Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 5 czerwca 2025 01:34
  • Data zakończenia: 5 czerwca 2025 01:34

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wskaż definicję fiksanali?

A. Małe ampułki ze ściśle określoną masą substancji chemicznej
B. Małe ampułki z nieokreśloną masą substancji chemicznej
C. Kapsułki zawierające niewielkie ilości substancji chemicznej
D. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
Zrozumienie pojęcia fiksanali w kontekście farmaceutycznym jest kluczowe, jednak wiele pomyłek może wynikać z nieprecyzyjnego podejścia do terminów i ich znaczenia. Odpowiedzi, które wskazują na małe ampułki z nieokreśloną masą związku chemicznego, wprowadzają w błąd, gdyż fiksanal powinien zawsze zawierać ściśle określoną masę substancji. Nieokreśloność w masie może prowadzić do nieprzewidywalnych efektów, co jest niedopuszczalne w farmacji. Odpowiedzi, które mówią o kapsułkach, również są nieprecyzyjne, jako że fiksanale to ampułki, a nie kapsułki, co jest zasadniczą różnicą w kontekście formy podania oraz sposobu dawkowania. Dodatkowo, niektóre odpowiedzi sugerujące małe kapsułki z nieokreśloną ilością stałego związku chemicznego mogą wynikać z braku zrozumienia, że każda substancja musi być odpowiednio dawkowana, aby zapewnić bezpieczeństwo i skuteczność leczenia. W farmacji, precyzyjne pomiary i odpowiednie formy podania są niezbędne do zachowania standardów jakości i skuteczności leków. Bez tego, ryzyko błędów medycznych znacznie wzrasta, co może zagrażać zdrowiu pacjentów.

Pytanie 2

W trakcie kalibracji stężenia roztworu kwasu solnego na przynajmniej przygotowany roztwór zasady sodowej ma miejsce reakcja

A. wytrącania osadu
B. redoks
C. hydrolizy
D. zobojętniania
Wybór odpowiedzi związanej z redoks może wynikać z nieporozumienia dotyczącego mechanizmu reakcji. Reakcje redoks dotyczą transferu elektronów między reagentami, co jest charakterystyczne dla reakcji, w których zmiana stopnia utlenienia jest kluczowa. W przypadku reakcji kwasu solnego z zasadowym roztworem sodowym nie mamy do czynienia z takim transferem, ponieważ nie zachodzi zmiana stopnia utlenienia żadnego z reagentów. Kolejnym błędnym podejściem jest sugestia, że proces ten może być klasyfikowany jako hydroliza. Hydroliza to proces, w którym cząsteczki wody reagują z substancjami chemicznymi, prowadząc do ich rozkładu lub przekształcenia. Zobojętnienie kwasu przez zasadę nie jest hydrolizą, lecz specyficzną reakcją neutralizacji, gdzie produkty są wodą i solą. Ponadto, odpowiedź dotycząca wytrącania osadu jest nieadekwatna w kontekście tej reakcji, ponieważ w przypadku neutralizacji nie tworzy się osad, chyba że na przykład poprzez dodanie innego reagentu w określonych warunkach, co nie jest istotą tej konkretnej reakcji. Właściwe zrozumienie różnic pomiędzy tymi procesami chemicznymi jest kluczowe dla prawidłowego przewidywania wyników reakcji i ich zastosowań w praktyce laboratoryjnej. Dlatego ważne jest, aby pamiętać, że reakcje zobojętniania są nie tylko podstawą chemii analitycznej, ale również mają szerokie zastosowanie w przemyśle i badaniach naukowych.

Pytanie 3

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 50 g
B. 20 g
C. 40 g
D. 30 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 4

Wykonano ocenę jakości dostarczonej partii wodorotlenku sodu.
Zgodne ze specyfikacją towaru są

Parametr oznaczanyJednostkaWartość parametru
Według specyfikacjiZbadana analitycznie
Zawartość wodorotlenku sodu%>=9898,3
Zawartość węglanu sodu%<=0,40,39
Zawartość chlorku sodu%<=0,0150,015

A. tylko zawartości procentowe węglanu sodu i chlorku sodu.
B. tylko zawartości procentowe wodorotlenku sodu i chlorku sodu.
C. zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu.
D. tylko zawartości procentowe wodorotlenku sodu i węglanu sodu.
Wybór odpowiedzi ograniczających się tylko do zawartości procentowych wodorotlenku sodu i chlorku sodu jest niewłaściwy z kilku powodów. Przede wszystkim, brak uwzględnienia węglanu sodu w ocenie jakości partii prowadzi do niekompletnej analizy. Węglan sodu, podobnie jak inne składniki, ma swoje specyfikacje, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i skuteczność produktu końcowego. Oprócz tego, wiele osób błędnie zakłada, że najważniejszym wskaźnikiem jakości jest tylko kluczowy składnik, jakim jest wodorotlenek sodu. Tego typu podejście jest mylne, ponieważ w branży chemicznej każdy składnik ma swoje znaczenie. Zawartości inne niż główny składnik mogą wpływać na właściwości fizykochemiczne produktu, co w konsekwencji może wpływać na jego zastosowanie w różnych procesach technologicznych. Ignorowanie tych parametrów może prowadzić do poważnych problemów, takich jak niestabilność produktu czy jego nieodpowiedniość do danego zastosowania. Dlatego tak ważne jest, aby każda partia chemikaliów była oceniana całościowo, z uwzględnieniem wszystkich istotnych parametrów jakościowych. Tylko w ten sposób można zapewnić, że produkt spełnia wymagania techniczne i normy bezpieczeństwa, a także że może być używany w odpowiednich zastosowaniach przemysłowych.

Pytanie 5

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. odmierzoną porcję roztworu kwasu octowego
B. naważkę kwasu mrówkowego
C. naważkę kwasu benzenokarboksylowego
D. odmierzoną ilość kwasu azotowego(V)
Użycie naważki kwasu benzenokarboksylowego do przygotowywania miana roztworu wodnego wodorotlenku sodu jest właściwe z kilku istotnych powodów. Kwas benzenokarboksylowy jest znanym kwasem organicznym, którego właściwości chemiczne umożliwiają precyzyjne ustalanie stężenia zasady w roztworze. Przygotowanie roztworu wzorcowego polega na rozpuszczeniu dokładnie znanej masy substancji w wodzie, co pozwala na osiągnięcie pożądanej koncentracji. W praktyce laboratoryjnej, stosowanie substancji o dobrze znanym i stabilnym stężeniu, takich jak kwas benzenokarboksylowy, jest standardem, który zapewnia powtarzalność wyników oraz dokładność analizy. Dodatkowo, przy pomocy tego kwasu można przeprowadzać miareczkowanie, co jest kluczowe w procesach analitycznych oraz badaniach jakościowych. Tego rodzaju praktyki są zgodne z zasadami metrologii chemicznej, która kładzie nacisk na precyzyjne pomiary i standaryzację procesów.

Pytanie 6

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. filtracja
B. krystalizacja
C. destylacja
D. dekantacja
Destylacja to proces separacji składników mieszaniny cieczy oparty na różnicy w ich temperaturach wrzenia. W wyniku tego procesu, ciecz podgrzewana do temperatury wrzenia paruje, a następnie para jest skraplana w chłodnicy, uzyskując czysty składnik. Jest to kluczowa metoda stosowana w przemyśle chemicznym, petrochemicznym oraz w produkcji napojów alkoholowych, gdzie celem jest otrzymanie wysokiej czystości składników. Na przykład, w produkcji whisky lub wina, destylacja pozwala na oddzielenie etanolu od innych substancji, co wpływa na smak i jakość finalnego produktu. W przemyśle chemicznym, destylacja jest wykorzystywana do oczyszczania rozpuszczalników oraz produkcji chemikaliów. Stosowanie destylacji zgodnie z normami, takimi jak ISO 9001, zapewnia wysoką jakość procesów i gotowych produktów, co jest kluczowe dla bezpieczeństwa i efektywności produkcji.

Pytanie 7

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. siarkowym(VI)
B. azotowym(V)
C. bromowodorowym
D. chlorowodorowym
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 8

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. płynów.
B. cieczy.
C. gazów.
D. ciał stałych.
Poprawna odpowiedź to "ciał stałych". Piktogram przedstawiający substancję szkodliwą dla zdrowia odnosi się do materiałów klasyfikowanych jako 6.1 według Międzynarodowego Systemu Transportu Materiałów Niebezpiecznych. Substancje te mogą być trujące i stwarzać zagrożenie dla zdrowia ludzkiego, co wymaga szczególnej ostrożności podczas transportu i przechowywania. W praktyce, substancje stałe, takie jak pewne chemikalia, są klasyfikowane w tej kategorii, ponieważ ich forma fizyczna może powodować poważne konsekwencje zdrowotne w przypadku kontaktu. Do dobrych praktyk w transporcie materiałów niebezpiecznych należy stosowanie odpowiednich środków ochrony osobistej, jak rękawice czy maski, a także zapewnienie odpowiednich warunków przechowywania, aby zminimalizować ryzyko wycieków czy narażenia ludzi na szkodliwe substancje. Wiedza dotycząca klasyfikacji materiałów niebezpiecznych jest niezbędna dla każdego, kto pracuje w branżach związanych z transportem chemikaliów, aby zapewnić bezpieczeństwo zarówno pracowników, jak i środowiska.

Pytanie 9

W karcie charakterystyki chemikaliów znajduje się informacja o przechowywaniu dichromianu(VI) potasu: .. powinien być przechowywany w odpowiednio oznakowanych, szczelnie zamkniętych pojemnikach, w chłodnym, suchym i dobrze wentylowanym magazynie, który posiada instalację elektryczną i wentylacyjną. Z tego opisu wynika, że ten chemikal może być przechowywany

A. w szczelnie zamkniętych słoikach, umieszczonych w wentylowanym pomieszczeniu
B. w workach papierowych umieszczonych w wentylowanym magazynie
C. w workach jutowych umieszczonych w wentylowanym pomieszczeniu
D. w drewnianych skrzyniach umieszczonych w wentylowanym pomieszczeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na magazynowanie dichromianu(VI) potasu w szczelnie zamkniętych słoikach w wentylowanym pomieszczeniu jest poprawna, ponieważ spełnia wszystkie wymagania określone w karcie charakterystyki substancji chemicznych. Przechowywanie substancji chemicznych w odpowiednich opakowaniach jest kluczowe dla zapewnienia ich stabilności oraz minimalizacji ryzyka kontaktu z czynnikami zewnętrznymi. Szczelne zamknięcie słoików zapobiega uwolnieniu substancji do atmosfery oraz chroni je przed wilgocią, co jest istotne w kontekście ich właściwości chemicznych. Ponadto, zapewnienie odpowiedniej wentylacji w pomieszczeniu magazynowym jest niezbędne dla redukcji potencjalnych zagrożeń związanych z kumulacją par lub oparów. W praktyce, przechowywanie substancji w takich warunkach jest zgodne z zasadami GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), który zaleca stosowanie odpowiednich środków ostrożności przy składowaniu substancji niebezpiecznych, a także przestrzeganie lokalnych regulacji dotyczących składowania chemikaliów. Przykładowo, w laboratoriach chemicznych często stosuje się podobne procedury do zapewnienia bezpieczeństwa i ochrony środowiska.

Pytanie 10

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,740 g
B. 27,745 g
C. 22,745 g
D. 27,740 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie masy substancji na wadze technicznej to tak naprawdę zrównoważenie masy tego, co ważymy, z masą odważników, które mamy. W tym przypadku mamy odważniki, które razem dają 27,740 g. Wchodzą w to: 20 g, 5 g, 2 g, 500 mg (czyli 0,5 g), 200 mg (czyli 0,2 g), 20 mg (0,02 g), 10 mg (0,01 g) oraz jeszcze raz 10 mg (0,01 g). Jakbyśmy to wszystko zliczyli: 20 g + 5 g + 2 g + 0,5 g + 0,2 g + 0,02 g + 0,01 g + 0,01 g to właśnie daje nam 27,740 g. W laboratoriach ważenie substancji jest mega ważne, żeby mieć pewność, że wyniki są wiarygodne. Wagi techniczne są wykorzystywane w różnych branżach, jak chemia czy farmacja, gdzie dokładność to klucz. Żeby wszystko dobrze wyważyć, trzeba używać odpowiednich odważników i ich dokładnie posumować. To nie tylko zapewnia precyzję, ale i powtarzalność wyników, co jest istotne.

Pytanie 11

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 80g
B. 200g
C. 50g
D. 20g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 12

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Azotan(V) srebra
B. Tlenek rtęci(II)
C. Glukozę
D. Azbest

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 13

Jakie roztwory chemiczne powinny być stanowczo pobierane przy włączonym dygestorium?

A. kwasu cytrynowego o stężeniu 36%
B. etanolu o stężeniu 36%
C. kwasu solnego o stężeniu 36%
D. glicerolu o stężeniu 36%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kwas solny o stężeniu 36% jest substancją silnie żrącą i niebezpieczną dla zdrowia. Jego właściwości chemiczne sprawiają, że w przypadku kontaktu z skórą lub błonami śluzowymi może prowadzić do poważnych oparzeń oraz uszkodzenia tkanek. Dlatego zgodnie z zasadami bezpieczeństwa pracy w laboratoriach chemicznych, wszelkie operacje związane z kwasem solnym powinny być przeprowadzane pod włączonym dygestorium. Dygestorium zapewnia odpowiednią wentylację, eliminując ryzyko wdychania szkodliwych oparów i substancji lotnych, co jest zgodne z normami BHP oraz praktykami stosowanymi w laboratoriach. Przykłady zastosowania kwasu solnego obejmują jego użycie w procesach analitycznych, jak titracje, czy w syntezach chemicznych, co podkreśla jego znaczenie w branży chemicznej. Stosowanie dygestorium nie tylko chroni pracowników, ale także zapobiega zanieczyszczeniu środowiska laboratorium. Współczesne laboratoria stosują te zasady jako standard, zapewniając bezpieczeństwo i zgodność z normami ochrony zdrowia.

Pytanie 14

Jakim kolorem zazwyczaj oznacza się przewody w instalacji gazowej w laboratorium?

A. niebieskim
B. żółtym
C. szarym
D. zielonym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody instalacji gazowej w laboratoriach oznaczone są kolorem żółtym, co jest zgodne z ogólnymi zasadami i normami dotyczącymi oznakowania instalacji gazowych. Kolor żółty symbolizuje substancje niebezpieczne, w tym gazy palne oraz toksyczne, co jest kluczowe dla bezpieczeństwa pracy w laboratoriach. Oznakowanie to ma na celu szybką identyfikację potencjalnych zagrożeń oraz minimalizację ryzyka w przypadku awarii. Przykładem zastosowania tej zasady jest sytuacja, w której technik laboratoryjny musi szybko zlokalizować przewody gazowe, aby przeprowadzić konserwację lub w przypadku awarii. Zgodnie z normami branżowymi (np. PN-EN ISO 7010), oznakowanie instalacji gazowych powinno być wyraźne i czytelne, a także regularnie kontrolowane, aby zapewnić jego aktualność i stan techniczny. Należy także pamiętać, że przestrzeganie zasad dotyczących oznakowania przewodów gazowych nie tylko zwiększa bezpieczeństwo, ale także ułatwia pracownikom szybkie podejmowanie decyzji w sytuacjach kryzysowych.

Pytanie 15

Stosunek masowy miedzi do siarki w siarczku miedzi(I) wynosi

16S
Siarka
32
29Cu
Miedź
63,55

A. 3:1
B. 2:1
C. 1:1
D. 4:1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siarczek miedzi(I), czyli Cu2S, to ciekawy związek. Składa się z dwóch atomów miedzi i jednego atomu siarki. Jak obliczamy masy molowe, to miedź ma masę 63,55 g/mol, więc dla dwóch atomów mamy razem 127,1 g. Siarka ma masę 32 g/mol. Jak to połączymy, to mamy stosunek masowy miedzi do siarki równy 4:1. Myślę, że zrozumienie tego stosunku to podstawa, szczególnie w przemyśle, gdzie dokładne proporcje wpływają na jakość produktów. Wiedza na temat tego, jak obliczać masy w reakcjach chemicznych, jest mega ważna. Dlatego dobrze jest to ogarnąć, bo to przyda się każdemu chemikowi czy inżynierowi materiałowemu.

Pytanie 16

Jakie są zalecenia dotyczące postępowania z odpadowymi roztworami kwasów oraz zasad?

A. Roztwory kwasów i zasad należy rozcieńczyć, zobojętnić zgodnie z procedurą, a następnie umieścić w osobnych pojemnikach
B. Roztwory kwasów i zasad można wylewać do kanalizacji, przepłukując silnym strumieniem wody w celu maksymalnego rozcieńczenia
C. Roztwory kwasów i zasad można umieścić bez neutralizacji w tym samym pojemniku, gdzie będą się wzajemnie neutralizowały
D. Roztwory kwasów i zasad należy mocno zagęścić i zobojętnić stężonymi roztworami NaOH oraz HCl, aby uzyskać odpady w postaci stałych soli

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ roztwory kwasów i zasad mogą być neutralizowane poprzez ich wzajemne mieszanie, co prowadzi do zmniejszenia ich niebezpiecznych właściwości. W praktyce, mieszając kwas z zasadą, powstaje sól i woda, co jest podstawą reakcji zobojętnienia. Ważne jest jednak, aby proces ten prowadzić ostrożnie, z uwagi na wydzielanie ciepła, które może być niebezpieczne. W przemyśle chemicznym oraz laboratoriach stosuje się standardowe procedury, które określają, jak powinno się postępować z odpadkami chemicznymi, aby zapewnić bezpieczeństwo. Istotne jest, aby nie przechowywać odpadów kwasowych i zasadowych w tym samym pojemniku bez neutralizacji, ponieważ może to prowadzić do nieprzewidywalnych reakcji chemicznych. Przykładowo, w laboratoriach często stosowane są odpowiednie pojemniki na odpady chemiczne, które są oznaczone i przystosowane do gromadzenia konkretnych typów substancji. Stosowanie się do wytycznych z zakresu ochrony środowiska oraz przepisów BHP jest kluczowe w każdym miejscu pracy zajmującym się substancjami chemicznymi.

Pytanie 17

W przypadku kontaktu ze stężonym roztworem zasady, co należy zrobić jak najszybciej?

A. zmyć bieżącą wodą
B. skorzystać z amoniaku
C. polać 3% roztworem wody utlenionej
D. zastosować 5% roztwór wodorowęglanu sodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku oblania się stężonym roztworem zasady kluczowe jest jak najszybsze zneutralizowanie i usunięcie kontaktu z substancją. Zmycie bieżącą wodą jest najbardziej efektywną i odpowiednią metodą, ponieważ pozwala na rozcieńczenie zasady oraz fizyczne usunięcie jej z powierzchni skóry lub materiału. Woda działa jako rozpuszczalnik, który zmniejsza stężenie zasady, co z kolei minimalizuje ryzyko uszkodzenia tkanek. W praktyce, zaleca się pod bieżącą wodą przepłukać obszar kontaktu przez co najmniej 15 minut, aby zapewnić skuteczne usunięcie substancji. Ponadto, w sytuacjach laboratoryjnych, przestrzega się standardów BHP, które nakładają obowiązek posiadania odpowiednich stacji do płukania oczu i ciała, aby szybko reagować na takie wypadki. Warto również pamiętać o noszeniu odpowiednich środków ochrony osobistej, takich jak rękawice i gogle, co może zminimalizować ryzyko kontaktu z niebezpiecznymi substancjami. Tylko w przypadku, gdy zasada nie jest zmyta, można myśleć o dalszym postępowaniu, jednak zawsze należy wrócić do podstawowej metody usuwania substancji.

Pytanie 18

Technika oddzielania płynnych mieszanin, w której wykorzystuje się różnice w prędkości migracji składników przez odpowiednią bibułę, nazywa się

A. chromatografią
B. adsorpcją
C. filtracją
D. destylacją

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chromatografia to technika rozdzielania składników mieszanin, która opiera się na różnicach w ich powinowactwie do fazy stacjonarnej i fazy ruchomej. Proces ten umożliwia analizę oraz oczyszczanie substancji chemicznych, a jego zastosowanie jest szerokie, od analizy jakościowej w laboratoriach chemicznych po przemysł farmaceutyczny, gdzie służy do czyszczenia składników aktywnych. W chromatografii cieczowej, która jest jedną z najczęstszych metod, próbka jest rozdzielana na podstawie różnic w szybkości migracji jej składników przez bibulę lub kolumnę wypełnioną odpowiednim materiałem. Zastosowanie chromatografii obejmuje zarówno naukę, jak i przemysł, umożliwiając kontrolę jakości, identyfikację substancji oraz badania środowiskowe, co czyni ją kluczowym narzędziem w analizach chemicznych. Standardy ISO oraz metodyka Good Laboratory Practice (GLP) regulują stosowanie chromatografii, zapewniając wysoką jakość wyników i bezpieczeństwo w laboratoriach.

Pytanie 19

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na obecność zanieczyszczeń oraz metody ich usuwania
B. na pojemność oraz skład opakowania
C. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
D. na ilość domieszek w składzie oraz datę przydatności

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca oznaczeń literowych R i S (obecnie H i P zgodnie z rozporządzeniem CLP) jest prawidłowa, ponieważ te oznaczenia mają na celu informowanie o ryzyku związanym z substancjami chemicznymi oraz zalecanych środkach ostrożności. Oznaczenia R (ryzyko) wskazują na potencjalne zagrożenia, takie jak toksyczność, wybuchowość czy korozja, z jakimi można się spotkać podczas pracy z danym odczynnikiem. Z kolei oznaczenia S (środki ostrożności) sugerują praktyczne zalecenia dotyczące bezpiecznego obchodzenia się z substancją, takie jak stosowanie odpowiednich środków ochrony osobistej, unikanie kontaktu ze skórą, czy przechowywanie w odpowiednich warunkach. Dla przykładu, substancja z oznaczeniem H300 (może być śmiertelna w przypadku połknięcia) wymaga szczególnej uwagi i zachowania ostrożności podczas jej używania. Stosowanie tych oznaczeń jest integralną częścią systemu zarządzania bezpieczeństwem chemicznym, a ich znajomość i przestrzeganie są kluczowe w laboratoriach, przemysłach chemicznych i w wszelkich zastosowaniach, gdzie występują substancje niebezpieczne. Obowiązujące standardy i dobre praktyki, takie jak ISO 45001, podkreślają znaczenie oceny ryzyka i stosowania odpowiednich środków ochrony w miejscach pracy, co czyni te oznaczenia niezbędnym elementem w codziennym obiegu informacji o substancjach chemicznych.

Pytanie 20

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dodać soli buforowej do dowolnej ilości wody.
B. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
C. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
D. Przygotować bufor wyłącznie z wody kranowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 21

Którego związku chemicznego, z uwagi na jego silne właściwości higroskopijne, nie powinno się używać w analizie miareczkowej jako substancji podstawowej?

A. Na2CO3
B. Na2B4O7·10H2O
C. Na2C2O4
D. NaOH

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
NaOH, czyli wodorotlenek sodu, jest substancją silnie higroskopijną, co oznacza, że ma zdolność do pochłaniania wilgoci z powietrza. To właściwość powoduje, że w procesie miareczkowania, gdzie precyzja i dokładność są kluczowe, stosowanie NaOH jako substancji podstawowej jest niezalecane. Po nawilżeniu NaOH może zmieniać swoją masę, co w konsekwencji prowadzi do uzyskania błędnych wyników analizy. Dla osiągnięcia wiarygodnych wyników w miareczkowaniu, zaleca się używanie substancji o niskiej higroskopijności, takich jak Na2CO3 (węglan sodu), które są bardziej stabilne w warunkach atmosferycznych. Zgodnie z dobrymi praktykami laboratoryjnymi, ważne jest również przechowywanie reagentów w hermetycznych pojemnikach oraz używanie ich w krótkim czasie po otwarciu, aby zminimalizować ryzyko wchłonięcia wilgoci. Ponadto, w przypadku NaOH, jego silne właściwości zasadowe, przy nieodpowiednim przechowywaniu, mogą również prowadzić do jego dekompozycji. Tak więc, dla zachowania integralności analizy chemicznej, NaOH nie powinno być stosowane jako substancja podstawowa w miareczkowaniu.

Pytanie 22

Roztwór amoniaku o stężeniu 25% nie powinien być trzymany

A. pod sprawnie działającym wyciągiem.
B. w pobliżu otwartego ognia.
C. z dala od źródeł ciepła i promieni słonecznych.
D. w butelce z ciemnego szkła.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Roztwór amoniaku o stężeniu 25% jest substancją chemiczną, która może być niebezpieczna, zwłaszcza w przypadku kontaktu z wysoką temperaturą lub otwartym ogniem. Amoniak ma niską temperaturę zapłonu i może łatwo ulegać zapłonowi w obecności źródeł ciepła, co prowadzi do ryzyka pożaru czy nawet wybuchu. Dlatego przechowywanie go w pobliżu otwartego ognia jest wysoce niewłaściwe i niezgodne z zasadami BHP. W laboratoriach, w których stosuje się substancje chemiczne, istotne jest przestrzeganie norm bezpieczeństwa, takich jak OSHA (Occupational Safety and Health Administration) czy EU REACH, które podkreślają konieczność przechowywania substancji chemicznych w odpowiednich warunkach, z dala od niebezpiecznych źródeł. Przykładowo, amoniak powinien być przechowywany w chłodnym, dobrze wentylowanym pomieszczeniu, w szczelnych pojemnikach, a nie w miejscach, gdzie mogą występować źródła zapłonu. Zrozumienie i przestrzeganie tych zasad nie tylko zwiększa bezpieczeństwo w laboratorium, ale także przyczynia się do ochrony zdrowia pracowników oraz środowiska.

Pytanie 23

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. KNO3
B. Al(NO3)3
C. AgNO3
D. Cu(NO3)2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 24

Jak definiuje się próbkę wzorcową?

A. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
B. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
C. próbkę o ściśle określonym składzie
D. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Próbka wzorcowa, definiowana jako próbka o dokładnie znanym składzie, jest kluczowym elementem w analizie laboratoryjnej. Jej głównym celem jest służyć jako punkt odniesienia do porównania z próbkami analitycznymi. W praktyce, użycie próbki wzorcowej pozwala na kalibrację instrumentów pomiarowych oraz weryfikację metod analitycznych. Przykładem zastosowania próbki wzorcowej jest analiza chemiczna, gdzie standardy wzorcowe, takie jak roztwory znanych stężeń substancji, są wykorzystywane do określenia stężenia analitów w próbkach rzeczywistych. Próbki wzorcowe są również istotne w kontekście zgodności z normami ISO, które wymagają stosowania takich standardów w procedurach analitycznych, zapewniając tym samym wiarygodność i powtarzalność wyników. Dodatkowo, laboratoria często korzystają z prób wzorcowych w ramach systemów zapewnienia jakości, co podkreśla ich znaczenie dla utrzymania wysokich standardów analitycznych oraz dokładności wyników.

Pytanie 25

Jakie urządzenie wykorzystuje się do określania lepkości płynów?

A. piknometr
B. kolorymetr
C. wiskozymetr
D. areometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiskozymetr to całkiem fajne urządzenie, które mierzy lepkość cieczy. Lepkość to taki parametr, który mówi nam, jak bardzo ciecz jest 'gęsta' w swoim zachowaniu, co jest istotne w różnych dziedzinach jak chemia, inżynieria materiałowa czy technologie procesów. Lepkość ma ogromne znaczenie, szczególnie gdy myślimy o tym, jak ciecz przepływa przez rury lub jak jest używana w przemyśle i laboratoriach. Wiskozymetry dzielą się na różne typy – mamy na przykład wiskozymetry dynamiczne, które badają lepkość przy różnych prędkościach, albo kinematyczne, które skupiają się na czasie przepływu cieczy przez określoną objętość. Warto wspomnieć, że w przemyśle spożywczym, kontrolowanie lepkości soków czy sosów jest mega ważne, żeby uzyskać dobrą konsystencję i jakość. Dodatkowo, istnieją standardy, jak na przykład ASTM D445, które określają, jak mierzyć lepkość, dzięki czemu wyniki są spójne i wiarygodne w różnych laboratoriach.

Pytanie 26

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. A
B. EX
C. B
D. IN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 27

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 16,0 g
B. 1,6 g
C. 8,0 g
D. 9,6 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 28

Na etykiecie kwasu siarkowego(VI) znajduje się piktogram pokazany na rysunku. Oznacza to, że substancja ta jest

Ilustracja do pytania
A. żrąca.
B. mutagenna.
C. nieszkodliwa.
D. rakotwórcza.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "żrąca" jest poprawna, ponieważ piktogram na etykiecie kwasu siarkowego(VI) jednoznacznie oznacza substancje, które mogą powodować ciężkie uszkodzenia tkanek. W systemie GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów) substancje żrące są klasyfikowane na podstawie ich zdolności do uszkadzania skóry oraz innych tkanek. Kwas siarkowy(VI) jest silnym kwasem, który ma zdolność do reagowania z wodą, co dodatkowo potęguje jego żrące właściwości. W praktyce, kontakt z kwasem siarkowym(VI) może prowadzić do poważnych oparzeń chemicznych, które wymagają natychmiastowej interwencji medycznej. W laboratoriach i przemyśle chemicznym niezwykle istotne jest przestrzeganie zasad bezpieczeństwa związanych z obsługą substancji żrących, takich jak stosowanie odpowiednich środków ochrony osobistej (PPE), w tym rękawic, okularów ochronnych oraz odzieży odpornych na działanie chemikaliów. Zgodność z normami bezpieczeństwa, takimi jak OSHA i CLP, jest kluczowa dla minimalizacji ryzyka związanego z narażeniem na substancje żrące.

Pytanie 29

Substancje kancerogenne to

A. mutagenne
B. uczulające
C. rakotwórcze
D. enzymatyczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kancerogenne substancje to związki chemiczne, które mają zdolność wywoływania nowotworów w organizmach żywych. Są one klasyfikowane jako rakotwórcze, co oznacza, że mogą prowadzić do transformacji komórek normalnych w komórki nowotworowe. Przykłady takich substancji to azbest, benzen oraz formaldehyd, które są powszechnie znane z ich szkodliwego wpływu na zdrowie i są regulowane przez różne normy, takie jak Międzynarodowa Agencja Badań nad Rakiem (IARC) czy OSHA (Occupational Safety and Health Administration). Wiedza o kancerogenności substancji ma kluczowe znaczenie w przemyśle, szczególnie w kontekście ochrony pracowników oraz zachowania zdrowia publicznego. Organizacje muszą wdrażać programy oceny ryzyka oraz strategie minimalizacji ekspozycji na te substancje w celu ochrony zdrowia ludzi i środowiska. W wielu krajach istnieją również regulacje prawne, które wymagają oznaczania produktów zawierających kancerogenne substancje, co pozwala konsumentom na podejmowanie świadomych decyzji.

Pytanie 30

Wskaż, do jakiego typu należą zamieszczone równania reakcji.

I. 2 Mg + O2 → 2 MgO
II. 2 KMnO4 → K2MnO4 + MnO2 + O2
III. BaCl2 + H2SO4→ BaSO4 + 2 HCl

A. I - wymiana pojedyncza, II — analiza, III - synteza.
B. I - synteza, II - analiza, HI - wymiana pojedyncza.
C. I - synteza, II - analiza, DI - wymiana podwójna.
D. I - analiza, II - synteza, HI - wymiana podwójna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "I - synteza, II - analiza, DI - wymiana podwójna" jest prawidłowa, ponieważ precyzyjnie klasyfikuje przedstawione reakcje chemiczne. Reakcja I, 2 Mg + O2 → 2 MgO, to klasyczny przykład reakcji syntezy, kiedy to dwa reagenty łączą się, tworząc jeden produkt. Takie reakcje są fundamentalne w chemii, ponieważ ilustrują procesy, które są podstawą wielu syntez chemicznych w przemyśle, na przykład w produkcji różnych związków chemicznych. Reakcja II, 2 KMnO4 → K2MnO4 + MnO2 + O2, jest reakcją analizy, gdzie jeden reagent ulega rozkładowi na kilka produktów, co jest kluczowym procesem w chemii analitycznej i przy wytwarzaniu różnych substancji chemicznych. Reakcja III, BaCl2 + H2SO4 → BaSO4 + 2 HCl, to reakcja wymiany podwójnej, podczas której dwa reagenty wymieniają składniki, co jest powszechną metodą w chemii nieorganicznej. Takie klasyfikacje są nie tylko istotne w akademickiej chemii, ale również mają zastosowanie w różnych gałęziach przemysłu chemicznego, gdzie zrozumienie typologii reakcji jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 31

Na ilustracji oznaczono numery 1 i 4:

A. 1 - chłodnicę zwrotną, 4 - kolbę destylacyjną
B. 1 - ekstraktor, 4 - chłodnicę zwrotną
C. 1 - kolbę destylacyjną, 4 - ekstraktor
D. 1 - kolbę destylacyjną, 4 - chłodnicę zwrotną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ kolba destylacyjna (oznaczona jako 1) jest kluczowym elementem w procesie destylacji, który jest wykorzystywany do separacji cieczy na podstawie różnicy ich temperatur wrzenia. W kolbie destylacyjnej mieszanina cieczy jest podgrzewana, co prowadzi do parowania substancji o niższej temperaturze wrzenia. Następnie, skroplone pary są kierowane do chłodnicy zwrotnej (oznaczonej jako 4), która zapewnia ich kondensację i powrót do kolby, co pozwala na dalszą separację. Chłodnica zwrotna jest istotnym elementem, który ogranicza straty materiału i zwiększa efektywność procesu. Przykładem zastosowania kolby destylacyjnej oraz chłodnicy zwrotnej jest produkcja alkoholi, gdzie dokładność destylacji jest niezbędna do uzyskania produktów o wysokiej czystości. Ponadto, wiedza na temat tych urządzeń jest istotna w laboratoriach chemicznych oraz przemyśle, gdzie standardy jakości muszą być ściśle przestrzegane, a procesy muszą być zoptymalizowane.

Pytanie 32

Na podstawie informacji zawartych w tabeli wskaż mieszaninę oziębiającą o temperaturze -21 °C.

Temperatura mieszaninySkład mieszaninyStosunek masowy
-15 °Clód + octan sodu10:9
-18 °Clód + chlorek amonu10:3
-21 °Clód + chlorek sodu3:1
-25 °Clód + azotan amonu1:9

A. 90 g lodu i 30 g chlorku amonu.
B. 10 g lodu i 3 g chlorku sodu.
C. 150 g lodu i 50 g chlorku sodu.
D. 100 g lodu i 30 g chlorku amonu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '150 g lodu i 50 g chlorku sodu.' jest poprawna, ponieważ odpowiada stosunkowi masowemu 3:1, co jest kluczowe przy przygotowywaniu mieszanin oziębiających. W przypadku mieszanin takich jak sól i lód, zachodzi reakcja endotermiczna, w której sól obniża temperaturę topnienia lodu, co pozwala uzyskać niską temperaturę. Zgodnie z danymi zawartymi w tabeli, dla uzyskania temperatury -21 °C, konieczne jest zastosowanie odpowiednich proporcji lodu i chlorku sodu, a 150 g lodu w połączeniu z 50 g chlorku sodu są idealnymi składnikami. Tego rodzaju mieszaniny są stosowane w różnych aplikacjach, takich jak chłodzenie w laboratoriach chemicznych, gdzie wymagana jest kontrola temperatury, a także w medycynie, gdzie stosuje się je do przechowywania próbek w niskich temperaturach. Zrozumienie tej zasady jest kluczowe w pracach laboratoryjnych i przemysłowych, gdzie kontrolowanie temperatury ma istotne znaczenie dla zachowania właściwości substancji.

Pytanie 33

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 25%
B. 20%
C. 75%
D. 2,5%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stężenie procentowe roztworu obliczamy jako stosunek masy rozpuszczonej substancji (w tym przypadku jodku potasu) do całkowitej masy roztworu, wyrażony w procentach. W naszym przypadku mamy 25 g jodku potasu rozpuszczonego w 100 cm³ wody. Gęstość wody wynosi 1 g/cm³, co oznacza, że 100 cm³ wody ma masę 100 g. Całkowita masa roztworu wynosi więc 25 g (masy jodku potasu) + 100 g (masy wody) = 125 g. Stężenie procentowe obliczamy jako: (masa rozpuszczonej substancji / masa roztworu) × 100%, co daje (25 g / 125 g) × 100% = 20%. Takie obliczenia są niezwykle istotne w chemii analitycznej, gdzie dokładne stężenia roztworów są kluczowe w różnych zastosowaniach, takich jak przygotowywanie odczynników czy analiza jakościowa i ilościowa substancji chemicznych.

Pytanie 34

Oblicz, ile moli gazu można zebrać w pipecie gazowej o pojemności 500 cm3, jeśli gaz będzie gromadzony w warunkach normalnych. (W normalnych warunkach jeden mol gazu ma objętość 22,4 dm3)

A. 0,022 mola
B. 0,200 mola
C. 0,100 mola
D. 0,002 mola

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć liczbę moli gazu, który można zebrać w pipecie gazowej o pojemności 500 cm³ w warunkach normalnych, należy skorzystać z faktu, że w tych warunkach jeden mol gazu zajmuje objętość 22,4 dm³. Najpierw przekształcamy objętość pipecie z cm³ na dm³, co daje: 500 cm³ = 0,5 dm³. Następnie stosujemy wzór na obliczenie liczby moli: liczba moli = objętość gazu / objętość jednego mola. W naszym przypadku to będzie: liczba moli = 0,5 dm³ / 22,4 dm³/mol = 0,022 mól. To obliczenie jest zgodne z zasadami chemii gazów idealnych i przydatne w różnych zastosowaniach laboratoryjnych, takich jak przygotowywanie roztworów, gdzie precyzyjne dawkowanie reagentów jest kluczowe. Zrozumienie tego zagadnienia jest istotne nie tylko w chemii, ale również w dziedzinach pokrewnych, takich jak inżynieria chemiczna czy biotechnologia, gdzie kontrola warunków reakcji jest niezbędna dla uzyskania optymalnych wyników.

Pytanie 35

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(IV) z azotu
B. kwasu azotowego(V) z azotu
C. kwasu azotowego(III) z azotu
D. kwasu azotowego(II) z azotu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 36

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 12,5 kg
B. 50,0 kg
C. 37,5 kg
D. 25,0 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość wapienia potrzebną do uzyskania 7 kg wapna palonego (CaO) przy wydajności reakcji wynoszącej 50%, należy najpierw zrozumieć reakcję chemiczną, która zachodzi. W reakcji CaCO3 → CaO + CO2 mol wapnia (Ca) uzyskujemy z jednego mola węglanu wapnia (CaCO3). Masy molowe są następujące: Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, co daje masę CaCO3 równą 100 g/mol. Z przeprowadzonej reakcji wynika, że 1 mol CaCO3 daje 1 mol CaO, co odpowiada masie 56 g/mol dla CaO. Z punktu widzenia praktycznego, wydajność 50% oznacza, że aby otrzymać 7 kg (7000 g) wapna palonego, potrzebujemy 2 razy więcej węglanu wapnia, czyli 14000 g (14 kg) CaCO3. Jednak ze względu na wydajność, musimy użyć 28 kg CaCO3. Zatem, aby uzyskać 7 kg CaO, przy wydajności 50% potrzebujemy 25 kg CaCO3 na uzyskanie 14 kg CaCO3. W praktyce, te obliczenia są kluczowe w przemyśle chemicznym i materiałowym, gdzie precyzyjne dawkowanie surowców jest istotne dla efektywności produkcji, co jest zgodne z normami jakości w branży.

Pytanie 37

Reakcja miedzi metalicznej z stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz jakiego związku?

A. tlenek azotu(V) oraz wodór
B. tlenek azotu(II) oraz woda
C. tlenek azotu(IV) oraz woda
D. tlenek azotu(II) oraz wodór

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Reakcja miedzi metalicznej ze stężonym kwasem azotowym(V) prowadzi do powstania azotanu(V) miedzi(II) oraz tlenku azotu(IV) i wody. Proces ten ilustruje, jak metale przechodzą w reakcje redoks z kwasami azotowymi, co jest ważnym zagadnieniem w chemii nieorganicznej. Tlenek azotu(IV), zwany również dwutlenkiem azotu (NO2), jest istotnym produktem, który w warunkach atmosferycznych może prowadzić do powstawania smogu i wpływać na jakość powietrza. Przykłady zastosowania wiedzy o takich reakcjach obejmują zarówno przemysł chemiczny, gdzie azotany są wykorzystywane jako nawozy, jak i analizę środowiskową, gdzie tlenki azotu są monitorowane ze względu na ich szkodliwość. Zrozumienie tego procesu jest kluczowe, aby podejmować świadome decyzje dotyczące ochrony środowiska oraz technologii chemicznej, co jest zgodne z najlepszymi praktykami w branży chemicznej.

Pytanie 38

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. techniczny
B. czysty do analizy
C. chemicznie czysty
D. czysty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.

Pytanie 39

Transportuje się pobrane próbki wody do analiz fizykochemicznych

A. w temperaturze 20±3°C, bez dostępu światła
B. w temperaturze 15±3°C, z dostępem światła
C. w temperaturze 10±3°C, z dostępem światła
D. w temperaturze 5±3°C, bez dostępu światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź, czyli transportowanie próbek wody w temperaturze 5±3°C, bez dostępu światła, jest zgodna z najlepszymi praktykami oraz standardami laboratoryjnymi. Niska temperatura jest kluczowa, ponieważ spowalnia procesy biologiczne i chemiczne, które mogą prowadzić do zmian w składzie chemicznym próbki. Na przykład, w przypadku próbek wód powierzchniowych, wyższa temperatura może sprzyjać rozwojowi mikroorganizmów, co zafałszowałoby wyniki analizy. Dodatkowo, brak dostępu światła jest istotny dla ochrony próbek przed fotoutlenianiem i degradacją substancji organicznych, co również mogłoby wpłynąć na wiarygodność wyników. Standardy takie jak ISO 5667-3 dotyczące pobierania próbek wody zalecają właśnie takie warunki transportu, aby zminimalizować ryzyko zafałszowania wyników analiz. Stosowanie tych zasad w praktyce laboratoryjnej jest niezbędne dla uzyskania rzetelnych i powtarzalnych wyników analiz fizykochemicznych, co ma kluczowe znaczenie w monitorowaniu jakości wód. W sytuacjach, gdy próbki są transportowane na dłuższe odległości, stosuje się również odpowiednie pojemniki, które izolują próbki od wpływu czynników zewnętrznych, co w połączeniu z optymalną temperaturą i brakiem światła, zapewnia ich integralność.

Pytanie 40

Jeżeli partia towaru składa się z 10 dużych opakowań, wtedy z jednego opakowania pobiera się kilka próbek, które następnie łączy, uzyskując próbkę

A. jednostkową
B. laboratoryjną
C. średnią
D. pierwotną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "jednostkową" jest prawidłowa, ponieważ w kontekście pobierania próbek z dużych opakowań, próbka jednostkowa odnosi się do pojedynczej próbki pobranej z konkretnego opakowania. W przypadku partii składającej się z 10 dużych opakowań, każda próbka jednostkowa jest reprezentatywna dla danego opakowania. Zbieranie próbek jednostkowych jest kluczowe w kontroli jakości, ponieważ pozwala na ocenę jednorodności i zgodności wyrobów z określonymi standardami. Przykładem zastosowania tej praktyki jest przemysł spożywczy, gdzie próbki jednostkowe są pobierane z różnych partii, aby sprawdzić ich jakość i bezpieczeństwo. Standardy takie jak ISO 2859-1 dotyczące pobierania próbek oraz normy branżowe zapewniają, że proces ten jest przeprowadzany zgodnie z zasadami statystycznymi, co zwiększa wiarygodność wyników.