanymi, które określają metody i materiały, jakie należy stosować przy budowie takich instalacji. Użycie odpowiednich materiałów oraz technik montażowych jest kluczowe dla długoterminowej wydajności kolektorów słonecznych.

Pytanie 29

Hurtownia zajmująca się instalacjami nabywa pompy obiegowe od producenta w cenie 100,00 zł za sztukę, a następnie sprzedaje je, dodając do ceny marżę w wysokości 10% oraz podatek VAT (według stawki 23%). Jaka będzie cena sprzedaży jednej pompy obiegowej?

A. 110,00 zł
B. 123,00 zł
C. 135,30 zł
D. 110,33 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, którą zaznaczyłeś, to 135,30 zł. Hurtownia kupuje pompy obiegowe za 100 zł za sztukę i potem sprzedaje je z dodatkową marżą 10%. Jak to liczymy? Mnożymy cenę zakupu przez 10%, co daje nam 10 zł. Jak dodamy to do 100 zł, to wychodzi 110 zł jako cena sprzedaży netto. Potem musimy dodać VAT, który w naszym kraju wynosi 23%. Z tego wynika, że VAT na 110 zł to 25,30 zł. Gdy dodamy ten podatek, dostaniemy cenę brutto równą 135,30 zł. Widzisz, to jest ważne, żeby dobrze liczyć ceny w handlu. Gdy nie uwzględnimy marży i VAT-u, możemy mieć spore problemy z cenami i rentownością. Ważne, żeby wszystkie te elementy uwzględniać w obliczeniach.

Pytanie 30

Jakie oznaczenie wskazuje, że produkt jest odporny na pył i wodę oraz zabezpieczony przed wodnym strumieniem pod dowolnym kątem?

A. IP55
B. IP35
C. IP44
D. IP65

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie IP65 wskazuje, że produkt jest w pełni chroniony przed pyłem oraz zraszaniem wodą z dowolnego kąta, co jest istotne w kontekście zastosowań zarówno w warunkach domowych, jak i przemysłowych. W standardzie IP, pierwszy cyfra (6) oznacza całkowitą ochronę przed pyłem, co jest kluczowe dla urządzeń używanych w środowiskach, gdzie zanieczyszczenia mogą wpływać na ich działanie. Druga cyfra (5) natomiast wskazuje, że urządzenie jest odporne na strumienie wody, co chroni je przed uszkodzeniami w przypadku deszczu lub kontaktu z wodą. Przykładowo, produkty z oznaczeniem IP65 są powszechnie wykorzystywane w oświetleniu ogrodowym, systemach monitoringu oraz w urządzeniach elektronicznych stosowanych na zewnątrz, gdzie narażone są na zmienne warunki atmosferyczne. Dostosowanie się do norm IP jest podstawowym elementem projektowania urządzeń, które mają zapewnić bezpieczeństwo i trwałość w trudnych warunkach eksploatacji.

Pytanie 31

Aby podnieść gęstość promieniowania słonecznego w kolektorach skupiających, stosuje się

A. soczewki.
B. szklane rurki dwuścienne.
C. rurki typu heat-pipe.
D. absorber z miedzi.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'soczewki' jest prawidłowa, ponieważ soczewki w kolektorach skupiających mają na celu zwiększenie gęstości promieniowania słonecznego, które pada na absorber. Działają one na zasadzie refrakcji, czyli załamania światła, przez co możliwe jest skupienie promieni słonecznych w jednym punkcie. To zjawisko pozwala na skoncentrowanie energii słonecznej, co przekłada się na wyższą efektywność kolektorów. W praktyce soczewki optyczne są wykorzystywane w różnych typach kolektorów, takich jak paraboliczne czy soczewkowe, co pozwala na efektywniejszą produkcję energii cieplnej. Warto również zauważyć, że zastosowanie soczewek jest zgodne z najlepszymi praktykami w branży, gdzie dąży się do maksymalizacji wydajności energetycznej. Standardy dotyczące projektowania kolektorów słonecznych często uwzględniają wykorzystanie elementów optycznych, aby poprawić ich wydajność i efektywność energetyczną.

Pytanie 32

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. ze stali nierdzewnej
B. ze stali ocynkowanej
C. Alu-PEX
D. z polipropylenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 33

Na podstawie danych zawartych w tabeli określ, w którym miesiącu uzysk energii elektrycznej przez ogniwa fotowoltaiczne był największy.

AP 500
MiesiącProdukcja dzienna [Wh]Produkcja miesięczna [kWh]
I156,564,85
II472,1813,69
III732,4722,71
IV976,4429,29
V930,9731,47
VI1080,4432,41
VII970,1130,07
VIII1014,8431,56
IX892,6726,78
X559,1417,33
XI236,897,11
XII170,545,29
Razem8193,25249,85

A. W czerwcu.
B. W sierpniu.
C. W lipcu.
D. W maju.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czerwiec jest miesiącem, w którym ogniwa fotowoltaiczne AP 500 osiągnęły najwyższą produkcję energii elektrycznej, wynoszącą 32,41 kWh. Taki wynik można przypisać zazwyczaj korzystnym warunkom atmosferycznym, które sprzyjają efektywności systemów fotowoltaicznych. Warto zaznaczyć, że latem dni są dłuższe, co pozwala na wydobycie większej ilości energii ze słońca. W praktyce, analiza danych dotyczących produkcji energii w różnych miesiącach jest kluczowym elementem w ocenie wydajności instalacji fotowoltaicznych. Umożliwia ona identyfikację sezonowych wzorców, które mogą być przydatne w planowaniu zarówno inwestycji, jak i serwisowania systemów. Ponadto, zrozumienie, które miesiące przynoszą największe zyski, pozwala na lepsze zarządzanie oczekiwaniami finansowymi i optymalizację użytkowania energii. W kontekście standardów branżowych, ważne jest, aby regularnie monitorować i analizować dane produkcyjne, co przyczynia się do osiągania efektywności energetycznej zgodnie z najlepszymi praktykami w dziedzinie odnawialnych źródeł energii.

Pytanie 34

Po jakim czasie użytkowania zasobnika ciepła powinno się wymienić anodę magnezową?

A. Po 36 miesiącach
B. Po 6 miesiącach
C. Po 2 miesiącach
D. Po 18 miesiącach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Po 18 miesiącach" jest poprawna, ponieważ anoda magnezowa w zasobnikach ciepła pełni kluczową rolę w ochronie przed korozją. W ciągu eksploatacji, ze względu na procesy elektrochemiczne, anoda ulega stopniowemu zużyciu. Zgodnie z zaleceniami producentów oraz normami branżowymi, zaleca się wymianę anody co 18 miesięcy, aby zapewnić optymalną ochronę zbiornika i przedłużyć jego żywotność. Na przykład, jeśli anoda nie jest wymieniana w odpowiednim czasie, może to doprowadzić do zwiększonej korozji zasobnika, co w dłuższym czasie skutkuje koniecznością wymiany całego urządzenia. Regularna kontrola stanu anody jest istotnym elementem konserwacji, a jej wymiana powinna być przeprowadzana przez wykwalifikowany personel, który zgodnie z procedurami zapewni prawidłowe działanie systemu grzewczego. Dobrą praktyką jest również monitorowanie stanu wody w zasobniku, co może wpływać na tempo zużycia anody oraz efektywność całego systemu grzewczego.

Pytanie 35

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 11
B. pH 9
C. pH 10
D. pH 7

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 36

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. ogniwo fotowoltaiczne
B. wymiennik ciepła
C. pompę ciepła
D. kolektor płaski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to pompa ciepła, która jest urządzeniem służącym do przenoszenia ciepła z jednego miejsca do innego, wykorzystując energię termalną zawartą w otoczeniu. Pompy ciepła mogą pobierać ciepło z powietrza, wody lub gruntu, co czyni je wszechstronnym rozwiązaniem dla systemów ogrzewania i przygotowania ciepłej wody użytkowej. W praktyce pompy ciepła są szeroko stosowane w budownictwie ekologicznym i w domach z systemami OZE, co pozwala na znaczne ograniczenie kosztów energii oraz redukcję emisji CO2. Dzięki wysokiej efektywności energetycznej, pompy ciepła mogą osiągnąć współczynniki wydajności (COP) wynoszące 3-5, co oznacza, że na każdy 1 kWh zużytej energii elektrycznej są w stanie wytworzyć 3-5 kWh ciepła. Zastosowanie pomp ciepła w systemach przygotowania ciepłej wody użytkowej jest więc zarówno ekonomiczne, jak i ekologiczne, zgodne z zasadami zrównoważonego rozwoju i certyfikacjami takimi jak BREEAM czy LEED.

Pytanie 37

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 32,40 m3
B. 10,80 m3
C. 6,00 m3
D. 21,60 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 38

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
B. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
C. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła
D. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik pływakowy jest kluczowym elementem zabezpieczającym kotły na biomasę przed niskim poziomem wody. Jego prawidłowe umiejscowienie ma znaczący wpływ na efektywność działania systemu grzewczego. Montaż czujnika na zasilaniu instalacji c.o. 10 cm powyżej najwyższej części kotła pozwala na wczesne wykrywanie spadku poziomu wody, co jest istotne dla zapobiegania uszkodzeniom kotła oraz niebezpieczeństwom związanym z pracą na sucho. W przypadku, gdy poziom wody w kotle spadnie poniżej poziomu czujnika, urządzenie może automatycznie wyłączyć system, co zapobiega dalszym szkodom. Dodatkowo, przestrzeganie zasady montażu czujnika powyżej najwyższej części kotła jest zgodne z dobrą praktyką inżynieryjną oraz normami bezpieczeństwa, takimi jak PN-EN 12952, które określają wymagania dotyczące bezpieczeństwa kotłów. Przykładem zastosowania czujnika pływakowego może być system zasilania biomasą, gdzie efektywne zarządzanie wodą w kotle wpływa na optymalizację zużycia paliwa oraz wydajność energetyczną całego układu.

Pytanie 39

Jakiego elementu należy użyć, aby połączyć dwie stalowe rury o tej samej średnicy z gwintem zewnętrznym?

A. nypla
B. odpowietrznika
C. mufy
D. redukcji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mufa jest kluczowym elementem stosowanym do łączenia stalowych rur o tej samej średnicy z gwintem zewnętrznym. Działa jako połączenie, które zapewnia ścisłość i bezpieczeństwo w systemach rurnych. Mufy są dostępne w różnych materiałach, ale stalowe mufy są powszechnie stosowane w instalacjach przemysłowych i budowlanych, gdzie wymagana jest wysoka odporność na ciśnienie i korozję. W praktyce, podczas instalacji, dwa końce rur z gwintem zewnętrznym są wkręcane w mufe, co tworzy solidne połączenie. Warto zauważyć, że użycie mufy jest zgodne z normami, takimi jak PN-EN 10241, które określają wymagania dotyczące materiałów i metod połączeń w instalacjach rurowych. Odpowiednie dobieranie mufy do średnicy rur oraz ich gwintu jest kluczowe dla zapewnienia długotrwałej i szczelnej instalacji, co jest istotne w kontekście bezpieczeństwa i efektywności systemów transportujących różne media.

Pytanie 40

Aby prawidłowo rozliczyć wykonane prace montażowe instalacji CWU w budynku jednorodzinnym, w sytuacji gdy w trakcie ich realizacji nastąpiła zmiana trasy jej przebiegu, konieczne jest przeprowadzenie

A. obmiaru powykonawczego
B. obmiaru projektowanych robót
C. odbioru międzyoperacyjnego
D. geodezyjnej inwentaryzacji powykonawczej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obmiar powykonawczy to proces, który powinien zostać przeprowadzony po zakończeniu prac montażowych, szczególnie w przypadku, gdy zmienił się przebieg trasy instalacji. Taki obmiar ma na celu dokładne zarejestrowanie rzeczywiście wykonanych robót oraz ich wymiarów, co jest kluczowe dla poprawnego rozliczenia z inwestorem. W sytuacji, gdy na etapie montażu zmienia się trasa instalacji, niezbędne jest weryfikowanie tych zmian, aby zapewnić zgodność z dokumentacją projektową. Obmiar powykonawczy umożliwia również identyfikację ewentualnych odchyleń od projektu i umożliwia ich skorygowanie już na etapie rozliczeń. Zgodnie z wytycznymi branżowymi, wszelkie zmiany powinny być dokumentowane, co jest istotne również dla późniejszych prac konserwacyjnych i serwisowych. Przykładem może być sytuacja, gdy podczas montażu instalacji CWU zmienia się lokalizacja zbiornika, co wymaga ponownego pomiaru długości rur czy ilości użytych materiałów. Takie podejście zwiększa transparentność procesu budowlanego oraz minimalizuje ryzyko sporów podczas finalizacji umowy.