Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 czerwca 2025 05:14
  • Data zakończenia: 3 czerwca 2025 05:39

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. wartości skutecznej napięcia zasilania stojana
B. wartości częstotliwości napięcia zasilającego
C. liczby par biegunów
D. kolejności faz
Regulacja prędkości obrotowej silników indukcyjnych jest kluczowym zagadnieniem w inżynierii elektrycznej, a odpowiedzi, które wskazują na inne metody, błądzą w interpretacji zasad działania tych silników. Zmiana wartości skutecznej napięcia zasilania stojana rzeczywiście wpływa na moment obrotowy i sprawność silnika, ale nie zmienia prędkości obrotowej w sposób bezpośredni. Kluczowym czynnikiem determinującym prędkość obrotową jest częstotliwość zasilania, co prowadzi do błędnego założenia, że napięcie mogłoby być alternatywną metodą regulacji. Zmiana liczby par biegunów jest zdecydowanie skuteczną metodą, ale wymaga fizycznej zmiany konstrukcji silnika, co jest niepraktyczne w wielu zastosowaniach. Przykładem błędnego myślenia jest założenie, że zmiana kierunku prądu w fazach mogłaby wpłynąć na prędkość; rzeczywiście, zmiana ta jedynie zmienia kierunek obrotów silnika, co może prowadzić do nieporozumień w projektowaniu systemów napędowych. Użycie falowników do kontroli częstotliwości zasilania jest nowoczesnym podejściem, które zapewnia elastyczność w regulacji prędkości, a zrozumienie, które metody są właściwe, jest kluczowe dla efektywności energetycznej i funkcjonalności systemów elektrycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie elementy znajdują się w zespole przygotowania powietrza?

A. sprężarka, filtr, zawór redukcyjny, manometr
B. sprężarka, filtr, manometr, smarownica
C. filtr, zawór redukcyjny, manometr, smarownica
D. filtr, zawór dławiący, manometr, smarownica
Zespół przygotowania powietrza to kluczowy element systemów pneumatycznych, którego celem jest zapewnienie odpowiedniego stanu powietrza do dalszego wykorzystania. W skład tego zespołu wchodzi filtr, zawór redukcyjny, manometr i smarownica. Filtr odpowiada za oczyszczanie powietrza z zanieczyszczeń stałych i cieczy, co jest niezbędne do ochrony delikatnych komponentów systemów pneumatycznych. Zawór redukcyjny reguluje ciśnienie powietrza, co pozwala na dostosowanie go do wymagań poszczególnych urządzeń. Manometr umożliwia monitorowanie ciśnienia, co jest kluczowe dla bezpieczeństwa i efektywności pracy systemu. Smarownica natomiast dostarcza olej do elementów roboczych, co zmniejsza tarcie i zużycie, a także zapewnia długą żywotność urządzeń. Zgodnie z normami ISO 8573, odpowiednia jakość powietrza jest kluczowa w zastosowaniach przemysłowych, dlatego właściwa konfiguracja zespołu przygotowania powietrza jest niezbędna dla zapewnienia niezawodności oraz bezpieczeństwa operacji.

Pytanie 6

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. stanu izolacji przewodu
B. ciągłości żył przewodu
C. średnicy żył przewodu
D. wagi żył w przewodzie
Wybór odpowiedzi dotyczącej wagi żył w przewodzie jako niewłaściwego elementu do sprawdzenia przed montażem podtynkowej instalacji zasilającej jest poprawny. W praktyce inżynieryjnej, przed rozpoczęciem instalacji, kluczowe jest zweryfikowanie średnicy żył, ciągłości oraz stanu izolacji przewodów. Średnica żył ma fundamentalne znaczenie dla obliczenia obciążalności przewodu oraz dla zapewnienia, że przewód nie będzie się przegrzewał podczas pracy. Sprawdzenie ciągłości żył jest istotne, aby upewnić się, że nie ma przerw w obwodzie, co mogłoby prowadzić do uszkodzenia urządzeń podłączonych do instalacji. Stan izolacji jest niezbędny do zapewnienia bezpieczeństwa użytkowania instalacji, ponieważ uszkodzona izolacja może prowadzić do zwarć lub porażenia prądem. Waga żył, chociaż może być istotna w niektórych kontekstach konstrukcyjnych, nie jest kluczowym czynnikiem przy montażu instalacji elektrycznej, co czyni tę odpowiedź poprawną. Przykładowo, w projektach na budowach stosuje się normy, takie jak PN-IEC 60364, które precyzują wymagania dotyczące sprawdzeń przedmontażowych.

Pytanie 7

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. napisem "narzędzie bezpieczne"
B. zielonym kolorem z żółtą obręczą
C. symbolem kwadratu z określoną wartością napięcia
D. symbolem podwójnego trójkąta z określoną wartością napięcia
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 8

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. butów z izolowaną podeszwą
B. opaski uziemiającej
C. bawełnianego fartucha ochronnego
D. okularów ochronnych
Użycie opaski uziemiającej podczas wymiany tranzystora wyjściowego w układzie CMOS sterownika PLC jest kluczowe dla zapewnienia bezpieczeństwa i zminimalizowania ryzyka uszkodzenia komponentów. Opaska uziemiająca działa jako środek ochronny, który odprowadza ładunki elektrostatyczne z ciała osoby pracującej, zapobiegając ich nagromadzeniu. W obwodach CMOS, które są bardzo wrażliwe na zjawisko ESD (elektrostatyczne wyładowania), nawet niewielkie ładunki mogą prowadzić do uszkodzenia tranzystorów i innych komponentów. Stosowanie opaski uziemiającej jest zgodne z dobrymi praktykami w branży elektronicznej, które zalecają uziemianie operatorów w celu ochrony delikatnych układów. Dodatkowo, przy wymianie tranzystora, ważne jest, aby pracować w odpowiednim środowisku, które ogranicza ryzyko ESD, na przykład poprzez stosowanie mat antystatycznych oraz unikanie materiałów, które mogą generować ładunki elektrostatyczne. Przykładem dobrych praktyk jest przestrzeganie norm IPC, które definiują standardy dotyczące ochrony przed ESD w procesach produkcyjnych oraz serwisowych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. ściągacz
B. palnik gazowy
C. klucz dynamometryczny
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. pomieszczeniu, gdzie znajduje się stanowisko pracy.
B. zapleczu zakładu pracy.
C. widoczności.
D. zasięgu ręki.
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Skrobanie
B. Rozwiercanie
C. Docieranie
D. Spawanie
Spawanie to proces, który polega na łączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i zespolenie w wyniku działania wysokiej temperatury. W kontekście montażu urządzeń mechatronicznych, spawanie nie jest operacją stosowaną do dopasowywania elementów, ponieważ ma na celu trwałe łączenie komponentów, co jest różne od precyzyjnego dopasowania ich kształtów i wymiarów. W mechatronice kluczowe jest zapewnienie odpowiednich tolerancji i pasowania, które są zdefiniowane na podstawie norm, takich jak ISO 286. Przykładowo, w procesach montażowych często stosuje się techniki takie jak skrobanie, które umożliwia precyzyjne dopasowanie powierzchni elementów, co jest niezbędne dla uzyskania odpowiedniej funkcjonalności układów mechanicznych. Z praktycznego punktu widzenia, umiejętność właściwego dobierania metod montażu i dopasowania elementów jest kluczowa dla zapewnienia niezawodności i efektywności działania urządzeń mechatronicznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. mineralny bez dodatków uszlachetniających
C. o polepszonych parametrach lepkości i temperatury
D. syntetyczny
Wybór innej opcji, która nie pasuje do rzeczywistych właściwości oleju hydraulicznego HL, może prowadzić do nieporozumień. Oleje z polepszonymi właściwościami, mimo że są przydatne, nie są HL, bo HL skupia się na ochronie przed korozją. Warto zauważyć, że oleje mineralne bez dodatków ochronnych to kiepski wybór w wielu przypadkach, gdzie ważna jest odporność na rdza. Oleje syntetyczne, chociaż mają swoje zalety, jak lepsza stabilność, nie zastąpią olejów mineralnych HL. Takie mylne wnioski mogą prowadzić do sytuacji, gdzie użycie niewłaściwego oleju skutkuje szybszym zużyciem sprzętu i awariami, więc ważne, żeby wybierać oleje zgodne z zaleceniami producentów. Te błędy wynikają z tego, że ludzie często nie rozumieją różnic między tymi olejami, a to jest kluczowe dla dobrego działania hydrauliki.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. chromowo-krzemowych
B. krzemowych
C. chromowych
D. krzemowo-manganowych
Rdzenie maszyn elektrycznych wykonuje się głównie ze stali krzemowej, ponieważ jej właściwości ferromagnetyczne zapewniają efektywność energetyczną oraz minimalizują straty energii w postaci ciepła. Stal krzemowa charakteryzuje się niskim współczynnikiem strat magnetycznych, co jest kluczowe w zastosowaniach takich jak silniki elektryczne czy transformatory. Dodatkowo, dzięki swojej strukturze krystalicznej, stal krzemowa ma dużą przewodność magnetyczną. W praktyce oznacza to, że rdzenie wykonane z tego materiału są bardziej kompaktowe i lżejsze, co przyczynia się do zmniejszenia wymiarów urządzeń elektrycznych. Standardy branżowe, takie jak IEC 60404, określają wymagania dotyczące rodzajów stali używanej w rdzeniach, podkreślając znaczenie stali krzemowej w produkcji zaawansowanych technologicznie maszyn elektrycznych. W związku z tym, stosowanie stali krzemowej jest zgodne z najlepszymi praktykami w zakresie projektowania i produkcji maszyn elektrycznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
B. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
C. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. termometru półprzewodnikowego
B. pirometru
C. termopary
D. termometru rezystancyjnego
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Kompilator
B. Deasembler
C. Debugger
D. Emulator
Kompilator jest narzędziem, które tłumaczy kod źródłowy napisany w określonym języku programowania na kod maszynowy, który jest zrozumiały dla mikrokontrolera. Proces ten obejmuje kilka kroków, w tym analizę składniową, analizę semantyczną oraz generację kodu. Kompilatory są kluczowe w programowaniu systemów embedded, gdzie efektywność i optymalizacja kodu są niezwykle istotne. Przykładem popularnego kompilatora dla języka C jest GCC (GNU Compiler Collection), który jest szeroko stosowany w projektach związanych z mikrokontrolerami, takimi jak platforma Arduino. Kompilacja pozwala także na wykorzystanie różnych poziomów optymalizacji, co sprawia, że końcowy kod maszynowy działa szybciej i zużywa mniej zasobów. W dobrze zaprojektowanym procesie kompilacji, programiści mogą również zastosować dyrektywy preprocesora, co umożliwia dostosowanie kodu do różnych platform sprzętowych. Z tego powodu, znajomość działania kompilatorów jest niezbędna dla każdego, kto pragnie efektywnie programować mikrokontrolery.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.