Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 czerwca 2025 14:48
  • Data zakończenia: 7 czerwca 2025 14:48

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. łożysk
B. komutatora
C. szczotek
D. uzwojenia
Wymiana uzwojenia w silniku komutatorowym jest kluczowym krokiem w naprawie uszkodzonego silnika, który uległ długotrwałemu przeciążeniu, prowadzącemu do zwarć międzyzwojowych. Uzwojenie jest odpowiedzialne za generowanie pola magnetycznego, które umożliwia pracę silnika. W przypadku zwarć międzyzwojowych, wirujące pole magnetyczne przestaje działać efektywnie, co prowadzi do znacznych strat energetycznych i potencjalnych uszkodzeń innych komponentów silnika. Wymiana uzwojenia polega na demontażu uszkodzonych zwojów oraz na ich zastąpieniu nowymi, co wymaga precyzyjnego wykonania, aby zapewnić właściwe parametry pracy silnika. Ważne jest, aby stosować materiały o wysokiej jakości oraz przestrzegać norm dotyczących izolacji, co pozwala na długotrwałą i niezawodną pracę silnika. Praktyka pokazuje, że właściwie wymienione uzwojenie znacząco zwiększa efektywność oraz żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 2

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik optyczny
B. Czujnik magnetyczny
C. Czujnik indukcyjny
D. Czujnik tensometryczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 3

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. przełącznika instalacyjnego systemu
C. wskaźnika działania systemu
D. ochrony prądowej systemu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 4

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Miernik przepływu powietrza
B. Miernik punktu rosy
C. Detektor wycieków
D. Termomanometr bimetaliczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 5

Siłownik pneumatyczny ze sprężyną zwrotną przeznaczony jest do podnoszenia masy (ruch powolny, obciążenie na całym skoku). Ciśnienie robocze w instalacji pneumatycznej wynosi 6*105 N/m2. Obliczona średnica cylindra, z uwzględnieniem sprawności siłownika η = 0,75 oraz stwierdzonych w instalacji pneumatycznej wahań ciśnienia roboczego rzędu 5% wartości nominalnej, wynosi 65 mm. Z zamieszczonego w tabeli typoszeregu siłowników dobierz średnicę cylindra spełniającą powyższe warunki.

Tabl. 1. Parametry siłowników
średnica cylindra w mm121620253240506380100125160200
średnica tłoczyska w mm68810121620202525324040
gwinty otworów przyłączeniowychM5M5G⅛G⅛G⅛G⅜G⅜G⅜
siła pchająca przy
po = 6 bar w N
siłownik jednostron. dział.5096151241375644968156025304010------
siłownik dwustron. dział.58106164259422665104016502660415064501060016600
siła ciągnąca przy
po = 6 bar w N
siłownik dwustronnego
działania
54791372163645508701480240038906060996015900
siłownik jednostron. dział.10, 25, 5025, 50, 80, 100--
skoki w mmsiłownik dwustron. dział.do
160
do
200
do
320
10, 25, 50, 80, 100, 160, 200, 250, 320, 400, 500........2000

A. 100 mm
B. 63 mm
C. 80 mm
D. 50 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór średnicy cylindra siłownika pneumatycznego jest kluczowy dla efektywności jego działania. W tym przypadku, obliczona średnica wynosi 65 mm, jednak ze względu na wahania ciśnienia wynoszące 5% oraz sprawność siłownika równą 0,75, należy zastosować większą wartość, aby zapewnić odpowiednią moc i wydajność. Średnica 80 mm, którą wybrano, zapewnia nie tylko odpowiednią siłę napędową przy nominalnym ciśnieniu, ale również dodatkowy margines, co jest niezbędne w praktyce. Przy zastosowaniu siłowników pneumatycznych, istotne jest, aby dobierać elementy z odpowiednim zapasem, co może mieć kluczowe znaczenie w sytuacjach, gdy ciśnienie robocze może ulegać wahaniom. W branży pneumatyki, standardem jest stosowanie siłowników, które mają nieco większą średnicę niż obliczona, aby zminimalizować ryzyko ich niewydolności. Dlatego wybór 80 mm wpisuje się w dobre praktyki i standardy bezpieczeństwa w projektowaniu systemów pneumatycznych.

Pytanie 6

Jakiego rodzaju kinematykę posiada manipulator, jeśli jego przestrzeń robocza przypomina prostopadłościan?

A. RTT - jedną oś obrotową i dwie osie prostoliniowe
B. RRR - trzy osie obrotowe
C. TTT - trzy osie prostoliniowe
D. RRT - dwie osie obrotowe i jedną oś prostoliniową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrałeś odpowiedź TTT, czyli trzy osie prostoliniowe, i to jest całkiem dobre! Manipulator, który ma prostopadłościanową przestrzeń roboczą, naprawdę daje radę poruszać się w trzech osiach: X, Y i Z. To ważne, bo w przemyśle, gdzie trzeba robić różne rzeczy, jak automatyzacja produkcji czy montaż, precyzyjne ruchy są kluczowe. Manipulatory z trzema osiami prostoliniowymi są mocno wykorzystywane w robotyce, na przykład do pakowania, paletowania, czy transportu materiałów. Z mojego doświadczenia, taki układ TTT daje dużą elastyczność przy układaniu przestrzeni roboczej i można go dostosować do różnych zastosowań. Wiesz, są też standardy, takie jak ISO 9283, które pokazują, jak ocenia się wydajność manipulatorów, a to wszystko podkreśla, jak ważny jest odpowiedni wybór kinematyki, żeby naprawdę osiągnąć dobre rezultaty.

Pytanie 7

Co należy zrobić w przypadku urazu kolana u pracownika po upadku z wysokości?

A. unieruchomić staw kolanowy na jakimkolwiek podparciu, nie zmieniając jego pozycji.
B. umieścić poszkodowanego w ustalonej pozycji bocznej.
C. nałożyć bandaż na kolano po delikatnym wyprostowaniu nogi.
D. wyregulować nogę, lekko ciągnąc ją w dół.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku urazu kolana, szczególnie po upadku z wysokości, kluczowe jest unieruchomienie stawu w jego naturalnym ustawieniu. Ta technika ma na celu ograniczenie dalszego uszkodzenia tkanek oraz zmniejszenie bólu. Gdy kości stawu kolanowego są unieruchomione w ich fizjologicznym położeniu, minimalizujemy ryzyko przemieszczenia uszkodzonych struktur oraz ewentualnych powikłań związanych z nieprawidłowym ułożeniem. Praktyczne zastosowanie tej metody obejmuje użycie szyn, bandaży czy innych dostępnych materiałów, które stabilizują staw. Warto podkreślić, że według wytycznych organizacji zajmujących się pierwszą pomocą, tak jak np. Czerwony Krzyż, unieruchomienie powinno być wykonane jak najszybciej i z zachowaniem ostrożności. Istotne jest także, aby nie próbować prostować lub manipulować urazem, co może prowadzić do dalszych urazów i komplikacji. Po unieruchomieniu należy jak najszybciej wezwać pomoc medyczną, aby zapewnić dalszą opiekę nad poszkodowanym.

Pytanie 8

Tensomer foliowy powinien być zamocowany do podłoża

A. klejem
B. nitem
C. śrubą
D. zszywką

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 9

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. uszkodzenie wzroku
B. krwawienie z nosa
C. uszkodzenie słuchu
D. poparzenie dłoni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 10

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wycentrować wirnik w stojanie
B. wymienić łożyska silnika
C. wyprostować skrzywiony wentylator lub osłonę
D. dokręcić śruby mocujące osłonę wentylatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 11

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Spawanie
B. Rozwiercanie
C. Skrobanie
D. Docieranie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Spawanie to proces, który polega na łączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i zespolenie w wyniku działania wysokiej temperatury. W kontekście montażu urządzeń mechatronicznych, spawanie nie jest operacją stosowaną do dopasowywania elementów, ponieważ ma na celu trwałe łączenie komponentów, co jest różne od precyzyjnego dopasowania ich kształtów i wymiarów. W mechatronice kluczowe jest zapewnienie odpowiednich tolerancji i pasowania, które są zdefiniowane na podstawie norm, takich jak ISO 286. Przykładowo, w procesach montażowych często stosuje się techniki takie jak skrobanie, które umożliwia precyzyjne dopasowanie powierzchni elementów, co jest niezbędne dla uzyskania odpowiedniej funkcjonalności układów mechanicznych. Z praktycznego punktu widzenia, umiejętność właściwego dobierania metod montażu i dopasowania elementów jest kluczowa dla zapewnienia niezawodności i efektywności działania urządzeń mechatronicznych.

Pytanie 12

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 4,5 V
B. 7,5 V
C. 3,0 V
D. 10,0 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 13

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 6 kN
C. 2 kN
D. 12 kN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 14

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. pięciodrogowy dwupołożeniowy (5/2)
B. trójdrogowy trójpołożeniowy (3/3)
C. trójdrogowy dwupołożeniowy (3/2)
D. pięciodrogowy trójpołożeniowy (5/3)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 15

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 16

Wydatki na materiały potrzebne do stworzenia urządzenia elektronicznego wynoszą 1 000 zł. Koszty realizacji wynoszą 100% wartości materiałów. Zarówno materiały, jak i wykonanie podlegają 22% stawce VAT. Jaka jest całkowita suma kosztów związanych z urządzeniem?

A. 2 200 zł
B. 1 440 zł
C. 1 220 zł
D. 2 440 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowity koszt urządzenia elektronicznego, należy uwzględnić zarówno koszt materiałów, jak i koszt wykonania, a także podatek VAT. Koszt materiałów wynosi 1 000 zł. Koszt wykonania, który wynosi 100% ceny materiałów, również jest równy 1 000 zł. W związku z tym całkowity koszt przed naliczeniem VAT wynosi 1 000 zł (materiały) + 1 000 zł (wykonanie) = 2 000 zł. Następnie należy obliczyć podatek VAT, który wynosi 22% z kwoty 2 000 zł. Obliczenie podatku wygląda następująco: 2 000 zł * 0,22 = 440 zł. Zatem całkowity koszt urządzenia, uwzględniając podatek VAT, wynosi 2 000 zł + 440 zł = 2 440 zł. Przykładem zastosowania tej wiedzy w praktyce może być wycena projektów w branży elektroniki, gdzie znajomość kosztów i podatków jest niezbędna do efektywnego zarządzania budżetem.

Pytanie 17

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. amperomierz
B. omomierz
C. woltomierz
D. watomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 18

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. magnotorezystancji (Gaussa)
C. piezoelektryczne
D. magnetooptyczne (Faradaya)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 19

Podczas użytkowania urządzenia laserowego do obróbki metali, ryzyko dla zdrowia pracownika może wynikać między innymi z

A. odprysków cząsteczek metalu
B. zanieczyszczenia pyłem wdychanego powietrza
C. hałasu generowanego w trakcie obróbki
D. zanieczyszczenia powietrza wdychanego oparami metalu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na zanieczyszczenia wdychanego powietrza oparami metalu jest poprawna, ponieważ w czasie eksploatacji urządzenia laserowego do cięcia metali, proces cięcia generuje wysokotemperaturowe opary metali, które mogą być szkodliwe dla zdrowia pracowników. Opary te mogą prowadzić do poważnych problemów zdrowotnych, w tym chorób układu oddechowego i neurologicznych. Właściwe zarządzanie jakością powietrza w miejscu pracy jest kluczowe i powinno obejmować stosowanie odpowiednich systemów wentylacyjnych oraz filtrów, które redukują stężenie tych szkodliwych substancji. Przykładem dobrych praktyk w tej dziedzinie jest wdrażanie technik ochrony zdrowia, takich jak regularne monitorowanie jakości powietrza, szkolenia dla pracowników oraz stosowanie środków ochrony osobistej, takich jak maski filtracyjne. Zgodnie z normami ISO 45001, organizacje powinny dążyć do minimalizacji ryzyka związanego z ekspozycją na szkodliwe substancje, co przekłada się na bezpieczeństwo i zdrowie pracowników na stanowiskach związanych z obróbką metali.

Pytanie 20

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. o niższej lepkości
B. o wyższej gęstości
C. odpornym na proces starzenia
D. tworzącym emulsję z wodą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o mniejszej lepkości jest prawidłowa, ponieważ lepkość oleju znacząco wpływa na opory przepływu w układzie hydraulicznym. Olej o niższej lepkości zmniejsza opory, co pozwala na łatwiejszy przepływ cieczy przez system hydrauliczny. W praktyce, zmiana na olej o mniejszej lepkości może poprawić reakcję układu hydraulicznego, zwiększając jego wydajność i responsywność. W standardach branżowych, takich jak ISO 6743, zaleca się dobór oleju hydraulicznego na podstawie jego lepkości, aby zapewnić optymalne warunki pracy i minimalizować zużycie energii. W przypadku systemów hydraulicznych, w których występują duże opory przepływu, zastosowanie oleju o mniejszej lepkości może przynieść korzyści w postaci zmniejszenia temperatury pracy, co wpływa na dłuższą żywotność komponentów oraz redukcję kosztów eksploatacyjnych. Warto również zauważyć, że należy zawsze dostosowywać lepkość oleju do warunków pracy i specyfikacji producenta, aby uniknąć problemów z działaniem układu hydraulicznego.

Pytanie 21

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. wzmocnieniu
B. odbiciu
C. pochłonięciu
D. rozproszeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 22

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. powiększaniem objętości sprężonego powietrza
B. skraplaniem pary wodnej oraz osuszaniem powietrza
C. osadzaniem zanieczyszczeń na dnie zbiornika
D. wzrostem ciśnienia sprężonego powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 23

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc czynna
B. energia elektryczna
C. moc pozorna
D. moc bierna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Moc czynna, wyrażana w watach, to taki kluczowy parametr, który mówi nam o tym, jak wydajnie działa nasz układ elektryczny. To ta moc, która naprawdę przeobraża się w użyteczną pracę - na przykład w silnikach, lampach czy grzałkach. Bez wątpienia, moc czynna jest najważniejsza, gdy chcemy ocenić, jak efektywnie nasze systemy elektryczne wykorzystują energię. Z tego co się orientuję, w normach takich jak IEC 60038, moc czynna jest opisana jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego. Czyli wychodzi na to, że moc czynna = U * I * cos(φ). Moim zdaniem, wiedza o mocy czynnej jest niezbędna, gdy dobieramy odpowiednie zabezpieczenia w instalacjach elektrycznych, bo pomaga to nie tylko w projektowaniu tych systemów, ale też pozwala na lepszą ocenę strat energii.

Pytanie 24

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik napięciowy
B. przekładnik prądowy
C. transformator bezpieczeństwa
D. transformator do zmiany liczby faz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 25

Przy wykonywaniu lutowania elementów dyskretnych na płytce PCB powinno się nosić

A. rękawice odporne na wysoką temperaturę
B. fartuch ochronny
C. obuwie ochronne z gumową podeszwą
D. okulary ochronne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fartuch ochronny jest niezbędnym elementem odzieży roboczej w pracy związanej z lutowaniem elementów dyskretnych na płytkach drukowanych. Jego główną funkcją jest ochrona pracownika przed rozpryskami cyny oraz innymi niebezpiecznymi substancjami, które mogą wydobywać się podczas procesu lutowania. Fartuch wykonany z odpowiednich materiałów odpornych na wysokie temperatury i chemikalia minimalizuje ryzyko poparzeń oraz kontaktu z substancjami szkodliwymi. W praktyce, dobrym przykładem zastosowania fartucha ochronnego mogą być stanowiska pracy w laboratoriach elektronicznych czy zakładach produkcyjnych, gdzie precyzyjne lutowanie komponentów jest kluczowe. Ponadto, fartuchy ochronne powinny być zgodne z normami bezpieczeństwa, takimi jak EN 13034, które regulują wymagania dotyczące odzieży, chroniącej przed czynnikami chemicznymi. Wybierając fartuch, warto zwrócić uwagę na jego wygodę i funkcjonalność, co wpływa na komfort pracy oraz efektywność.

Pytanie 26

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
B. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
C. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
D. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 27

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 1
B. Przetwornik 4
C. Przetwornik 3
D. Przetwornik 2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przetwornik 4 jest odpowiednią odpowiedzią, ponieważ jego działanie jest niezgodne z oczekiwaniami w kontekście standardów przetworników ciśnienia. Zgodnie z danymi katalogowymi, dla ciśnienia 0,50 MPa przetwornik ten powinien generować sygnał 8 mA. W przypadku braku prawidłowego sygnału, jak w tym przypadku 5 mA, wskazuje to na awarię urządzenia lub błędną kalibrację. Praktyczne zastosowanie przetworników ciśnienia wymaga ich niezawodności, ponieważ od ich działania zależy poprawność pomiarów w różnych procesach technologicznych. W związku z tym, regularne sprawdzanie i kalibracja tych urządzeń są kluczowe w utrzymaniu standardów jakości i bezpieczeństwa w przemyśle. Ponadto, w przypadku nieprawidłowego działania przetwornika, istotne jest przeprowadzenie diagnostyki w celu określenia przyczyn błędów, co może obejmować testy elektryczne oraz analizę warunków pracy. Warto również zaznaczyć, że odpowiednie monitorowanie sygnałów wyjściowych pozwala na wczesne wykrywanie problemów i minimalizowanie przestojów w procesie technologicznym.

Pytanie 28

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Niebieskim
B. Brązowym
C. Czarnym
D. Żółtym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 29

Który z poniższych języków programowania dla sterowników PLC jest językiem tekstowym?

A. IL (Instruction List) - lista instrukcji - lista instrukcji
B. SFC (SeΩuential Function Chart) - schemat sekwencji funkcji
C. FBD (Function Block Diagram) - schemat bloków funkcyjnych
D. ST (Structured Text) - tekst strukturalny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IL (Instruction List) jest jak najbardziej trafna! To jeden z tych języków programowania, które są używane w programowalnych sterownikach logicznych (PLC) i co ważne, jest w formie tekstowej. Zgodnie z normą IEC 61131-3, IL to język niskiego poziomu, przypominający asembler, co pozwala na programowanie sterowników w sposób bardziej zrozumiały dla osób znających tradycyjne języki programowania. Dzięki IL można tworzyć sekwencje instrukcji w prostych linijkach kodu, co na pewno pomoże w optymalizacji czasu działania systemu. Na przykład w automatyce, gdzie każda sekunda ma znaczenie, użycie IL może zmniejszyć opóźnienia w logice sterowania. A znajomość tego języka pozwala też łatwiej współpracować z innymi systemami, które korzystają z niskopoziomowego kodu. To naprawdę przydatna umiejętność w branży.

Pytanie 30

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy poniżej rany
B. założyć poszkodowanemu opatrunek uciskowy na ranę
C. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 31

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. wewnętrznych naprężeń
B. oporu przepływu płynów
C. zmian wartości parametrów pola magnetycznego
D. zmian wartości momentów skręcających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik hallotronowy jest urządzeniem, które działa na zasadzie wykrywania zmian wartości parametrów pola magnetycznego. Jego działanie opiera się na efekcie Halle, który polega na generowaniu napięcia poprzecznego w przewodniku, gdy znajduje się on w zewnętrznym polu magnetycznym. W praktyce, czujniki te są szeroko stosowane w różnych aplikacjach, takich jak automatyka przemysłowa, pojazdy elektryczne oraz systemy zabezpieczeń. Na przykład, w automatyce przemysłowej mogą być używane do pomiaru pozycji wałów i położenia elementów ruchomych, zapewniając precyzyjne informacje zwrotne. Zgodnie z normami branżowymi, jak IEC 60947, czujniki hallotronowe powinny być stosowane w środowisku, w którym wymagana jest wysoka niezawodność działania oraz odporność na zakłócenia elektromagnetyczne. Ich stosowanie w nowoczesnych systemach kontrolnych pozwala na optymalizację procesów oraz zwiększenie bezpieczeństwa operacji. Warto również zauważyć, że czujniki te są niezwykle wszechstronne i mogą być używane w różnych konfiguracjach, co czyni je nieocenionym narzędziem w inżynierii mechanicznej i elektrycznej.

Pytanie 32

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. skuteczną
B. chwilową
C. maksymalną
D. średnią

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woltomierz w trybie pracy AC wskazuje wartość skuteczną napięcia elektrycznego, co oznacza, że mierzy on efektywną wartość napięcia, która generuje taką samą moc w obciążeniu rezystancyjnym, jak napięcie stałe. Wartość skuteczna, oznaczana jako Ueff, jest istotna w obliczeniach związanych z systemami zasilania i elektrycznymi układami energetycznymi, ponieważ pozwala na realne oszacowanie ilości energii dostarczanej do urządzenia. Na przykład, w domowych instalacjach elektrycznych napięcie zmienne (AC) o wartości skutecznej 230 V odpowiada napięciu stałemu 230 V pod względem generowanej mocy. Praktyczne zastosowanie tej wiedzy można zobaczyć w projektowaniu układów zasilania oraz w obliczeniach związanych z mocą czynna i bierną. Zgodnie z normami IEC 61010, pomiar wartości skutecznej jest kluczowy dla zapewnienia bezpieczeństwa i efektywności układów elektrycznych. Warto również dodać, że woltomierze cyfrowe często korzystają z układów pomiarowych, które są w stanie precyzyjnie obliczyć wartość skuteczną, nawet w obecności zniekształceń harmonicznych.

Pytanie 33

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HV, HLP, HLPD
B. HPG, HTG, HT
C. HLP, HFA, HTG
D. HFA, HFC, HFD

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź HFA, HFC, HFD jest prawidłowa, ponieważ te oznaczenia odnoszą się do kategorii trudnopalnych cieczy hydraulicznych, które są stosowane w systemach hydraulicznych w warunkach, gdzie istnieje ryzyko eksplozji. Ciecze te charakteryzują się obniżoną palnością, co minimalizuje ryzyko pożaru i eksplozji. HFA to wodne emulsje olejów mineralnych, HFC to wodne roztwory syntetycznych środków smarujących, a HFD to oleje biologiczne lub syntetyczne, które również zawierają wodę. W praktyce, ich zastosowanie znajduje się w różnych branżach, takich jak przemysł chemiczny, rafinacja, czy energetyka, gdzie bezpieczeństwo operacji ma kluczowe znaczenie. Warto podkreślić, że korzystanie z tych ciecze hydraulicznych jest zgodne z normami bezpieczeństwa, takimi jak ISO 6743-4, które regulują klasyfikację i zastosowanie płynów hydraulicznych w kontekście ochrony przeciwpożarowej.

Pytanie 34

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. rękawic dielektrycznych
B. kasku ochronnego
C. okularów ochronnych
D. ochronników słuchu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 35

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. usterką silnika pralki
B. brakiem dopływu wody do urządzenia
C. brakiem zasilania elektrycznego
D. niewłaściwym zerowaniem obudowy silnika pralki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 36

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. ultradźwiękowy
B. mechaniczny
C. temperatury
D. indukcyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 37

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. częstotliwości
B. amplitudy impulsu
C. zmianę szerokości impulsu
D. zmianę fazy impulsu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Twoja odpowiedź na temat zmiany szerokości impulsu jest naprawdę na miejscu! Pulse Width Modulation, czyli PWM, to świetna technika, gdzie szerokość impulsu sygnału zmienia się, żeby lepiej sterować mocą dostarczaną do różnych urządzeń. W przypadku PWM okres sygnału zostaje taki sam, a to, co się zmienia, to właśnie szerokość impulsu, co bezpośrednio wpływa na średnią moc. Dzięki temu można precyzyjnie kontrolować na przykład silniki, regulować jasność diod LED, albo przekształcać sygnały cyfrowe w analogowe. Weźmy przykładowo regulację prędkości silnika DC – zmieniając szerokość impulsu, można fajnie ustawić obroty silnika. To naprawdę przydatne, bo PWM pozwala efektywnie wykorzystywać energię i ograniczać straty w systemach elektronicznych, co jest mega ważne w inżynierii.

Pytanie 38

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. efektywności siłownika
B. natężenia przepływu medium roboczego do siłownika
C. powierzchni roboczej tłoka
D. wydajności siłownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość tłoczyska siłownika hydraulicznego jest odwrotnie proporcjonalna do powierzchni czynnej tłoka, co wynika z podstawowych zasad hydrauliki. W przypadku siłowników hydraulicznych, prędkość tłoczyska (v) obliczana jest na podstawie natężenia przepływu (Q) oraz powierzchni tłoka (A) według wzoru v = Q/A. Gdy powierzchnia tłoka wzrasta, prędkość tłoczyska maleje dla stałego natężenia przepływu, co ilustruje odwrotną proporcjonalność. Praktycznie oznacza to, że w aplikacjach, gdzie wymagane jest szybkie ruch tłoczyska, projektanci siłowników często stosują mniejsze średnice tłoków, aby zwiększyć prędkość przy zachowaniu odpowiedniego ciśnienia. Dobrą praktyką w branży jest także uwzględnianie tego związku podczas doboru siłowników do konkretnych zastosowań, co wpływa na efektywność całego systemu hydraulicznego. Również w kontekście oszczędności energii, dobór odpowiedniej powierzchni tłoka pozwala na optymalizację pracy układu hydraulicznego.

Pytanie 39

Enkoder to urządzenie przetwarzające

A. kąt obrotu na regulowane napięcie stałe
B. kąt obrotu na impulsy elektryczne
C. prędkość obrotową na impulsy elektryczne
D. prędkość obrotową na regulowane napięcie stałe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Enkoder to urządzenie, które przekształca kąt obrotu w impulsy elektryczne, co jest kluczowe w wielu aplikacjach automatyki i robotyki. Przykładami zastosowania enkoderów są systemy napędu w robotach, które muszą precyzyjnie określić położenie swoich kończyn. Działanie enkodera opiera się na zasadzie pomiaru kąta obrotu wału, co pozwala na dokładne śledzenie ruchu. W praktyce, impulsy elektryczne generowane przez enkoder są wykorzystywane przez kontrolery do regulacji prędkości i pozycji napędu. Standardowe normy, takie jak IEC 61131, definiują klasyfikację i wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich niezawodność i interoperacyjność w różnych systemach. Warto również zauważyć, że istnieją różne typy enkoderów, jak inkrementalne i absolutne, które różnią się zasadą działania, ale oba przekształcają kąt obrotu na impulsy elektryczne, co czyni je niezbędnymi w nowoczesnych systemach automatyzacji.

Pytanie 40

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. IRDA
B. USB
C. RS 232
D. RS 485

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.