Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 21 maja 2025 02:23
  • Data zakończenia: 21 maja 2025 02:37

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Dzięki lampie stroboskopowej możliwe jest wykonanie pomiaru

A. kąta wyprzedzenia zapłonu.
B. ciśnienia sprężania.
C. zbieżności kół.
D. ustawień świateł.
Wybór odpowiedzi dotyczący ustawienia świateł, ciśnienia sprężania czy zbieżności kół to typowe pułapki myślowe, które mogą prowadzić do nieporozumień w diagnostyce pojazdów. Ustawienie świateł dotyczy ich właściwej orientacji i poziomu, co jest ważne dla bezpieczeństwa na drodze, ale nie ma związku z pomiarem kąta wyprzedzenia zapłonu. Ciśnienie sprężania to parametr silnika, który można mierzyć za pomocą manometru, a nie lampy stroboskopowej. Pomiar tego ciśnienia ma na celu ocenę stanu technicznego silnika, ale nie dotyczy on ustawienia zapłonu. Zbieżność kół to z kolei problem związany z geometrią zawieszenia pojazdu, który wpływa na jego prowadzenie, ale nie jest bezpośrednio związany z działaniem silnika czy zapłonu. Błędne myśli prowadzące do tych odpowiedzi mogą wynikać z mylenia podstawowych pojęć związanych z diagnostyką. Każdy z tych parametrów wymaga innych narzędzi i technik pomiarowych, co powinno być dobrze zrozumiane przez specjalistów zajmujących się obsługą i diagnostyką pojazdów. Dlatego kluczowe jest posługiwanie się odpowiednimi narzędziami w odpowiednich kontekstach oraz dogłębne zrozumienie, jakie aspekty pojazdu można mierzyć za pomocą konkretnego sprzętu.

Pytanie 2

Mikrometr z noniuszem podaje wyniki pomiarów z precyzją

A. 0,01 mm
B. 0,05 mm
C. 0,02 mm
D. 0,10 mm
Noniusz mikrometra, znany z wysokiej precyzji pomiarów, wskazuje dokładność 0,01 mm. Taki poziom dokładności jest kluczowy w zastosowaniach inżynieryjnych oraz laboratoryjnych, gdzie wymagana jest precyzyjna obróbka materiałów czy też montaż elementów. Dzięki takiej rozdzielczości, użytkownicy mogą z łatwością określić niewielkie wymiary, co jest istotne w kontekście tolerancji produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, gdzie każdy milimetr ma znaczenie, pomiary realizowane z dokładnością do 0,01 mm umożliwiają osiągnięcie wysokiej jakości wykonania detali. Standardy branżowe, takie jak ISO 2768, nakładają obowiązek stosowania precyzyjnych narzędzi pomiarowych w procesie wytwarzania, co potwierdza znaczenie mikrometrów z noniuszem. Oprócz zastosowań przemysłowych, mikrometry są również stosowane w badaniach naukowych, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych wyników. To sprawia, że wiedza o dokładności mikrometrów jest istotnym elementem kształcenia inżynieryjnego.

Pytanie 3

Podczas analizy układu korbowo-tłokowego zauważono zarysowanie tłoka w rejonie pierścieni. Uszkodzony tłok powinien zostać

A. wymieniony na nowy
B. naprawiony przez oszlifowanie uszkodzonego miejsca papierem ściernym
C. zregenerowany metodą klejenia
D. pozostawiony bez naprawy do dalszego użytkowania
Wymiana uszkodzonego tłoka na nowy jest kluczowym elementem zapewnienia prawidłowego funkcjonowania silnika. Zarysowanie w części pierścieniowej tłoka może prowadzić do nieszczelności, co z kolei skutkuje utratą kompresji i obniżeniem efektywności pracy silnika. Praktyka wskazuje, że stosowanie uszkodzonych komponentów zamiast ich wymiany może prowadzić do poważniejszych awarii, w tym uszkodzenia cylindrów. Dobrym przykładem jest procedura przeglądów silników wysokoprężnych, gdzie zaleca się wymianę tłoków w przypadku stwierdzenia jakichkolwiek uszkodzeń. Przemysłowy standard jakości dla silników, zwany ISO 9001, promuje zasadę wymiany uszkodzonych części w celu zapewnienia długoterminowej efektywności i niezawodności. Wymiana tłoka na nowy, zgodnie z producentem, zapewnia optymalne dopasowanie oraz wydajność, co jest niezbędne w przypadku serwisowania i naprawy silników.

Pytanie 4

Kształt stożkowy przekroju tarczy hamulcowej kwalifikuje ją do

A. wymiany
B. przeszlifowania
C. przetoczenia
D. napawania
Stożkowatość przekroju tarczy hamulcowej jest oznaką zużycia, które może znacząco wpłynąć na działanie układu hamulcowego. W przypadku, gdy przekrój tarczy hamulcowej staje się stożkowaty, oznacza to, że jedna część tarczy jest bardziej zużyta niż inna. Taka nierównomierność może prowadzić do nieprawidłowego kontaktu między tarczą a klockami hamulcowymi, co skutkuje wydłużeniem drogi hamowania oraz zwiększeniem ryzyka wypadku. W takiej sytuacji wymiana tarczy hamulcowej jest najbezpieczniejszym i najbardziej skutecznym rozwiązaniem. Zgodnie z wytycznymi branżowymi, takie jak dokumenty ASI (Automotive Service Industry), regularne sprawdzanie stanu tarcz hamulcowych i ich wymiana w przypadku stwierdzenia jakichkolwiek deformacji jest kluczowe dla zapewnienia bezpieczeństwa pojazdu. Należy pamiętać, że inwestycja w nowe tarcze hamulcowe przekłada się na lepszą efektywność hamowania oraz długoterminowe oszczędności związane z naprawami.

Pytanie 5

Pasek rozrządu silnika powinien być wymieniany

A. w trakcie każdego przeglądu serwisowego
B. przy wymianie olejowej pompy
C. po zalecanym przebiegu
D. przed każdym okresem zimowym
Podczas analizy pozostałych odpowiedzi można zauważyć szereg nieporozumień dotyczących zasadności wymiany paska rozrządu. Wybór wymiany paska podczas każdego przeglądu okresowego jest mylny, ponieważ interwały wymiany są ustalane na podstawie przebiegu lub czasu, a nie cyklicznych przeglądów. Przeglądy, choć ważne, obejmują rutynowe sprawdzenie ogólnego stanu pojazdu, a wymiana paska rozrządu to zadanie wymagające precyzyjnego przestrzegania harmonogramów produkcyjnych. Wskazywanie wymiany paska przy wymianie pompy oleju również jest błędne, ponieważ te elementy funkcjonują w różnych obszarach silnika. Wymiana pompy oleju nie ma bezpośredniego wpływu na stan paska rozrządu, dlatego nie jest to odpowiedni moment na jego wymianę. Twierdzenie o konieczności wymiany paska przed każdym sezonem zimowym bazuje na błędnym założeniu, że sezonowość wpływa na zużycie paska, co nie jest zgodne z rzeczywistością. W praktyce, zmiany temperatury mogą mieć wpływ na inne komponenty, ale nie determinują one interwałów wymiany paska. Właściwe podejście do zarządzania konserwacją pojazdu polega na stosowaniu się do wytycznych producenta i monitorowaniu stanu technicznego pojazdu na podstawie jego rzeczywistego przebiegu oraz czasu użytkowania.

Pytanie 6

Przyczyną dźwięków pojawiających się w systemie napędowym pojazdu, które nasilają się podczas skrętów lub zawracania, jest uszkodzenie

A. sprzęgła
B. przekładni kierowniczej
C. skrzyni biegów
D. przegubu napędowego
Przegub napędowy jest kluczowym elementem układu napędowego pojazdu, który umożliwia przenoszenie momentu obrotowego z silnika na koła, zwłaszcza podczas skręcania. Stuki, które mogą występować podczas manewrów skrętnych, często są wynikiem uszkodzenia przegubów, które nie są w stanie skutecznie absorbować ruchów zawieszenia. W przypadku przegubów, ich uszkodzenie objawia się charakterystycznym dźwiękiem, który jest słyszalny podczas zmiany kierunku jazdy. Użytkownicy powinni być świadomi, że regularne sprawdzanie stanu przegubów napędowych oraz ich odpowiednia konserwacja mogą znacząco zmniejszyć ryzyko awarii. W dobrych praktykach branżowych zaleca się wymianę przegubów w momencie stwierdzenia ich zużycia lub pojawienia się jakichkolwiek niepokojących dźwięków, aby uniknąć kosztownych napraw związanych z uszkodzeniem innych komponentów układu napędowego. Pamiętajmy również, że przeguby napędowe podlegają różnym obciążeniom, co sprawia, że ich wytrzymałość i sprawność są kluczowe dla bezpieczeństwa i komfortu jazdy.

Pytanie 7

Aby przeprowadzić weryfikację wałka rozrządu, należy użyć

A. płyty traserskiej
B. średnicówki
C. czujnika zegarowego
D. manometru
Weryfikacja wałka rozrządu przy użyciu manometru nie jest właściwym podejściem, ponieważ manometr służy do pomiaru ciśnienia, a nie do oceny geometrii ani ustawienia elementów mechanicznych. Użycie płyt traserskich, które zazwyczaj stosuje się do sprawdzania płaskich powierzchni, również nie ma zastosowania w kontekście ustawienia wałka rozrządu, ponieważ nie dostarcza informacji o jego położeniu względem innych komponentów silnika. Średnicówka, z kolei, to narzędzie pomiarowe służące do mierzenia średnic, co w przypadku wałka rozrządu może być użyteczne jedynie w określonych okolicznościach, takich jak weryfikacja zużycia wałka, ale nie dostarczy informacji o jego poprawnym ustawieniu. Kluczowym błędem w myśleniu jest utożsamianie różnych narzędzi pomiarowych z ich zastosowaniem, co prowadzi do nieprawidłowych wniosków. Efektywna weryfikacja i diagnostyka wałka rozrządu wymaga nie tylko odpowiednich narzędzi, ale także zrozumienia zasad działania silnika i wpływu niewłaściwego ustawienia rozrządu na jego pracę. Właściwe podejście do diagnostyki silnika powinno opierać się na wiedzy technicznej oraz praktyce, które zapewnią skuteczne i precyzyjne pomiary, a tym samym niezawodne działanie jednostki napędowej.

Pytanie 8

W pojeździe z doładowanym silnikiem diesla, po długotrwałej eksploatacji, przed zatrzymaniem silnika, powinno się

A. odłączyć wszystkie odbiorniki energii
B. zostawić auto na kilka minut na niskich obrotach
C. otworzyć pokrywę silnika, aby przyspieszyć proces chłodzenia
D. włączyć ogrzewanie w celu szybszego schłodzenia silnika
Odpowiedź polegająca na pozostawieniu pojazdu na wolnych obrotach przez kilka minut przed jego unieruchomieniem jest uzasadniona technicznie. Silniki wysokoprężne, zwłaszcza te z doładowaniem, generują znaczną ilość ciepła podczas długotrwałej jazdy. Kiedy silnik jest wyłączany natychmiast po zakończeniu jazdy, może to prowadzić do nadmiernego nagrzewania się niektórych komponentów, zwłaszcza turbosprężarki, co z kolei może skutkować ich uszkodzeniem. Pozostawienie silnika na wolnych obrotach pozwala na jego stopniowe schłodzenie, co sprzyja równomiernemu rozprowadzeniu temperatury oraz redukcji ryzyka uszkodzenia. To praktyka stosowana przez wielu doświadczonych kierowców oraz zalecana przez producentów pojazdów, co potwierdzają również standardy branżowe. Przykładem może być sytuacja, w której po długiej trasie kierowca dojeżdża do stacji benzynowej; zatrzymując się na wolnych obrotach, zmniejsza ryzyko awarii spowodowanych nagłym chłodzeniem silnika. Dobrze jest również pamiętać o systematycznym sprawdzaniu stanu oleju silnikowego, ponieważ odpowiednia jego jakość i poziom wpływają na efektywność chłodzenia silnika.

Pytanie 9

W jakim celu stosuje się synchronizator w skrzyni biegów pojazdu samochodowego?

A. Aby zwiększyć prędkość maksymalną pojazdu
B. Aby zmniejszyć zużycie paliwa
C. Aby ułatwić zmianę biegów
D. Aby zredukować hałas w kabinie
Pozostałe odpowiedzi w pytaniu dotyczące roli synchronizatora w skrzyni biegów są niestety błędne, choć mogą wydawać się logiczne na pierwszy rzut oka. Synchronizator nie zwiększa prędkości maksymalnej pojazdu, ponieważ jego funkcją nie jest wpływanie na osiągi silnika czy przełożenia, ale raczej na ułatwienie i płynność zmiany biegów. Prędkość maksymalna pojazdu zależy od innych czynników, takich jak moc silnika, przełożenia w skrzyni biegów czy opory aerodynamiczne. Kolejna odpowiedź sugeruje, że synchronizator zmniejsza zużycie paliwa. Chociaż płynna zmiana biegów może mieć minimalny wpływ na ekonomię jazdy, synchronizator sam z siebie nie jest projektowany z myślą o oszczędzaniu paliwa. Zużycie paliwa jest bardziej związane z techniką jazdy, aerodynamiką pojazdu i efektywnością silnika. Ostatnia odpowiedź, że synchronizator redukuje hałas w kabinie, również jest niepoprawna. Chociaż płynna zmiana biegów może wpłynąć na subiektywne odczucie hałasu, to jednak synchronizator nie pełni funkcji redukcji hałasu jako takiej. Hałas w kabinie jest bardziej zależny od izolacji akustycznej, rodzaju opon i stanu technicznego pojazdu. Warto zatem zrozumieć, że synchronizator ma bardzo specyficzne zadanie: poprawić płynność i komfort zmiany biegów, co czyni go nieocenionym elementem nowoczesnych skrzyń biegów.

Pytanie 10

W przypadku, gdy zużycie gładzi tulei cylindrowej jest mniejsze od następnego wymiaru naprawczego, należy ją poddać regeneracji poprzez

A. roztaczanie
B. azotowanie
C. nawęglanie
D. hartowanie
Roztaczanie jest procesem mechanicznym, który polega na usuwaniu materiału z gładzi tulei cylindrowej w celu przywrócenia jej wymiarów roboczych. W przypadku gdy zużycie gładzi nie przekracza kolejnego wymiaru naprawczego, roztaczanie staje się idealnym rozwiązaniem, ponieważ pozwala na uzyskanie precyzyjnego wymiaru i poprawę jakości powierzchni. Proces ten jest szeroko stosowany w przemyśle motoryzacyjnym oraz maszynowym, gdzie konieczne jest zachowanie wysokich tolerancji wymiarowych i jakości powierzchni. Dzięki roztaczaniu można wydłużyć żywotność tulei cylindrowej, minimalizując konieczność jej całkowitej wymiany. W praktyce często stosuje się narzędzia skrawające, które są dostosowane do konkretnego materiału tulei, co zapewnia efektywność procesu oraz redukcję odpadów. Standardy branżowe, takie jak ISO 2768, wskazują na wymagania dotyczące tolerancji wymiarowych, co dodatkowo podkreśla znaczenie precyzyjnych metod naprawy, jaką jest roztaczanie. Cały proces powinien być przeprowadzany przez wykwalifikowanych specjalistów przy użyciu odpowiednich technologii, co gwarantuje bezpieczeństwo i niezawodność elementów po regeneracji.

Pytanie 11

Samozapłon mieszanki powietrza i paliwa w silniku Diesla jest spowodowany

A. wysokim ciśnieniem wtryskiwanego paliwa
B. dużą gęstością sprężonego powietrza
C. iskrą świecy zapłonowej
D. wysoką temperaturą sprężonego powietrza
W silnikach Diesla samozapłon mieszanki paliwowo-powietrznej nie jest wywoływany przez iskrę świecy zapłonowej, co jest typowe dla silników benzynowych. Użycie świecy zapłonowej w silniku Diesla stanowiłoby nieefektywny i nieprzydatny sposób inicjacji procesu spalania, ponieważ silniki te zostały zaprojektowane do działania w oparciu o wyższe ciśnienia sprężania oraz temperatury, które same w sobie są wystarczające do samozapłonu paliwa. Przypisanie samozapłonu do wysokiego ciśnienia wtryskiwanego paliwa jest także nieprecyzyjne; choć ciśnienie to ma wpływ na atomizację paliwa i jego mieszanie z powietrzem, kluczowym czynnikiem wywołującym samozapłon jest temperatura powietrza w komorze spalania. Z kolei wzrost gęstości sprężonego powietrza wpływa na wydajność silnika, lecz nie jest czynnikiem, który bezpośrednio powoduje proces samozapłonu. Zrozumienie zasad działania silników Diesla i różnic w porównaniu do silników benzynowych jest istotne dla inżynierów i techników zajmujących się projektowaniem oraz serwisowaniem silników spalinowych.

Pytanie 12

W sytuacji, gdy na powierzchni tarcz hamulcowych osi kierowanej zauważono pęknięcia, jakie działania naprawcze należy podjąć?

A. wymiana tarcz na nowe
B. spawanie tarcz
C. splanowanie tarcz
D. szlifowanie powierzchni tarcz
Wymiana tarcz hamulcowych na nowe jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności pojazdu. Pęknięcia na powierzchni tarcz hamulcowych mogą prowadzić do poważnych problemów z hamowaniem, w tym do zmniejszenia skuteczności hamulców oraz ryzyka uszkodzenia innych elementów układu hamulcowego. Wymiana tarcz na nowe jest zgodna z zaleceniami producentów oraz normami bezpieczeństwa, które podkreślają, że uszkodzone tarcze powinny być natychmiast wymieniane. Nowe tarcze hamulcowe zapewniają optymalną powierzchnię cierną, co jest niezbędne do uzyskania odpowiedniej siły hamowania. Przykładowo, w przypadku pojazdów sportowych, gdzie wymagane są intensywne hamowania, zaniedbanie wymiany uszkodzonych tarcz może prowadzić do poważnych konsekwencji, w tym wypadków. Dlatego, w praktyce, nie tylko sama wymiana, ale również dobra jakość nowych tarcz ma kluczowe znaczenie, aby spełniały one standardy producenta i zapewniały bezpieczeństwo w ruchu drogowym.

Pytanie 13

Analiza składu spalin w zamkniętej przestrzeni bez odpowiedniego odciągu i działającej wentylacji może prowadzić do

A. porażenia prądem
B. zatrucia spalinami
C. urazów rąk
D. oparzenia spalinami
Zatrucie spalinami jest poważnym zagrożeniem, które występuje w pomieszczeniach, gdzie spaliny pochodzące z urządzeń grzewczych lub silników spalinowych gromadzą się bez odpowiedniego odciągu lub wentylacji. Spaliny te zawierają szkodliwe substancje, takie jak tlenek węgla, dwutlenek węgla, azotany oraz inne toksyczne związki chemiczne, które mogą prowadzić do poważnych problemów zdrowotnych, a nawet śmierci. W praktyce oznacza to, że miejsce pracy lub użytkowania musi być odpowiednio wentylowane, aby zapewnić usuwanie tych gazów. Zgodnie z normami BHP oraz wytycznymi dotyczącymi jakości powietrza w pomieszczeniach, należy regularnie kontrolować obecność zanieczyszczeń powietrza oraz instalować systemy wentylacyjne dostosowane do rodzaju i intensywności działalności. Przykładem mogą być miejsca, w których prowadzone są prace spawalnicze, gdzie obecność spalin jest nieunikniona, a odpowiednie wentylowanie pomieszczenia może zapobiec poważnym zagrożeniom zdrowotnym. W związku z tym, świadomość zagrożeń wynikających z obecności spalin i zastosowanie odpowiednich praktyk to kluczowe elementy zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 14

W przypadku zwichnięcia kończyny dolnej, jaką należy podjąć pierwszą pomoc przedlekarską?

A. ustawieniu kończyny.
B. sprawdzeniu tętna oraz oddechu.
C. nałożeniu jałowego opatrunku.
D. aplikacji zimnego okładu.
Podejście do zwichnięcia kończyny dolnej powinno być oparte na wiedzy o zasadach udzielania pierwszej pomocy. Wskazanie na nastawienie kończyny jest nieodpowiednie, ponieważ takie działania powinny być przeprowadzane jedynie przez wykwalifikowany personel medyczny. Próbując samodzielnie nastawić zwichnięcie, można spowodować dalsze uszkodzenia tkanek, stawów lub nerwów, co może prowadzić do poważniejszych konsekwencji zdrowotnych. Kontrolowanie tętna i oddechu, chociaż istotne w ogólnym kontekście pierwszej pomocy, nie jest bezpośrednio związane z urazem kończyny dolnej. Tego typu działania są kluczowe w przypadku zagrożenia życia, ale w przypadku zwichnięcia są mniej istotne niż natychmiastowe chłodzenie urazu. Wykonywanie jałowego opatrunku także nie jest pierwszym krokiem w tych okolicznościach, ponieważ najpierw należy zająć się bólem i obrzękiem, a dopiero później, jeśli występują rany otwarte, można nałożyć opatrunek. Warto zrozumieć, że pierwsza pomoc ma na celu złagodzenie objawów i zapobieganie dalszym urazom, a nie samodzielne leczenie kontuzji. Właściwe podejście do udzielania pomocy w przypadku zwichnięcia jest kluczowe dla uniknięcia długotrwałych problemów zdrowotnych.

Pytanie 15

Układ hamulcowy należy odpowietrzyć

A. rozpoczynając od koła najdalszego od pompy hamulcowej
B. w przeciwnym kierunku do wskazówek zegara
C. rozpoczynając od koła najbliższego pompie hamulcowej
D. w tym samym kierunku co wskazówki zegara
Odpowietrzanie układu hamulcowego należy przeprowadzać zaczynając od najdalszego koła od pompy hamulcowej, ponieważ w takim układzie powietrze, które ma tendencję do gromadzenia się w najdalszych częściach systemu, zostanie usunięte w pierwszej kolejności. Ta metoda zapewnia, że wszelkie zanieczyszczenia i powietrze są eliminowane w sposób efektywny, co umożliwia uzyskanie pełnej efektywności hamowania. Standardowe praktyki w branży motoryzacyjnej wskazują, że odpowiednie odpowietrzenie układu hamulcowego nie tylko poprawia jego wydajność, ale także zwiększa bezpieczeństwo pojazdu. W wielu warsztatach korzysta się z instrukcji producenta, które zazwyczaj zalecają tę metodę. Przykładowo, przy odpowietrzaniu układu hamulcowego w samochodach osobowych, technicy często rozpoczynają od tylnego koła po przeciwnej stronie od pompy, aby uniknąć ponownego wprowadzenia powietrza do systemu. Prawidłowo wykonane odpowietrzanie skutkuje sztywniejszym pedale hamulca oraz lepszą reakcją na nacisk.

Pytanie 16

Aby przeprowadzić regulację luzu zaworowego, potrzebne jest

A. głębokościomierz
B. mikrometr
C. passametr
D. szczelinomierz
Szczelinomierz jest narzędziem pomiarowym wykorzystywanym do precyzyjnego ustalania luzu zaworowego w silnikach spalinowych. Luz zaworowy jest kluczowym parametrem, który wpływa na prawidłową pracę silnika, jego osiągi oraz efektywność. Użycie szczelinomierza pozwala na dokładne zmierzenie odstępu między końcem zaworu a jego gniazdem, co jest niezbędne do optymalizacji pracy silnika. Przykładowo, w silnikach z mechanicznymi zaworami, zbyt mały luz może prowadzić do przegrzewania i uszkodzenia zaworów, natomiast zbyt duży luz może powodować hałas i obniżoną efektywność spalania. Zgodnie z dobrymi praktykami branżowymi, regulację luzu zaworowego należy przeprowadzać cyklicznie, zgodnie z harmonogramem serwisowym producenta, co zapewnia długotrwałą i bezawaryjną pracę silnika. Użycie szczelinomierza jest zatem kluczowe, aby zapewnić odpowiednią precyzję i jakość wykonania tej regulacji.

Pytanie 17

Zanim przystąpisz do badania spalin, powinieneś podgrzać silnik, aby temperatura oleju w misie olejowej wyniosła około

A. 70 °C
B. 30 °C
C. 50 °C
D. 90 °C
Wybierając temperaturę 50 °C, można uznać, że silnik nie był odpowiednio rozgrzany do analizy spalin. Taka temperatura jest zbyt niska, aby zapewnić pełne smarowanie oleju, co wpływa na wyniki pomiarów. W rzeczywistości, przy zbyt niskiej temperaturze, olej silnikowy nie osiąga swojej optymalnej lepkości, co może prowadzić do nieprawidłowego funkcjonowania silnika i zafałszowanych pomiarów. Z kolei 30 °C jest jeszcze bardziej niewłaściwą wartością, ponieważ w tej temperaturze silnik może być wciąż w fazie rozgrzewania. Takie podejście nie spełnia standardów wymaganych do rzetelnej analizy emisji spalin, w tym norm Euro, które wskazują na konieczność przeprowadzenia testów w odpowiednich temperaturach. Z kolei wybór 90 °C, mimo że zbliżony do optymalnych warunków pracy silnika, jest zbyt wysoki na początek analizy spalin. W tej temperaturze ryzykujemy przegrzanie silnika i zjawiska mogące wpłynąć na wyniki, takie jak zmiana charakterystyki spalania czy uszkodzenie komponentów. Dlatego kluczowe jest, aby rozumieć, że odpowiednia temperatura 70 °C nie tylko zapewnia dokładność pomiarów, ale także bezpieczeństwo podczas analizy, co jest niezbędne w procesach diagnostycznych i przestrzeganiu norm środowiskowych.

Pytanie 18

Na etykiecie znamionowej pojazdu brakuje informacji o

A. dopuszczalnej masie całkowitej pojazdu
B. numerze świadectwa homologacji
C. wymiarach zewnętrznych pojazdu
D. numerze identyfikacyjnym VIN
Wszystkie wymienione elementy na tabliczce znamionowej są istotne z punktu widzenia identyfikacji i klasyfikacji pojazdu. Niezrozumienie tych informacji może prowadzić do poważnych problemów, zarówno na etapie zakupu pojazdu, jak i w kontekście jego późniejszej eksploatacji. Numer identyfikacyjny VIN jest kluczowy, ponieważ pozwala na jednoznaczną identyfikację pojazdu w bazach danych, co jest szczególnie ważne w kontekście kradzieży czy wypadków. Brak znajomości tego numeru może uniemożliwić pełne zweryfikowanie historii samochodu, co naraża nabywców na potencjalne oszustwa. Podobnie, numer świadectwa homologacji jest niezbędny do stwierdzenia, że pojazd spełnia określone normy bezpieczeństwa i emisji spalin. Wymagania w tym zakresie są regulowane przez przepisy krajowe i międzynarodowe, a ich ignorowanie może skutkować niezgodnością pojazdu z przepisami drogowymi, co wiąże się z ryzykiem kar administracyjnych. Z kolei wymiary zewnętrzne pojazdu mają wpływ na zdolność do poruszania się w różnych warunkach drogowych oraz na zdolność do parkowania. Konsekwencje niewłaściwego zrozumienia tych danych mogą prowadzić do wypadków oraz nieefektywnego wykorzystania pojazdu. Dlatego tak istotne jest zapoznanie się z informacjami zawartymi na tabliczce znamionowej, aby uniknąć podejmowania decyzji w oparciu o niepełne lub błędne dane.

Pytanie 19

Diagnostyka organoleptyczna opiera się na

A. połączeniu z diagnoskopem
B. wykorzystaniu określonych narzędzi
C. przeprowadzeniu samodzielnej diagnozy
D. użyciu zmysłów
Nieprawidłowe odpowiedzi wskazują na pewne nieporozumienia dotyczące organoleptycznej metody diagnostyki. Podłączenie diagnoskopu, wykonanie samodiagnozy czy zastosowanie specjalnych narzędzi sugerują, że diagnostyka opiera się głównie na technologii lub narzędziach, co jest mylne. Organoleptyczna diagnostyka skupia się przede wszystkim na subiektywnych odczuciach i interpretacji zmysłowych, co czyni ją bardziej osobistym i intuicyjnym procesem. Dobrze przeszkolony specjalista potrafi wykorzystać swoje zmysły w ocenie jakości i stanu produktu, co jest nieosiągalne przy użyciu tylko narzędzi czy urządzeń. Wiele standardów branżowych, takich jak normy ISO, podkreśla znaczenie oceny sensorycznej w procesie kontroli jakości, wskazując, że nie można polegać jedynie na metodach technologicznych, które mogą nie uwzględniać subtelnych różnic w jakości czy smakach. Często przy podejmowaniu decyzji o jakości produktów zapomina się o tym, że zmysły są niezastąpione w ocenie subiektywnych cech, jak smak czy zapach, które nie mogą być dokładnie zmierzone przez instrumenty. W związku z tym, kluczowe jest, aby zrozumieć, że organoleptyczne metody diagnostyki uzupełniają, a nie zastępują techniki oparte na instrumentach, co powinno być istotnym elementem w każdej strategii zapewnienia jakości.

Pytanie 20

Jakie narzędzie jest wykorzystywane do właściwego ustawienia kąta wyprzedzenia zapłonu w silniku ZI?

A. oscyloskopu.
B. lampy stroboskopowej.
C. suwmiarki.
D. urządzenia diagnostycznego.
Lampa stroboskopowa jest kluczowym narzędziem wykorzystywanym do precyzyjnego ustawiania kąta wyprzedzenia zapłonu w silnikach ZI. Działa na zasadzie emitowania błysków światła w określonym rytmie, co pozwala mechanikowi na obserwację pozycji znaku zapłonu na kole zamachowym silnika w czasie rzeczywistym. Dzięki temu można dostosować kąt wyprzedzenia zapłonu, co jest niezbędne dla optymalnej pracy silnika, jego wydajności oraz osiągów. Ustawienie to ma bezpośredni wpływ na spalanie mieszanki paliwowo-powietrznej, co z kolei wpływa na moc silnika oraz emisję spalin. W warsztatach stosuje się lampy stroboskopowe zgodnie z normami i standardami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale także bezpieczeństwo pracy. W praktyce mechanik ustawia silnik na określone obroty, a następnie przy pomocy lampy stroboskopowej kontroluje kąty zapłonu, co pozwala na precyzyjne dostosowanie jego parametrów.

Pytanie 21

Pomiar grubości zębów kół zębatych można zrealizować przy użyciu

A. średnicówki czujnikowej
B. mikrometru
C. suwmiarki modułowej
D. głębokościomierza
Pomiar grubości zębów kół zębatych nie powinien być przeprowadzany przy użyciu średnicówki czujnikowej, mikrometru ani głębokościomierza, ponieważ każde z tych narzędzi ma swoje ograniczenia i nie nadaje się do tego zadania. Średnicówka czujnikowa, mimo że jest precyzyjna, została zaprojektowana głównie do pomiarów średnic i nie jest odpowiednia do oceny grubości zębów, gdzie kluczowe są różnice w wysokości i kształcie. Użycie mikrometru, który jest narzędziem do pomiaru małych odległości, również nie jest optymalne, ponieważ konstrukcja kół zębatych często wymaga pomiaru w różnych miejscach, co może być kłopotliwe z użyciem takiej metody. Z kolei głębokościomierz jest narzędziem przeznaczonym do pomiarów głębokości otworów, a nie do pomiarów szerokości lub grubości. Efektem użycia niewłaściwych narzędzi pomiarowych jest ryzyko uzyskania błędnych wyników, co może prowadzić do poważnych problemów w funkcjonowaniu mechanizmów zębatych. Przykładowo, nieprawidłowe pomiary mogą wywołać zjawisko przedwczesnego zużycia się zębów kół, co w rezultacie wpłynie na ich wydajność oraz trwałość. W praktyce, kluczowe jest zastosowanie narzędzi pomiarowych odpowiednich do specyfiki zadania, co podkreśla znaczenie znajomości właściwych metod i narzędzi w inżynierii mechanicznej.

Pytanie 22

Czym charakteryzuje się układ wtryskowy typu Common Rail?

A. Bezpośrednim wtryskiem do gaźnika
B. Zaworem EGR załączanym mechanicznie
C. Wysokim ciśnieniem paliwa w szynie zasilającej
D. Małą ilością przewodów paliwowych
Odpowiedzi sugerujące, że układ wtryskowy typu Common Rail charakteryzuje się małą ilością przewodów paliwowych lub bezpośrednim wtryskiem do gaźnika są mylące. Common Rail faktycznie charakteryzuje się bardziej skomplikowanym układem przewodów niż tradycyjne układy wtryskowe, co wynika z potrzeby precyzyjnego dostarczania paliwa pod wysokim ciśnieniem. Wtrysk do gaźnika jest terminem niepoprawnym, ponieważ gaźniki są stosowane w starszych technologiach zasilania silników benzynowych, a Common Rail to technologia związana głównie z silnikami diesla. Podobnie, zawór EGR załączany mechanicznie nie ma bezpośredniego związku z układem Common Rail. EGR (Exhaust Gas Recirculation) jest systemem redukcji emisji NOx poprzez recyrkulację części spalin do komory spalania. Choć może być obecny w pojazdach z Common Rail, nie jest to charakterystyczna cecha samego układu wtryskowego. Często błędnie zakłada się, że każdy układ wtryskowy z nowoczesnymi technologiami ma uproszczoną konstrukcję, co nie jest prawdą ze względu na skomplikowane systemy zarządzania i kontrolę emisji.

Pytanie 23

Ujemna zbieżność ustawienia kół przednich w pojeździe jest poprawnym ustawieniem kół?

A. samochodów osobowych z przednim napędem
B. samochodów ciężarowych z tylnym napędem
C. samochodów osobowych z tylnym napędem
D. autobusów z tylnym napędem
Jeśli chodzi o ciężarówki i autobusy z tylnym napędem, to zbieżność ujemna nie jest najlepszym pomysłem. Może to prowadzić do problemów z stabilnością, zwłaszcza gdy pojazdy są mocno obciążone. Ciężarówki, ze względu na swoją konstrukcję, potrzebują zbieżności neutralnej albo dodatniej, co zapewnia lepsze trzymanie się drogi. Zbieżność neutralna to taki układ, który sprawia, że opony zużywają się równomiernie i auto lepiej prowadzi się na szybkich trasach. W autobusach zbieżność ujemna też może być kłopotliwa i powodować trudności w hamowaniu czy utrzymaniu toru jazdy. Dlatego często mówi się, że należy stawiać na zbieżność neutralną lub dodatnią, by zachować równowagę między osiami. Czasem zdarza się, że ludzie nie do końca rozumieją, jak to działa, co prowadzi do złych ustawień. Kluczowe jest, żeby przy regulowaniu zbieżności zawsze opierać się na zaleceniach producentów i normach branżowych.

Pytanie 24

Zawodnienie płynu hamulcowego na poziomie 4%

A. istotnie zwiększa jego temperaturę wrzenia.
B. praktycznie nie wpływa na jego właściwości.
C. istotnie obniża jego temperaturę wrzenia.
D. jest typowe po około 6 miesiącach użytkowania.
Zawodnienie płynu hamulcowego o wartości 4% ma istotny wpływ na jego właściwości, w tym na temperaturę wrzenia. Normalny płyn hamulcowy, zgodny z normami DOT, ma określoną temperaturę wrzenia, która jest krytyczna dla bezpiecznego funkcjonowania systemu hamulcowego. W przypadku obecności wody, która w tym przypadku stanowi 4% objętości, dochodzi do obniżenia temperatury wrzenia płynu. Woda ma znacznie niższą temperaturę wrzenia (100°C) niż typowe płyny hamulcowe, co oznacza, że w sytuacjach intensywnego hamowania, gdzie temperatura płynu może wzrosnąć, może to prowadzić do zjawiska wrzenia płynu hamulcowego. Praktycznym skutkiem tego jest ryzyko wystąpienia „spadku ciśnienia” w układzie hamulcowym, co może skutkować utratą skuteczności hamowania. Dlatego ważne jest regularne sprawdzanie stanu płynu hamulcowego oraz jego wymiana zgodnie z zaleceniami producenta pojazdu, aby zapewnić optymalne parametry pracy układu hamulcowego.

Pytanie 25

W trakcie diagnostyki pompy paliwowej nie wykonuje się pomiaru

A. podciśnienia ssania
B. ciśnienia tłoczenia
C. wydatku pompy
D. ciśnienia wtrysku
Podczas diagnostyki pompy paliwowej, niektórzy mogą pomyśleć, że pomiar ciśnienia wtrysku jest kluczowy, jednak takie podejście jest mylące. Ciśnienie wtrysku wiąże się z pracą układu wtryskowego, który jest niezależny od samej pompy paliwowej. Pompa ma za zadanie dostarczenie paliwa pod określonym ciśnieniem, a wtryskiwacze kontrolują, kiedy i jak dużo paliwa dostarczyć do komory spalania. Z tego powodu, pomiar ciśnienia wtrysku nie dostarcza informacji o efektywności pompy. Dodatkowo, pomiar ciśnienia tłoczenia jest kluczowy, ponieważ pozwala ocenić, czy pompa dostarcza odpowiednią ilość paliwa do silnika. Pomiar wydatku pompy, który określa, ile paliwa jest w stanie dostarczyć pompa w danym czasie, również jest niezbędny do oceny jej wydajności. Niewłaściwe zrozumienie roli poszczególnych elementów systemu paliwowego może prowadzić do błędnych diagnoz i niewłaściwych decyzji dotyczących naprawy. Użytkownicy często mylą funkcje pompy z funkcjami wtryskiwaczy, co może skutkować próbami diagnozowania problemu w niewłaściwy sposób. Dlatego ważne jest, aby w diagnostyce koncentrować się na pomiarach, które bezpośrednio odnoszą się do działania pompy, aby właściwie ocenić jej stan i uniknąć zbędnych napraw.

Pytanie 26

Aby wymienić wadliwy czujnik TPMS, należy najpierw zdemontować

A. koło pojazdu
B. przepływomierz powietrza
C. część układu wydechowego
D. element układu chłodzenia
Aby wymienić uszkodzony czujnik ciśnienia TPMS (Tire Pressure Monitoring System), kluczowym krokiem jest demontaż koła pojazdu. Czujnik TPMS jest zazwyczaj zamontowany na obręczy felgi i znajduje się wewnątrz opony, co oznacza, że bez ściągnięcia koła nie można uzyskać dostępu do czujnika. Wymiana czujnika TPMS jest istotna, ponieważ nieprawidłowe ciśnienie w oponach może prowadzić do niebezpiecznych sytuacji na drodze, takich jak zwiększone zużycie paliwa, zmniejszona przyczepność czy nawet ryzyko wypadku. Praktycznie, aby wymienić czujnik, należy najpierw zdjąć koło, a następnie powoli zdemontować oponę z felgi, co pozwala na dostęp do czujnika. Ważne jest również, aby po wymianie czujnika przeprowadzić kalibrację systemu TPMS, aby zapewnić prawidłowe działanie i monitorowanie ciśnienia w oponach zgodnie z wymaganiami producenta. Praca ta powinna być wykonywana zgodnie z wytycznymi producenta i normami branżowymi, co zapewni bezpieczeństwo oraz efektywność działania systemu.

Pytanie 27

Podczas przeprowadzania testu drogowego po naprawie głowicy silnika, należy szczególnie zwrócić uwagę na

A. osiągane przyspieszenie
B. ciśnienie sprężania
C. temperaturę pracy silnika
D. regulację składu mieszanki
Regulacja składu mieszanki, osiągane przyspieszenie oraz ciśnienie sprężania to parametry, które oczywiście mają istotne znaczenie w kontekście ogólnej wydajności silnika, jednak nie są one kluczowe w pierwszej kolejności po naprawie głowicy silnika. Skład mieszanki paliwowo-powietrznej jest istotny dla uzyskania odpowiedniej mocy i efektywności paliwowej, ale jego regulacja powinna być przeprowadzana w kontekście całego systemu zasilania silnika, a nie tylko na etapie prób drogowych po naprawie. Osiągane przyspieszenie może być wskaźnikiem mocy silnika, ale nie dostarcza informacji o jego stanie technicznym, szczególnie po naprawach. W końcu, ciśnienie sprężania to ważny parametr, ale jego zmiany nie zawsze są bezpośrednio związane z bieżącą temperaturą pracy silnika. Niezrozumienie hierarchii tych parametrach oraz ich wpływu na działanie silnika po naprawie może prowadzić do błędnych ocen stanu technicznego pojazdu. Kluczowym aspektem jest to, że każdy z tych elementów powinien być monitorowany w odpowiednim kontekście, a temperatura pracy silnika powinna być priorytetem, aby zapewnić jego optymalne funkcjonowanie i zapobiegać poważnym uszkodzeniom. Właściwe zrozumienie i monitorowanie temperatury pozwala na szybką reakcję w przypadku wykrycia jakichkolwiek nieprawidłowości, co jest zgodne z najlepszymi praktykami w zakresie obsługi i konserwacji silników.

Pytanie 28

Podczas wymiany uszkodzonego wałka sprzęgłowego stwierdzono luz osiowy jego łożyska wynoszący 1,175 mm. Podkładka regulacyjna, którą należy dobrać na podstawie danych z tabeli, będzie miała grubość

Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
Luz osiowy łożyska
(mm)
Grubość podkładki regulacyjnej
(mm)
0,750 - 0,7740,7251,150 - 1,1741,125
0,775 - 0,7990,7501,175 - 1,1991,150
0,800 - 0,8240,7751,200 - 1,2241,175
0,825 - 0,8490,8001,225 - 1,2491,200
0,850 - 0,8740,8251,250 - 1,2741,225
0,875 - 0,8990,8501,275 - 1,2991,250
0,900 - 0,9240,8751,300 - 1,3241,275
0,925 - 0,9490,9001,325 - 1,3491,300
0,950 - 0,9740,9251,350 - 1,3741,325
0,975 - 0,9990,9501,375 - 1,3991,350
1,000 - 1,0240,9751,400 - 1,4241,375
1,025 - 1,0491,0001,425 - 1,4491,400
1,050 - 1,0741,0251,450 - 1,4741,425
1,075 - 1,0991,0501,475 - 1,4991,450
1,100 - 1,1241,0751,500 - 1,5241,475
1,125 - 1,1491,1001,525 - 1,5491,500

A. 1,150 mm
B. 1,175 mm
C. 1,775-1,799 mm
D. 1,200-1,224 mm
Wybór grubości podkładki regulacyjnej, który nie wynosi 1,150 mm jest nieprawidłowy, ponieważ nie uwzględnia rzeczywistych danych z tabeli dotyczących luzów osiowych. Na przykład, jeśli ktoś wybiera grubość 1,775-1,799 mm, to znaczy, że ignoruje fakt, że luz osiowy 1,175 mm mieści się w szerszym zakresie, a nie w przedziale, który został podany. Tego rodzaju podejście może wynikać z błędnego zrozumienia, iż większa grubość podkładki automatycznie rozwiąże problem luzu. W rzeczywistości, dobór zbyt grubej podkładki może prowadzić do zbyt dużego nacisku na łożysko, co może skutkować jego uszkodzeniem lub przedwczesnym zużyciem. Często błędem jest również mylenie luzu z innymi parametrami mechanicznymi, co prowadzi do złych decyzji w doborze komponentów. W przemyśle ważne jest, aby stosować się do wytycznych zawartych w normach i tabelach, które zostały opracowane w oparciu o doświadczenie i badania, co zapewnia nie tylko efektywność, ale również bezpieczeństwo działania urządzeń mechanicznych.

Pytanie 29

Aby czterosuwowy silnik zrealizował pełny cykl pracy (cztery suwy), wał korbowy musi wykonać obrót

A. o 360°
B. o 540°
C. o 720°
D. o 180°
Wiesz co? Twoja odpowiedź "o 720°" jest jak najbardziej na miejscu. Silnik czterosuwowy to trochę skomplikowana sprawa, ale ogólnie wykonuje pełny cykl w czterech etapach: ssanie, sprężanie, praca (to ten moment, gdy mamy wybuch) i wydech. Żeby to wszystko zadziałało, wał korbowy musi zrobić dwa pełne obroty. To oznacza, że po każdym cyklu wał obraca się o 720°. Fajnie, że to zrozumiałeś, bo to mega istotne dla działania silnika. W praktyce, przy każdym obrocie wału o 360° kończy się tylko dwa suwki. Jak myślisz, czemu tak jest? To wiedza, która naprawdę przydaje się w mechanice i naukach o silnikach, bo bez tego ciężko ogarnąć diagnozowanie czy regulacje. Także, dobra robota w zrozumieniu tego tematu!

Pytanie 30

Oktanowa liczba paliwa wskazuje na

A. wartość opałową paliwa
B. odporność paliwa na samozapłon
C. skłonność paliwa do samozapłonu
D. odporność paliwa na spalanie detonacyjne
Odpowiedzi wskazujące na skłonności czy odporności paliwa na samozapłon są mylące, ponieważ liczba oktanowa w rzeczywistości nie odnosi się do tych aspektów. Skłonność paliwa do samozapłonu, nazywana również liczbą cetanową w kontekście olejów napędowych, jest miarą tego, jak łatwo paliwo zapala się pod wpływem ciśnienia i temperatury, co jest istotne głównie dla silników wysokoprężnych. Natomiast liczba oktanowa dotyczy silników benzynowych i ich zdolności do unikania detonacyjnego spalania, które może prowadzić do uszkodzenia silnika. Odporność na spalanie detonacyjne oznacza, że paliwo nie zapali się zbyt wcześnie w cyklu pracy silnika, co jest kluczowe dla zachowania efektywności i bezpieczeństwa działania. Warto również zauważyć, że pojęcie wartości opałowej paliwa, które jest kolejnym błędnym kierunkiem w odpowiedziach, odnosi się do ilości energii wydobywanej z paliwa podczas spalania, a nie jego zachowania w kontekście samozapłonu czy spalania detonacyjnego. Dlatego ważne jest, aby zrozumieć, że materiały eksploatacyjne, takie jak paliwa, są klasyfikowane na podstawie różnych właściwości, które odpowiadają ich specyficznym zastosowaniom, a mylenie tych terminów może prowadzić do niewłaściwych wyborów w doborze paliwa dla silników, co w dłuższej perspektywie może skutkować obniżoną wydajnością, zwiększonymi emisjami spalin oraz uszkodzeniem silnika.

Pytanie 31

Jakie jest typowe rozstawienie wykorbienia wału korbowego w silniku o trzech cylindrach w stopniach?

A. 90°
B. 180°
C. 120°
D. 270°
W silniku 3-cylindrowym wykorbienie wału korbowego jest najczęściej rozstawione co 120°. Taka konfiguracja wynika z konieczności zapewnienia równomiernego rozkładu sił działających na wał, co przekłada się na jego stabilność oraz równowagę podczas pracy. Wał korbowy w silnikach o nieparzystej liczbie cylindrów musi być odpowiednio skonstruowany, aby zminimalizować drgania i zapewnić płynność pracy jednostki napędowej. W praktyce, takie rozstawienie pozwala na uzyskanie lepszych osiągów silnika oraz mniejsze zużycie paliwa. Dodatkowo, zgodnie z zasadami inżynierii mechanicznej, odpowiedni rozkład kąta wykorbienia na cylindry w silniku 3-cylindrowym przyczynia się do efektywnego spalania mieszanki paliwowo-powietrznej, co ma kluczowe znaczenie dla osiągów i trwałości silnika. Stąd też konfiguracja 120° jest szeroko stosowana jako standard w branży motoryzacyjnej.

Pytanie 32

Jakiego woltomierza o odpowiednim zakresie pomiarowym należy użyć do pomiaru spadku napięcia podczas rozruchu akumulatora?

A. 2 V AC
B. 20 V AC
C. 20 V DC
D. 2 V DC
Wybór zakresu 2 V AC, 20 V AC oraz 2 V DC do pomiaru spadku napięcia na akumulatorze jest zdecydowanie nietrafiony. Po pierwsze, akumulator dostarcza napięcie stałe (DC), więc woltomierz powinien być ustawiony właśnie na to napięcie. Użycie zakresu AC to spory błąd, bo sygnał zmienny (AC) nie pokazuje realnego stanu napięcia akumulatora, który jest stabilny. Dodatkowo, zakres 2 V DC może być za mały, bo spadki napięcia podczas uruchamiania mogą go przekraczać, co skutkuje błędnymi odczytami. No i ten 20 V AC – też nie ma sensu, bo to nie tylko wprowadza dodatkowe błędy, ale też nie ma nic wspólnego z rzeczywistością w systemach zasilania DC. Typowe błędy myślowe mogą tu obejmować brak rozróżnienia między AC a DC i niedocenianie wartości napięcia przy rozruchu. Żeby skutecznie ocenić stan akumulatora, trzeba korzystać z odpowiedniego sprzętu i technik pomiarowych. To jest kluczowe dla sprawności systemów elektrycznych w pojazdach.

Pytanie 33

Podczas weryfikacji sworznia tłokowego, jak należy zmierzyć jego zewnętrzną średnicę?

A. średnicówką mikrometryczną
B. suwmiarką modułową
C. mikrometrem
D. przymiarem kreskowym
Użycie suwmiarki modułowej do pomiaru średnicy zewnętrznej sworznia tłokowego może prowadzić do błędów pomiarowych z powodu ograniczonej precyzji narzędzia. Suwmiarka, chociaż może być wystarczająca do pomiarów o większych tolerancjach, nie zapewnia tak wysokiej dokładności jak mikrometr, co jest kluczowe w kontekście weryfikacji elementów o znaczeniu krytycznym, takich jak sworznie tłokowe, które muszą precyzyjnie pasować do ich gniazd. Średnicówka mikrometryczna, mimo że może wydawać się odpowiednia, nie jest narzędziem przeznaczonym do pomiaru średnicy zewnętrznej, lecz wewnętrznej, co czyni ją nieodpowiednim wyborem w tej konkretnej sytuacji. Przymiar kreskowy, chociaż również użyteczny w pomiarach, nie pozwala na uzyskanie wymaganej precyzji, co w kontekście weryfikacji wymiarowej siłowników, może doprowadzić do poważnych problemów w późniejszym etapie produkcji. Zrozumienie różnic między tymi narzędziami i ich zastosowaniem jest kluczowe, aby unikać pomyłek, które mogą prowadzić do błędnych wniosków na temat wymiarów i tolerancji elementów mechanicznych.

Pytanie 34

W trakcie diagnozowania systemu zawieszenia przy użyciu urządzenia typu "szarpak diagnostyczny", zauważono nadmierny luz koła w kierunku pionowym. Który z elementów nie ma na to wpływu?

A. Tuleja wahacza
B. Końcówka drążka kierowniczego
C. Łożyska piasty koła przedniego
D. Sworzeń wahacza
Końcówka drążka kierowniczego nie wpływa na nadmierny luz koła w płaszczyźnie pionowej, ponieważ jej główną funkcją jest przekazywanie ruchu z układu kierowniczego na koła, co dotyczy głównie ruchu poziomego. W układzie zawieszenia luz koła w płaszczyźnie pionowej jest najczęściej wynikiem problemów z komponentami, które bezpośrednio wpływają na pozycjonowanie koła względem nadwozia. Przykłady takich komponentów to sworznie wahacza, które są odpowiedzialne za ruch w zawieszeniu oraz łożyska piasty koła, które stabilizują obrót koła. Dobrą praktyką w diagnostyce jest regularne sprawdzanie stanu tych elementów, aby zapobiegać uszkodzeniom oraz poprawić komfort jazdy i bezpieczeństwo. Świadomość, które elementy wpływają na dane zjawisko, jest kluczowa dla skutecznej diagnostyki i naprawy.

Pytanie 35

Jakie urządzenie służy do specjalistycznego osłuchiwania silnika?

A. stetoskopem Bryla
B. przyrządem do pomiaru hałasu
C. analizatorem spalin
D. dymomierzem
Analizator spalin jest urządzeniem do oceny składu spalin, które ma na celu ocenę efektywności spalania paliwa w silniku, a także kontrolę emisji zanieczyszczeń do atmosfery. Choć jest to istotne narzędzie w kontekście ekologii oraz przestrzegania norm emisji, nie pozwala na bezpośrednie osłuchiwanie dźwięków silnika, które są kluczowe do diagnozowania jego stanu. Przyrząd do pomiaru hałasu, z kolei, służy do ogólnej oceny poziomu hałasu generowanego przez pojazd, lecz nie dostarcza informacji na temat specyficznych dźwięków, które mogą wskazywać na problemy mechaniczne. Z kolei dymomierz mierzy zawartość dymu w spalinach, co także nie jest związane z osłuchiwaniem silnika, lecz bardziej z jego wydajnością i jakością spalania. Błędnym podejściem jest myślenie, że te urządzenia mogą zastąpić stetoskop Bryla. W rzeczywistości, skuteczna diagnostyka silnika wymaga różnych narzędzi, z których każde pełni swoją unikalną rolę. Zrozumienie, które urządzenie jest odpowiednie do konkretnego zadania, jest kluczowe w pracy mechanika i niezbędne do zapewnienia prawidłowej oceny stanu technicznego silników.

Pytanie 36

Termin DOHC odnosi się do układu

A. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
B. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
C. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
D. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
Analizując inne odpowiedzi, można zauważyć, że pomieszanie terminologii oraz konstrukcji układów rozrządu prowadzi do nieporozumień. W pierwszej z błędnych odpowiedzi wspomniano o górnozaworowym układzie z jednym wałkiem rozrządu w kadłubie. Rzeczywiście, jednym z popularnych układów jest SOHC (Single Overhead Camshaft), który wykorzystuje tylko jeden wałek rozrządu, jednak jego umiejscowienie w kadłubie jest nieprawidłowe, ponieważ w przypadku SOHC wałek również znajduje się w głowicy silnika. Odpowiedź mówiąca o dolnozaworowym układzie z jednym wałkiem rozrządu w kadłubie odnosi się do konstrukcji, która była popularna w starszych silnikach, jednak nie jest to układ, który by się zaliczał do standardów współczesnych konstrukcji, gdzie dominują układy górnozaworowe. Współczesne silniki są projektowane z myślą o optymalizacji osiągów i efektywności, co czyni układ DOHC standardem w silnikach o wyższej mocy. Zrozumienie różnicy pomiędzy tymi terminami jest kluczowe, aby właściwie rozpoznać oraz ocenić funkcjonalność silnika w kontekście jego zastosowania, co jest niezbędne w profesjonalnych dyskusjach na temat inżynierii silników.

Pytanie 37

Kompletne oddzielenie współdziałających elementów za pomocą środka smarowego ma miejsce

A. w momencie tarcia płynnego
B. w sytuacji tarcia granicznego
C. w przypadku tarcia suchego
D. w trakcie docierania wstępnego
Docieranie wstępne to po prostu oszlifowanie powierzchni na początku, ale w tym etapie elementy się stykają, więc tarcie jest o wiele większe niż w przypadku tarcia płynnego. Używa się tu mało smaru, no ale nie ma pełnego rozdzielenia powierzchni, więc może się to kończyć szybszym zużyciem. A tarcie suche to już w ogóle dramat, bo wtedy nie ma smaru i powierzchnie się stykają bezpośrednio, co strasznie podnosi współczynnik tarcia i przyspiesza zużycie. Natomiast tarcie graniczne? To sytuacja, gdy film smarujący jest za cienki, co może zniszczyć wszystko przez te siły tarcia. Trzeba rozumieć, że te stany nie mają pełnego rozdzielenia powierzchni, bo to jest przepustka do złej efektywności w mechanice. Często ludzie mylą te pojęcia i myślą, że smarowanie tam działa tak samo jak przy tarciu płynnym, ale to duży błąd. Żeby osiągnąć dobre warunki pracy, trzeba dążyć do tego, by smar cały czas był na poziomie, co pomoże uniknąć bezpośredniego kontaktu i zminimalizować tarcie.

Pytanie 38

Badanie zadymienia spalin przeprowadza się w silnikach

A. zasilanych paliwem LPG
B. zasilanych paliwem CNG
C. z zapłonem iskrowym
D. z zapłonem samoczynnym
Wydaje mi się, że podejście do pomiaru zadymienia w silnikach z zapłonem iskrowym jest trochę błędne. Te silniki działają na zasadzie zapłonu od świecy, więc całkiem inaczej to wygląda niż w dieslach. W silnikach benzynowych spalanie jest bardziej stabilne, a cząstek stałych jest mniej. Nawet w silnikach na LPG czy CNG, które są gazowe, sytuacja wygląda inaczej. Choć te paliwa spalają się czyściej, nie produkują za dużo cząstek, więc pomiar zadymienia nie jest tam aż tak istotny. To, że wszędzie zakłada się podobne ilości cząstek we wszystkich silnikach, to błąd. Ważne jest, żeby znać różnice w konstrukcji i działaniu silników, bo ma to ogromne znaczenie dla analizy emisji. Dlatego trzeba stosować odpowiednie metody dla każdego typu silnika, bo normy różnią się w zależności od paliwa.

Pytanie 39

Wtryskiwacz, będący częścią systemu zasilania K-Jetronic, ma na celu dostarczenie dawki

A. powietrza bezpośrednio do komory spalania
B. paliwa bezpośrednio do komory spalania
C. paliwa do kolektora dolotowego
D. powietrza do kolektora dolotowego
Wtryskiwacz w układzie zasilania typu K-Jetronic ma kluczową rolę w dostarczaniu paliwa do silnika. Jego zadaniem jest wtryskiwanie odpowiedniej dawki paliwa do kolektora dolotowego, skąd następnie paliwo miesza się z powietrzem i jest transportowane do komory spalania. Wtryskiwacz działa na zasadzie proporcjonalnego dawkowania, co ma na celu zapewnienie optymalnych warunków do spalania i zwiększenie efektywności silnika. System K-Jetronic, oparty na mechanice, został zaprojektowany tak, aby reagować na zmiany obciążenia silnika oraz warunki pracy, co umożliwia precyzyjne dozowanie paliwa. Przykładowo, w sytuacji zwiększonego zapotrzebowania na moc, wtryskiwacz zwiększa ilość dostarczanego paliwa, co przekłada się na poprawę osiągów pojazdu. W praktyce, stosowanie wtryskiwaczy w systemach paliwowych zgodnych z normami EURO i innymi standardami emisyjnymi jest kluczowe dla redukcji emisji spalin i poprawy wydajności silników.

Pytanie 40

Kierowca ma problem z uruchomieniem pojazdu. Wał korbowy się obraca, jednak silnik nie startuje. Zanim przeprowadzisz diagnozę układu zapłonowego, powinieneś najpierw zbadać układ

A. napędowy
B. zasilania paliwem
C. elektryczny alternatora
D. wydechowy
Zdiagnozowanie układu zasilania paliwem jest kluczowym krokiem w procesie diagnostycznym silnika, szczególnie gdy wał korbowy się obraca, ale silnik nie zapala. Oznacza to, że mechanika silnika funkcjonuje, jednak brak odpowiedniego paliwa lub jego niewłaściwe dostarczenie do cylindrów uniemożliwia zapłon. W pierwszej kolejności należy sprawdzić, czy paliwo dociera do silnika w odpowiednich ilościach i ciśnieniu. Może to obejmować kontrolę pompy paliwowej, filtrów, a także wtryskiwaczy. Przykładowo, zablokowany filtr paliwa może ograniczać przepływ, a uszkodzona pompa paliwowa nie będzie w stanie dostarczyć odpowiedniego ciśnienia. Standardy diagnostyczne, takie jak te określone przez ASE (Automotive Service Excellence), podkreślają znaczenie systematycznego podejścia do diagnostyki, w którym układ zasilania paliwem jest diagnozowany przed układem zapłonowym, aby wykluczyć najczęstsze przyczyny problemów z uruchamianiem silnika.