Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 17 kwietnia 2025 17:21
  • Data zakończenia: 17 kwietnia 2025 18:04

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Którego protokołu działanie zostało zaprezentowane na diagramie?

Ilustracja do pytania
A. Security Shell (SSH)
B. Domain Name System(DNS)
C. Telnet
D. Dynamic Host Configuration Protocol (DHCP)
Dynamic Host Configuration Protocol DHCP jest protokołem sieciowym używanym do automatycznego przydzielania adresów IP i innych informacji konfiguracyjnych klientom w sieci. Działa w modelu klient-serwer co oznacza że urządzenie klienckie wysyła żądanie o adres IP do serwera DHCP a ten odpowiada oferując dostępne parametry sieciowe. Proces składa się z czterech głównych etapów: Discovery Offer Request i Acknowledgment. Discovery polega na wysłaniu przez klienta wiadomości rozgłoszeniowej aby zlokalizować serwery DHCP. Serwer odpowiada wiadomością Offer zawierającą proponowany adres IP. Klient następnie wysyła Request akceptując ofertę a serwer kończy proces wiadomością ACK potwierdzając dzierżawę adresu. DHCP jest powszechnie stosowany w sieciach korporacyjnych i domowych upraszczając zarządzanie adresacją IP oraz minimalizując błędy konfiguracyjne. Standardy związane z DHCP są opisane w dokumentach RFC takich jak RFC 2131 i RFC 2132. Korzystanie z DHCP zautomatyzowało proces zarządzania siecią oszczędzając czas administratorów i redukując ryzyko konfliktów adresów IP co jest szczególnie użyteczne w dużych i dynamicznych środowiskach sieciowych.

Pytanie 2

Jakie protokoły przesyłają regularne kopie tablic routingu do sąsiednich ruterów, nie zawierając pełnych informacji o odległych urządzeniach routujących?

A. OSPF, RIP
B. EIGRP, OSPF
C. RIP, IGRP
D. EGP, BGP
Wybór protokołów EGP i BGP jako odpowiedzi prowadzi do kilku nieporozumień dotyczących ich funkcji i zastosowań. EGP (Exterior Gateway Protocol) to przestarzały protokół, który był używany do komunikacji między różnymi systemami autonomicznymi, ale nie jest obecnie szeroko stosowany. W jego miejscu BGP (Border Gateway Protocol) stał się standardem dla routingu między systemami autonomicznymi. BGP jest oparty na pełnej informacji o trasach, co oznacza, że wymienia pełne tablice routingu pomiędzy ruterami, a nie tylko zmienione informacje, co czyni go mniej efektywnym w kontekście lokalnych aktualizacji, które są kluczowe dla szybkiego reagowania na zmiany w topologii. W praktyce, ten protokół jest używany głównie do zarządzania trasami między wieloma dostawcami usług internetowych, co sprawia, że jego zastosowanie w lokalnych sieciach korporacyjnych czy w sieciach o spójnym adresowaniu IP jest nieadekwatne. Kolejnym błędnym podejściem jest połączenie OSPF z RIP. Choć OSPF jest protokołem link-state, który przekazuje jedynie zmiany w stanie połączeń, RIP (Routing Information Protocol) jest protokołem typu distance-vector, który regularnie przesyła pełne tablice routingu, co jest mniej wydajne. Takie nieścisłości w zrozumieniu, jak różne protokoły działają i jakie są ich zastosowania, mogą prowadzić do niewłaściwych decyzji projektowych w sieciach komputerowych. Wybierając protokoły, istotne jest uwzględnienie ich charakterystyki i wymagań danej sieci, co jest kluczowe dla jej wydajności i niezawodności.

Pytanie 3

Który komponent mikroprocesora odpowiada m.in. za odczytywanie instrukcji z pamięci oraz generowanie sygnałów kontrolnych?

A. ALU
B. FPU
C. EU
D. IU
Wybór odpowiedzi związanych z FPU (Floating Point Unit), ALU (Arithmetic Logic Unit) oraz EU (Execution Unit) często wynika z niepełnego zrozumienia funkcji poszczególnych układów w architekturze mikroprocesora. FPU jest odpowiedzialny za wykonywanie operacji arytmetycznych na liczbach zmiennoprzecinkowych, co czyni go istotnym w obliczeniach wymagających dużej precyzji, ale nie jest odpowiedzialny za pobieranie rozkazów. ALU natomiast zajmuje się wykonywaniem podstawowych operacji arytmetycznych oraz logicznych na danych, ale jego rola nie obejmuje generowania sygnałów sterujących, co czyni go niewłaściwym wyborem w kontekście pytania. EU pełni funkcję wykonawczą, odpowiedzialną za realizację rozkazów, co również nie obejmuje zarządzania przepływem instrukcji ani ich pobierania. Powszechnym błędem jest mylenie tych układów, co wynika z ich współpracy w procesie przetwarzania danych. Każdy z tych układów ma jasno określone zadania w architekturze procesora, a ich pomylenie prowadzi do dezorientacji i nieprawidłowego pojmowania, jak mikroprocesory realizują skomplikowane operacje obliczeniowe. Zrozumienie, że IU pełni kluczową rolę w zarządzaniu instrukcjami, jest fundamentalne dla pełnego zrozumienia architektury mikroprocesorów.

Pytanie 4

Element systemu komputerowego przedstawiony na ilustracji to

Ilustracja do pytania
A. GPU
B. moduł pamięci Cache
C. dysk SSD
D. karta graficzna do laptopa
Dysk SSD, czyli Solid State Drive, to naprawdę nowoczesne urządzenie do przechowywania danych. Wykorzystuje pamięć flash, co oznacza, że jest dużo szybszy i bardziej niezawodny niż tradycyjne dyski HDD. Brak ruchomych części sprawia, że nie jest tak podatny na uszkodzenia mechaniczne. Dlatego dyski SSD są teraz powszechnie używane w komputerach, laptopach i serwerach, zwłaszcza tam, gdzie szybkość dostępu do danych ma kluczowe znaczenie. Czasami naprawdę można zauważyć różnicę w czasach ładowania systemu czy aplikacji – to potrafi znacznie poprawić komfort pracy. Z tego co pamiętam, dyski SSD zazwyczaj łączą się przez interfejsy SATA, M.2 lub PCIe, co daje różne prędkości transferu. Dodatkowo, pamięć flash zużywa mniej energii, co jest super ważne w przenośnych urządzeniach jak laptopy. Tak więc, podsumowując, dyski SSD to naprawdę kluczowy element w dzisiejszych komputerach, oferując świetną wydajność, niezawodność i oszczędność energii.

Pytanie 5

Jakie narzędzie należy zastosować do podłączenia zaszycia kabla w module Keystone?

A. wkrętak typu Torx
B. praskę ręczną
C. narzędzie uderzeniowe
D. bit imbusowy
Podczas rozważania innych narzędzi wymienionych w odpowiedziach, warto zwrócić uwagę na ich specyfikę i zastosowanie. Praska ręczna, choć często używana do zaciskania złączy w różnych zastosowaniach, nie jest odpowiednia do podłączania kabli w modułach Keystone. Użycie praski może prowadzić do niedostatecznego wciśnięcia żył kabla do gniazda, co skutkuje słabym połączeniem i możliwością wystąpienia zakłóceń sygnału. Z kolei bit imbusowy i wkrętak typu Torx są narzędziami, które służą do skręcania lub luzowania śrub, a nie do podłączania kabli. Użycie tych narzędzi w kontekście instalacji Keystone prowadzi do błędnych wniosków, ponieważ nie odpowiadają one funkcji wymaganej do wprowadzenia żył w złącze. Takie myślenie może być wynikiem nieznajomości standardów instalacyjnych, które jasno określają, jakie narzędzia są przeznaczone do konkretnych zadań. Niezrozumienie tej kwestii może prowadzić do frustracji podczas instalacji oraz do problemów z wydajnością systemu, co jest szczególnie istotne w środowiskach, gdzie niezawodność komunikacji ma kluczowe znaczenie dla działalności firmy.

Pytanie 6

Jakie polecenie należy zastosować w konsoli odzyskiwania systemu Windows, aby poprawić błędne zapisy w pliku boot.ini?

A. bootcfg /rebuild
B. fixmbr
C. diskpart /add
D. fixboot
W przypadku błędnych odpowiedzi istotne jest zrozumienie, dlaczego niektóre polecenia nie są odpowiednie do naprawy pliku boot.ini. Na przykład, 'fixmbr' jest używane do naprawy rekordu głównego rozruchu (MBR) na dysku twardym. MBR zawiera informacje o partycjach i jest kluczowy dla rozruchu systemu, jednak nie zajmuje się on problemami związanymi z plikiem boot.ini, który jest odpowiedzialny za konfigurację rozruchu systemu Windows. Polecenie 'fixboot' również dotyczy naprawy sektora rozruchowego partycji, ale nie wprowadza zmian w pliku boot.ini. Z kolei 'diskpart /add' to niepoprawne podejście, ponieważ diskpart jest narzędziem do zarządzania partycjami, a nie do konfigurowania plików rozruchowych. Typowe błędy myślowe prowadzące do wyboru tych poleceń mogą wynikać z mylenia pojęć dotyczących różnych aspektów procesu rozruchu. Ważne jest, aby zrozumieć, że każdy z tych programów ma swoje specyficzne zastosowania, a ich użycie w niewłaściwych kontekstach może prowadzić do dalszych problemów z systemem, zamiast ich rozwiązania. Wiedza na temat właściwego użycia narzędzi dostępnych w konsoli odzyskiwania jest kluczowa dla efektywnego zarządzania systemami operacyjnymi i unikania potencjalnych awarii.

Pytanie 7

Jakiego parametru wymaga konfiguracja serwera DHCP?

A. Poziom zabezpieczeń IPSec (ang. Internet Protocol Security)
B. Adres MAC karty sieciowej serwera DHCP
C. Czas trwania dzierżawy adresu IP
D. Czas trwania dzierżawy adresu MAC
Jak się nad tym zastanowić, to inne opcje nie bardzo pasują do tematu konfiguracji serwera DHCP. Na przykład poziom zabezpieczeń IPSec jest ważny dla bezpieczeństwa, ale nie ma bezpośredniego związku z DHCP. IPSec to protokoły, które zabezpieczają komunikację IP, a nie coś, co ustalamy na serwerze DHCP. Adres MAC serwera też nie jest potrzebny w kontekście jego konfiguracji. Adres MAC to właściwie coś, co przypisane jest do interfejsu sieciowego, a serwer DHCP nie potrzebuje go, żeby przydzielać adresy IP. I jeszcze jedno - mówienie o czasie dzierżawy adresu MAC to mylny trop, bo DHCP zajmuje się dzierżawą adresów IP, nie MAC. Tego typu nieporozumienia mogą prowadzić do błędów w interpretacji tego, do czego DHCP służy, co potem może skutkować złym ustawieniem i problemami w sieci. Ważne jest, aby zrozumieć, że DHCP to protokół, który ma na celu automatyczne przydzielanie adresów IP i zarządzanie ich dzierżawą, a nie coś z adresami MAC czy sprawami bezpieczeństwa.

Pytanie 8

Jaka będzie suma liczb binarnych 1010 oraz 111, gdy przeliczymy ją na system dziesiętny?

A. 16
B. 17
C. 18
D. 19
Podczas analizy odpowiedzi, które nie są poprawne, warto zwrócić uwagę na błędy w konwersji oraz dodawaniu wartości binarnych. Odpowiedzi sugerujące 18, 19 czy 16 mogą wynikać z nieprawidłowego zrozumienia wartości liczb binarnych. Wiele osób może mylnie przyjąć, że dodawanie w systemie binarnym jest identyczne z dodawaniem w systemie dziesiętnym, jednak różnice te mają kluczowe znaczenie. Typowym błędem jest zignorowanie przeniesienia, które następuje podczas dodawania bitów. Na przykład, w przypadku dodawania 1010 i 0111, zaczynając od najmniej znaczącego bitu, dodajemy: 0+1=1, 1+1=10 (przeniesienie do następnej kolumny), następnie 1+1+0 (przeniesienie) = 10 (kolejne przeniesienie) oraz 1+0=1. Ostatecznie uzyskujemy 10001, co w systemie dziesiętnym odpowiada 17. Przykłady takich błędów mogą prowadzić do niedokładnych obliczeń w programowaniu czy inżynierii, gdzie precyzja jest kluczowa. Dlatego istotne jest, aby nie tylko znać zasady dodawania liczb binarnych, ale również być świadomym pułapek, które mogą prowadzić do błędnych wyników.

Pytanie 9

Internet Relay Chat (IRC) to protokół wykorzystywany do

A. transmisji głosu w sieci
B. wysyłania wiadomości na forum dyskusyjne
C. przesyłania wiadomości e-mail
D. przeprowadzania rozmów za pomocą interfejsu tekstowego
Internet Relay Chat (IRC) to protokół, który umożliwia użytkownikom prowadzenie rozmów w czasie rzeczywistym za pomocą tekstowych wiadomości. W odróżnieniu od innych form komunikacji, takich jak e-mail czy transmisja głosu, IRC opiera się na architekturze klient-serwer, gdzie użytkownicy łączą się z serwerem IRC, a następnie mogą uczestniczyć w kanałach tematyką, które ich interesują. Praktycznym zastosowaniem IRC jest organizowanie dyskusji na tematy techniczne, grupowych projektów programistycznych czy też wspólnych gier. Warto również zauważyć, że IRC wspiera wiele standardów, takich jak RFC 1459, które definiują jego podstawowe zasady działania. Dobre praktyki w korzystaniu z IRC obejmują przestrzeganie regulaminów kanałów, dbałość o kulturę dyskusji oraz efektywne zarządzanie dostępem do informacji, co przyczynia się do pozytywnej atmosfery w społecznościach online. IRC, mimo spadku popularności na rzecz nowoczesnych komunikatorów, wciąż jest wykorzystywany w niektórych środowiskach technicznych i gamingowych.

Pytanie 10

Organizacja zajmująca się normalizacją na świecie, która stworzyła 7-warstwowy Model Referencyjny Otwartej Architektury Systemowej, to

A. ISO (International Organization for Standarization)
B. EN (European Norm)
C. TIA/EIA (Telecommunicatons Industry Association/ Electronics Industries Association)
D. IEEE (Institute of Electrical and Electronics Enginieers)
ISO, czyli Międzynarodowa Organizacja Normalizacyjna, jest odpowiedzialna za rozwijanie i publikowanie międzynarodowych standardów, które obejmują różne dziedziny, w tym technologie informacyjne i komunikacyjne. Opracowany przez nią 7-warstwowy Model Referencyjny Połączonych Systemów Otwartym (OSI) jest fundamentem dla zrozumienia, jak różne protokoły i systemy komunikacyjne współpracują ze sobą. Model OSI dzieli proces komunikacji na siedem warstw, co pozwala na lepsze zrozumienie funkcji poszczególnych elementów w sieci. Dzięki temu inżynierowie mogą projektować bardziej efektywne i interoperacyjne systemy. Na przykład, wiele protokołów internetowych, takich jak TCP/IP, czerpie z zasad OSI, co ułatwia integrację różnych technologii w ramach jednego systemu. Ponadto, stosowanie tego modelu pozwala na uproszczenie procesów diagnostycznych i rozwiązywania problemów w sieciach, co jest nieocenione w praktyce inżynieryjnej.

Pytanie 11

Na ilustracji widoczny jest komunikat, który pojawia się po wprowadzeniu adresu IP podczas ustawiania połączenia sieciowego na komputerze. Adres IP podany przez administratora to adres IP

Ilustracja do pytania
A. pętli zwrotnej
B. komputera
C. rozgłoszeniowym
D. sieci
Pętla zwrotna to specjalny adres IP z zakresu 127.0.0.0/8 zwykle 127.0.0.1 używany do testowania konfiguracji sieciowej komputera lokalnego bez opuszczania go. Nie może być używany jako adres IP w publicznej sieci komputerowej dlatego odpowiedź ta jest niepoprawna. Adres IP komputera to unikalny numer przypisany do urządzenia w sieci który jest używany do identyfikacji i komunikacji. Adres musi należeć do określonej podsieci i być unikalny w tej sieci co nie dotyczy adresu rozgłoszeniowego który jest używany do komunikacji grupowej. Adres sieci to pierwszy adres w danej podsieci który identyfikuje sieć jako całość a nie pojedyncze urządzenie. Adres ten ma wszystkie bity części hosta ustawione na 0 i służy do identyfikacji poszczególnych segmentów sieci. Łatwo jest pomylić adresy rozgłoszeniowe z adresami sieci lub komputerów jednak zrozumienie ich różnic jest kluczowe dla skutecznego zarządzania sieciami komputerowymi. Adresy te pełnią różne role i są używane w różnych kontekstach co podkreśla znaczenie znajomości ich funkcji i zastosowań. Uwzględnianie tych różnic pozwala na efektywne zarządzanie i rozwiązywanie problemów w konfiguracjach sieciowych co jest kluczowe dla administratorów IT. Każdy typ adresu ma swoje unikalne zastosowanie i znaczenie w architekturze sieci co jest fundamentalne dla utrzymania niezawodności i efektywności sieciowej infrastruktury informatycznej. Zrozumienie tych zasad jest niezbędne dla prawidłowej konfiguracji i administrowania sieci w praktycznych zastosowaniach technologii informacyjnej. Przezwyciężenie błędnych założeń i zrozumienie poprawnych zastosowań przyczynia się do stabilności i bezpieczeństwa sieci.

Pytanie 12

Jakie oznaczenie nosi wtyk powszechnie znany jako RJ45?

A. 4P8C (4 Position 8 Contact)
B. 8P8C (8 Position 8 Contact)
C. 4P4C (4 Position 4 Contact)
D. 8P4C (8 Position 4 Contact)
Oznaczenie 8P8C (8 Position 8 Contact) odnosi się do wtyków, które są powszechnie stosowane w kablach Ethernetowych, szczególnie w standardzie 1000BASE-T, który obsługuje transfer danych na poziomie 1 Gbps. Wtyki te mają osiem pinów, co pozwala na przesyłanie danych w pełnym dupleksie, a ich konstrukcja zapewnia odpowiednią jakość sygnału oraz minimalizację zakłóceń elektromagnetycznych. W praktyce, RJ45 jest niezbędny w budowie sieci lokalnych (LAN) oraz w aplikacjach związanych z komunikacją internetową. Użycie wtyków 8P8C stało się standardem w branży telekomunikacyjnej, co pozwala na szeroką kompatybilność pomiędzy różnymi urządzeniami sieciowymi, takimi jak routery, przełączniki i komputery. Warto zauważyć, że stosowanie wtyków zgodnych z tym standardem jest istotne dla zachowania efektywności przesyłu danych oraz optymalizacji pracy sieci.

Pytanie 13

Jakie zakresy adresów IPv4 mogą być używane jako adresy prywatne w lokalnej sieci?

A. 127.0.0.0 ÷ 127.255.255.255
B. 168.172.0.0 ÷ 168.172.255.255
C. 200.186.0.0 ÷ 200.186.255.255
D. 172.16. 0.0 ÷ 172.31.255.255
Zakres adresów IP 127.0.0.0 do 127.255.255.255 jest zarezerwowany dla adresów loopback, co oznacza, że są one używane do testowania lokalnych połączeń na danym urządzeniu. Adres 127.0.0.1 jest powszechnie znany jako 'localhost' i służy do komunikacji wewnętrznej w systemie operacyjnym. Użycie tych adresów w sieciach lokalnych nie jest wskazane, ponieważ nie są one routowane poza urządzenie, co uniemożliwia ich wykorzystanie do komunikacji między różnymi urządzeniami w sieci. Zakres 168.172.0.0 do 168.172.255.255 nie jest zdefiniowany jako prywatny w żadnym standardzie, co oznacza, że mogą być one przypisane jako publiczne adresy IP. Ostatecznie, zakres 200.186.0.0 do 200.186.255.255 również nie znajduje się w ramach prywatnych adresów IP, a adresy te są routowane w Internecie. Typowe błędy, które mogą prowadzić do nieprawidłowych wniosków, obejmują mylenie adresów prywatnych z publicznymi, co może skutkować problemami z dostępem do sieci oraz bezpieczeństwem. Kluczowe jest, aby zrozumieć, jakie adresy są przeznaczone do użytku lokalnego a jakie do komunikacji w Internecie, aby skutecznie projektować i zarządzać sieciami komputerowymi.

Pytanie 14

Który z parametrów należy użyć w poleceniu netstat, aby uzyskać statystyki interfejsu sieciowego dotyczące liczby przesłanych oraz odebranych bajtów i pakietów?

A. -n
B. -o
C. -e
D. -a
Nieprawidłowe odpowiedzi wskazują na pewne nieporozumienia dotyczące zastosowania parametrów polecenia netstat. Parametr -a, na przykład, jest używany do wyświetlania wszystkich aktywnych połączeń oraz portów, ale nie dostarcza szczegółowych informacji o statystykach interfejsów sieciowych. Użycie tego parametru prowadzi do zbyt ogólnych danych, które mogą nie być pomocne w analizie wydajności poszczególnych interfejsów sieciowych. Z kolei parametr -n służy do wyświetlania adresów IP w postaci numerycznej, co również nie odpowiada na potrzebę analizy statystyk interfejsów. Użytkownicy mogą mylnie sądzić, że informacje w formie numerycznej są bardziej użyteczne, jednak w kontekście wydajności interfejsów bezpośrednie statystyki są kluczowe. Parametr -o, z drugiej strony, jest używany do wyświetlania identyfikatorów procesów (PID) związanych z połączeniami, co także nie ma związku z ilościami przesyłanych bajtów i pakietów. Właściwe zrozumienie tych parametrów jest niezbędne do skutecznego monitorowania i rozwiązywania problemów w sieciach, a niepoprawne interpretacje mogą prowadzić do utraty cennych informacji podczas diagnostyki.

Pytanie 15

Jaki adres IPv4 identyfikuje urządzenie funkcjonujące w sieci o adresie 14.36.64.0/20?

A. 14.36.80.1
B. 14.36.65.1
C. 14.36.17.1
D. 14.36.48.1
Adresy IPv4 14.36.17.1, 14.36.48.1 i 14.36.80.1 są spoza sieci 14.36.64.0/20, co czyni je niepoprawnymi. Adres 14.36.17.1 leży w innej klasie i nie pasuje do wymaganej struktury tej sieci. Z kolei 14.36.48.1 jest też poza zakresem, zwłaszcza że w trzecim oktetach '48' przekracza maksymalną wartość w tej sieci. A 14.36.80.1? No cóż, też nie łapie się w ten zakres. Często błąd w przydzielaniu adresów IP wynika z niezrozumienia struktury adresów oraz maski podsieci, co potem może prowadzić do problemów z siecią. Dlatego warto znać zasady dotyczące adresów IP, bo to ważne dla właściwego zarządzania siecią.

Pytanie 16

Użytkownik systemu Linux, który pragnie usunąć konto innego użytkownika wraz z jego katalogiem domowym, powinien wykonać polecenie

A. sudo userdel nazwa_użytkownika
B. userdel -d nazwa_użytkownika
C. userdel nazwa_użytkownika
D. sudo userdel -r nazwa_użytkownika
W przypadku odpowiedzi 'userdel nazwa_użytkownika', 'sudo userdel nazwa_użytkownika' czy 'userdel -d nazwa_użytkownika', jest parę poważnych błędów w rozumieniu działania polecenia 'userdel'. Na przykład, wybierając 'userdel nazwa_użytkownika', osoba bez uprawnień superużytkownika nie usunie innego konta. To jest kluczowe, bo w systemach, gdzie jest wielu użytkowników, bezpieczeństwo i kontrola dostępu są mega ważne. Odpowiedź 'sudo userdel nazwa_użytkownika' nie bierze pod uwagę usunięcia katalogu domowego, co może być ryzykowne, gdy konto nie jest już potrzebne. Zostawienie danych użytkownika może stwarzać zagrożenia. Co do 'userdel -d nazwa_użytkownika', to jest zła odpowiedź, bo '-d' nie jest standardowym przełącznikiem dla 'userdel' i nie działa jak powinno. Zrozumienie tych różnic jest naprawdę istotne, gdy działasz w świecie Linux, bo złe użycie poleceń może spowodować sporo kłopotów administracyjnych i narazić system na różne niebezpieczeństwa. Zarządzanie użytkownikami w Linuxie to nie tylko kwestia umiejętności usuwania kont, ale też dbania o bezpieczeństwo i odpowiednie praktyki zarządzania danymi.

Pytanie 17

Jak nazywa się interfejs wewnętrzny w komputerze?

A. IrDA
B. D-SUB
C. AGP
D. PCMCIA
AGP, czyli Accelerated Graphics Port, to interfejs zaprojektowany specjalnie do szybkiej komunikacji między kartą graficzną a płytą główną komputera. Wprowadzenie tego standardu miało na celu zwiększenie wydajności renderowania grafiki, co jest szczególnie istotne w kontekście gier komputerowych oraz aplikacji wymagających intensywnego przetwarzania wizualnego. AGP zapewnia wyższą przepustowość niż wcześniejsze interfejsy, takie jak PCI, co pozwala na szybszy transfer danych. W praktyce oznacza to, że karty graficzne mogły korzystać z większej ilości pamięci i lepiej współpracować z procesorem, co przekładało się na płynniejsze działanie gier i programów graficznych. Standard AGP zyskał popularność w latach 90. i na początku XXI wieku, jednak z czasem został wyparty przez PCI Express, który oferuje jeszcze wyższą wydajność.

Pytanie 18

Jaki typ zabezpieczeń w sieciach WiFi oferuje najwyższy poziom ochrony?

A. WPA
B. WEP
C. WPA2
D. NTFS
WPA2 (Wi-Fi Protected Access 2) to protokół zabezpieczeń, który oferuje znacznie wyższy poziom ochrony niż jego poprzednicy, WEP i WPA. Wprowadza szyfrowanie AES (Advanced Encryption Standard), które jest obecnie uważane za jeden z najbezpieczniejszych algorytmów szyfrowania dostępnych w technologii sieciowej. WEP (Wired Equivalent Privacy) korzysta z algorytmu RC4, który ma liczne słabości i można go łatwo złamać. WPA, będąc przejściowym rozwiązaniem, oferuje poprawę bezpieczeństwa w stosunku do WEP, ale wciąż nie dorównuje WPA2. W praktyce, wiele domowych i biurowych routerów WiFi domyślnie oferuje WPA2 jako standardowy wybór, co czyni go najczęściej stosowanym typem zabezpieczeń. Warto również zwrócić uwagę na fakt, że WPA3, jako nowsza generacja zabezpieczeń, zaczyna zyskiwać na popularności, jednak WPA2 wciąż pozostaje powszechnym i skutecznym rozwiązaniem do zabezpieczania sieci bezprzewodowych.

Pytanie 19

Aby monitorować przesył danych w sieci komputerowej, należy wykorzystać program klasy

A. firmware.
B. kompilator.
C. sniffer.
D. debugger.
Podejmowanie próby monitorowania transmisji danych przy użyciu firmware'u, debuggera lub kompilatora jest niewłaściwe, ponieważ te narzędzia mają zupełnie inne zastosowania w obszarze technologii informacyjnej. Firmware to oprogramowanie wbudowane w sprzęt, które zarządza jego funkcjami na poziomie sprzętowym. Choć jest kluczowe dla działania urządzeń, nie ma zastosowania w kontekście analizy i monitorowania ruchu sieciowego. Debugger to narzędzie do analizy kodu programu w celu znajdowania błędów; służy programistom do wykonywania kodu krok po kroku, ale nie jest przeznaczone do monitorowania ruchu w sieci. Ostatnim z wymienionych narzędzi jest kompilator, który przekształca kod źródłowy programu na kod maszynowy, co jest procesem fundamentalnym dla programowania, a nie dla analizy ruchu. Powszechnym błędem jest mylenie funkcji tych narzędzi, co prowadzi do nieprawidłowych wniosków. W rzeczywistości do monitorowania transmisji danych niezbędny jest sniffer, który jest zaprojektowany specjalnie w tym celu. Zrozumienie tych różnic jest kluczowe dla efektywnego wykorzystania narzędzi w branży IT oraz dla zapewnienia odpowiedniego bezpieczeństwa i efektywności sieci.

Pytanie 20

Protokół ARP (Address Resolution Protocol) pozwala na przekształcanie logicznych adresów z warstwy sieciowej na fizyczne adresy z warstwy

A. aplikacji
B. łącza danych
C. transportowej
D. fizycznej
Wybór odpowiedzi na poziomie aplikacji, transportowej czy fizycznej jest niepoprawny ze względu na specyfikę funkcji protokołu ARP, który działa na warstwie łącza danych. Protokół aplikacji koncentruje się na interakcji z użytkownikami i zarządzaniu danymi, ale nie ma na celu przetwarzania adresów sprzętowych. Protokół transportowy z kolei zajmuje się niezawodnością i kontrolą przepływu danych między urządzeniami, a nie ich adresowaniem na poziomie sprzętowym. Warstwa fizyczna dotyczy natomiast transmisji sygnałów przez medium komunikacyjne, co również nie jest związane z mapowaniem adresów IP na MAC. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków obejmują mylenie funkcji poszczególnych warstw w modelu OSI, co może wynikać z niedostatecznej wiedzy o architekturze sieci. Zrozumienie, jak każda warstwa współpracuje i jakie funkcje pełni, jest kluczowe dla prawidłowego postrzegania roli protokołu ARP. Dobrą praktyką jest zapoznanie się z dokumentacją dotyczącą protokołu ARP oraz modelu OSI, aby lepiej zrozumieć, jakie operacje są wykonywane na poszczególnych warstwach oraz ich wzajemne powiązania.

Pytanie 21

Niskopoziomowe formatowanie dysku IDE HDD polega na

A. tworzeniu partycji podstawowej
B. przeprowadzaniu przez producenta dysku
C. umieszczaniu programu rozruchowego w MBR
D. tworzeniu partycji rozszerzonej
Wybór odpowiedzi o partycjach rozszerzonych i podstawowych nie jest trafny, bo te sprawy są całkiem inne niż niskopoziomowe formatowanie. Partycje tworzy się na poziomie wysokopoziomowym, a to następuje dopiero po niskopoziomowym formatowaniu. I warto wiedzieć, że partycja rozszerzona ma na celu umożliwienie utworzenia większej liczby partycji logicznych na dysku, co jest ważne, jeśli system nie obsługuje więcej niż czterech podstawowych partycji. Więc tworzenie partycji nie dotyczy niskopoziomowego formatowania. To robi użytkownik albo administrator po tym, jak dysk został niskopoziomowo sformatowany, a on wtedy gotowy na dalsze zarządzanie. No i druga niepoprawna odpowiedź dotyczy umieszczania programu rozruchowego w MBR. MBR jest załatwiane podczas instalacji systemu operacyjnego, a nie w trakcie niskopoziomowego formatowania. Wysokopoziomowe formatowanie, które następuje po niskopoziomowym, jest tym, co przygotowuje system plików i zapisuje informacje o bootloaderze. Dlatego brak zrozumienia różnicy między tymi procesami może prowadzić do mylnych wniosków na temat niskopoziomowego formatowania w kontekście zarządzania dyskami.

Pytanie 22

Jakie narzędzie służy do obserwacji zdarzeń w systemie Windows?

A. dfrg.msc
B. gpedit.msc
C. eventvwr.msc
D. tsmmc.msc
Odpowiedzi tsmmc.msc, gpedit.msc oraz dfrg.msc są błędne z kilku powodów. Tsmmc.msc odnosi się do narzędzia Microsoft Terminal Services Manager, które jest używane do zarządzania sesjami zdalnymi i nie ma związku z monitorowaniem zdarzeń. Gpedit.msc to edytor zasad grupy, który pozwala na zarządzanie politykami zabezpieczeń w systemie Windows, ale nie oferuje funkcji monitorowania zdarzeń. Dfrg.msc to narzędzie do defragmentacji dysków, które również nie ma związku z rejestrowaniem czy analizowaniem zdarzeń systemowych. Użytkownicy często mylą te narzędzia ze względu na ich techniczne nazewnictwo, co prowadzi do nieporozumień w kontekście ich zastosowania. Kluczowe jest, aby zrozumieć, które narzędzia odpowiadają za konkretne funkcje w systemie operacyjnym, co jest niezbędne w kontekście efektywnego zarządzania i zabezpieczania środowiska IT. Wiedza o tym, jakie narzędzia służą do monitorowania, a jakie do zarządzania lub konfiguracji, jest fundamentalna dla administratorów systemów, a jej brak może skutkować poważnymi lukami w bezpieczeństwie lub nieefektywnym zarządzaniem zasobami.

Pytanie 23

Który z protokołów umożliwia szyfrowane połączenia?

A. TELNET
B. SSH
C. DNS
D. DHCP
SSH, czyli Secure Shell, to super ważny protokół, który pozwala nam bezpiecznie łączyć się z komputerami zdalnie i przesyłać dane. Co to znaczy? Ano to, że wszystko co wysyłasz między swoim komputerem a serwerem jest zaszyfrowane. Dzięki temu nikt nie może łatwo podejrzeć, co robisz, ani nie ma szans na manipulację tymi danymi. W praktyce SSH jest często stosowane do logowania się do serwerów, co sprawia, że nawet twoje hasła są bezpieczne podczas przesyłania. Są różne standardy, jak RFC 4251, które mówią, jak powinno to wyglądać pod względem bezpieczeństwa i dlatego SSH to naprawdę niezbędne narzędzie w zarządzaniu IT. Co więcej, SSH umożliwia różne sposoby uwierzytelniania, na przykład klucze publiczne, co jeszcze bardziej podnosi poziom ochrony. Ostatecznie, SSH jest ulubieńcem wielu administratorów, zwłaszcza tam, gdzie ochrona danych jest kluczowa, jak w zarządzaniu bazami danych czy przy transferach plików za pomocą SCP.

Pytanie 24

Główny sposób zabezpieczania danych w sieciach komputerowych przed dostępem nieautoryzowanym to

A. tworzenie sum kontrolnych plików
B. tworzenie kopii zapasowych danych
C. autoryzacja dostępu do zasobów serwera
D. używanie macierzy dyskowych
Autoryzacja dostępu do zasobów serwera jest kluczowym mechanizmem ochrony danych w sieciach komputerowych, ponieważ zabezpiecza przed nieuprawnionym dostępem użytkowników do informacji i zasobów systemowych. Proces ten opiera się na identyfikacji użytkownika oraz przydzieleniu mu odpowiednich uprawnień, co umożliwia kontrolowanie, kto ma prawo do wykonania konkretnych operacji, takich jak odczyt, zapis czy modyfikacja danych. Przykładem zastosowania autoryzacji może być system zarządzania bazą danych, w którym administrator przypisuje różne poziomy dostępności na podstawie ról użytkowników. W praktyce wdrażanie autoryzacji może obejmować wykorzystanie takich protokołów jak LDAP (Lightweight Directory Access Protocol) lub Active Directory, które umożliwiają centralne zarządzanie użytkownikami oraz ich uprawnieniami. Dobre praktyki w tej dziedzinie zalecają stosowanie wielopoziomowej autoryzacji, aby zwiększyć bezpieczeństwo, na przykład poprzez łączenie haseł z tokenami lub biometrią.

Pytanie 25

Osoba korzystająca z systemu Linux, chcąc zweryfikować dysk twardy pod kątem obecności uszkodzonych sektorów, ma możliwość skorzystania z programu

A. scandisk
B. fsck
C. chkdisk
D. defrag
Wybór programów takich jak defrag, chkdisk czy scandisk w kontekście testowania dysku twardego w systemie Linux jest błędny, ponieważ są to narzędzia przeznaczone dla innych systemów operacyjnych. Defrag to narzędzie używane głównie w systemach Windows do fragmentacji dysku, co ma na celu poprawę wydajności, ale nie sprawdza integralności systemu plików ani nie identyfikuje uszkodzonych sektorów. Chkdisk, z kolei, jest narzędziem specyficznym dla systemu Windows, którego zadaniem jest skanowanie i naprawa błędów systemu plików, jednak nie działa w systemach Unix/Linux. Scandisk, podobnie jak chkdisk, jest również narzędziem Windows, które służy do skanowania dysków w poszukiwaniu błędów i uszkodzeń. Użytkownicy często popełniają błąd, myląc funkcje tych programów, ponieważ nie są świadomi, że każdy z tych systemów operacyjnych oferuje różne narzędzia dostosowane do swoich potrzeb. W rzeczywistości, dla użytkowników Linuxa odpowiednim rozwiązaniem do sprawdzania dysków twardych w kontekście uszkodzonych sektorów jest właśnie fsck, które jest dedykowane dla tego systemu operacyjnego i wykonuje swoje zadanie w sposób skuteczny i bezpieczny.

Pytanie 26

Jakim adresem IPv6 charakteryzuje się autokonfiguracja łącza?

A. FE80::/10
B. ::/128
C. FF00::/8
D. 2000::/3
Adres IPv6 autokonfiguracji łącza, czyli adres typu Link-Local, zaczyna się od prefiksu FE80::/10. Adresy te są używane do komunikacji w obrębie tej samej sieci lokalnej i są automatycznie konfigurowane przez urządzenia IPv6. Oznacza to, że urządzenia mogą komunikować się bez potrzeby przypisywania im globalnego adresu IP. Prywatność i bezpieczeństwo są ważnymi aspektami tej autokonfiguracji, ponieważ adresy Link-Local nie są routowalne poza lokalną sieć, co zmniejsza ryzyko nieautoryzowanego dostępu z zewnątrz. W praktyce, adresy te są niezbędne do funkcjonowania protokołów takich jak Neighbor Discovery Protocol (NDP), który pozwala na wykrywanie innych urządzeń w sieci i określanie ich adresów. Warto również zauważyć, że każdy interfejs w systemie operacyjnym, który obsługuje IPv6, automatycznie dostaje przypisany adres Link-Local, co znacząco upraszcza konfigurację sieci. Korzystanie z tych adresów jest zgodne z wytycznymi przedstawionymi w RFC 4862, definiującym zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 27

Schemat ilustruje fizyczną strukturę

Ilustracja do pytania
A. Drzewa
B. Magistrali
C. Szyny
D. Gwiazdy
Topologia gwiazdy jest jedną z najczęściej stosowanych fizycznych topologii sieci komputerowych, szczególnie w sieciach lokalnych (LAN). W tej topologii wszystkie urządzenia końcowe, takie jak komputery, są podłączone do centralnego urządzenia, którym zazwyczaj jest switch lub hub. Kluczową zaletą topologii gwiazdy jest jej łatwość w diagnostyce i zarządzaniu siecią. Jeśli jeden z kabli ulegnie uszkodzeniu, wpływa to tylko na jedno urządzenie, a reszta sieci działa bez zakłóceń. Topologia ta zapewnia również skalowalność, umożliwiając łatwe dodawanie nowych urządzeń bez wpływu na istniejące połączenia. W przypadku switcha, możliwe jest zastosowanie zaawansowanych mechanizmów zarządzania ruchem, takich jak filtry adresów MAC czy VLANy, co zwiększa wydajność i bezpieczeństwo sieci. Topologia gwiazdy jest zgodna z różnymi standardami komunikacyjnymi, takimi jak Ethernet, co czyni ją wszechstronną i kompatybilną z wieloma technologiami sieciowymi. W praktyce, ze względu na jej niezawodność i efektywność, jest to najczęściej wybierana topologia w środowiskach biurowych i komercyjnych, a jej zastosowanie jest szeroko udokumentowane w branżowych standardach i dobrych praktykach.

Pytanie 28

Jaką pamięć RAM można użyć z płytą główną GIGABYTE GA-X99-ULTRA GAMING/ X99/ 8x DDR4 2133, ECC, obsługującą maksymalnie 128GB, 4x PCI-E 16x, RAID, USB 3.1, S-2011-V3/ATX?

A. HPE 32GB (1x32GB) Quad Rank x4 PC3-14900L (DDR3-1866) Load Reduced CAS-13 Memory Kit
B. HPE 16GB (1x16GB) Dual Rank x4 PC3-14900R (DDR3-1866) Registered CAS-13 Memory Kit
C. HPE 32GB (1x16GB) Dual Rank x4 PC3L-10600R (DDR3-1333) Registered CAS-9 , Non-ECC
D. HPE 32GB (1x32GB) Quad Rank x4 DDR4-2133 CAS-15-15-15 Load Reduced Memory Kit, ECC
Odpowiedź HPE 32GB (1x32GB) Quad Rank x4 DDR4-2133 CAS-15-15-15 Load Reduced Memory Kit, ECC jest poprawna, ponieważ spełnia wszystkie wymagania techniczne płyty głównej GIGABYTE GA-X99-ULTRA GAMING. Ta płyta obsługuje pamięci DDR4, a wybrany moduł ma specyfikacje DDR4-2133, co oznacza, że działa z odpowiednią prędkością. Dodatkowo, pamięć ta obsługuje technologię ECC (Error-Correcting Code), która jest istotna w aplikacjach wymagających wysokiej niezawodności, takich jak serwery czy stacje robocze. Dzięki pamięci z technologią ECC, system jest w stanie wykrywać i korygować błędy w danych, co znacząco zwiększa stabilność i bezpieczeństwo operacji. Warto również zauważyć, że maksymalna pojemność, jaką można zainstalować na tej płycie, wynosi 128 GB, a wybrany moduł ma 32 GB, co pozwala na wykorzystanie pełnego potencjału płyty. W praktyce, takie rozwiązanie jest idealne dla zaawansowanych użytkowników, którzy potrzebują dużej pojemności RAM do obliczeń, renderowania lub pracy z dużymi zbiorami danych.

Pytanie 29

Najskuteczniejszym sposobem na ochronę komputera przed wirusami jest zainstalowanie

A. skanera antywirusowego
B. licencjonowanego systemu operacyjnego
C. hasła do BIOS-u
D. zapory FireWall
Wprowadzenie hasła dla BIOS-u może niby zwiększyć bezpieczeństwo systemu przez zablokowanie nieautoryzowanego dostępu do ustawień komputera, ale to nie pomoże w obronie przed wirusami czy złośliwym oprogramowaniem. Hasło BIOS tak naprawdę chroni głównie sprzęt, a nie system operacyjny przed zagrożeniami. Licencjonowany system operacyjny może ograniczyć ryzyko ataków, bo zapewnia regularne aktualizacje i wsparcie, ale nie zastąpi dobrego oprogramowania antywirusowego. Bez aktywnego skanera antywirusowego, komputer i tak może być narażony na różne zagrożenia, jak wirusy, robaki czy ransomware, które mogą naprawdę namieszać. A co do zapory FireWall, to jest narzędzie do kontroli ruchu sieciowego i może pomóc w blokowaniu podejrzanych połączeń, ale samo nie potrafi identyfikować i usuwać złośliwego oprogramowania. Wiele osób myli te funkcje i myśli, że wystarczy zainstalować jedno rozwiązanie, żeby komputer był bezpieczny. To podejście jest, moim zdaniem, niebezpieczne, bo skuteczna ochrona wymaga zintegrowanej strategii z wieloma warstwami zabezpieczeń, jak skaner antywirusowy, zapora oraz regularne uaktualnienia systemu. Rozumienie różnicy między tymi mechanizmami jest kluczowe, żeby dobrze zabezpieczyć swoje dane i system operacyjny.

Pytanie 30

Jaką nazwę powinien mieć identyfikator, aby urządzenia w sieci mogły działać w danej sieci bezprzewodowej?

A. MAC
B. URL
C. IP
D. SSID
SSID (Service Set Identifier) to unikalna nazwa, która identyfikuje sieć bezprzewodową, umożliwiając urządzeniom w jej zasięgu połączenie z tą siecią. W praktyce, SSID jest kluczowym elementem podczas konfiguracji routerów i punktów dostępowych, ponieważ pozwala użytkownikom na łatwe rozróżnienie różnych sieci dostępnych w danym obszarze. Na przykład, gdy użytkownik przeszukuje dostępne sieci Wi-Fi na swoim urządzeniu, widzi listę SSID-ów, co upraszcza wybór właściwej sieci do połączenia. Dobrym standardem jest nadawanie SSID-om nazw, które są łatwe do zapamiętania, ale nie ujawniają zbyt wielu informacji o lokalizacji czy zastosowaniu sieci, aby uniknąć nieautoryzowanego dostępu. Warto również pamiętać, że SSID może mieć do 32 znaków i nie powinien zawierać spacji. Dobrą praktyką jest również ukrywanie SSID sieci, co zwiększa bezpieczeństwo, chociaż może to również utrudnić dostęp do sieci dla nowych użytkowników.

Pytanie 31

Aby zapewnić bezpieczną komunikację terminalową z serwerem, powinno się skorzystać z połączenia z użyciem protokołu

A. SFTP
B. SSH
C. TFTP
D. Telnet
Protokół SSH (Secure Shell) to naprawdę fajne narzędzie do zabezpieczania komunikacji, zwłaszcza jeśli chodzi o zdalne zarządzanie serwerami. Jego główną rolą jest zapewnienie bezpiecznego połączenia między klientem a serwerem, co jest szczególnie ważne, gdy przesyłasz poufne dane, jak hasła czy inne wrażliwe informacje. Można go wykorzystać na przykład do logowania się zdalnie do serwerów Linux, gdzie administratorzy mogą robić różne rzeczy: zarządzać systemem, instalować oprogramowanie czy aktualizować go. Co ciekawe, SSH pozwala także na tunelowanie, czyli na bezpieczne przesyłanie danych przez niepewne sieci. Warto dodać, że eksperci od bezpieczeństwa zalecają korzystanie z SSH, bo to jedno z najważniejszych narzędzi w administracji, zamiast mniej bezpiecznych opcji, jak Telnet. I jeszcze jedna sprawa – SSH ma wbudowane mechanizmy autoryzacji z kluczami publicznymi, co jeszcze bardziej podnosi bezpieczeństwo połączenia.

Pytanie 32

Na diagramie zaprezentowano strukturę

Ilustracja do pytania
A. Gwiazdy
B. Podwójnego pierścienia
C. Siatki
D. Magistrali
Topologia siatki, znana też jako pełna siatka, to takie rozwiązanie, gdzie każdy węzeł w sieci jest podłączony do reszty. Dzięki temu, nawet jak jedno połączenie padnie, zawsze są inne drogi, żeby przesłać dane. To naprawdę zmniejsza ryzyko przerwy w komunikacji, co jest mega ważne w krytycznych sytuacjach. W praktyce, ta topologia sprawdza się w dużych sieciach, jak te wojskowe czy w dużych centrach danych, gdzie liczy się niezawodność i szybkość przesyłu. Standardy jak IEEE 802.1 są często używane w takich sieciach, bo oferują mechanizmy redundancji i zarządzania ruchem. Oczywiście, to wszystko wiąże się z wyższymi kosztami na start i w utrzymaniu, ale moim zdaniem, korzyści, jakie daje siatka, są tego warte. Niezawodność i elastyczność to ogromne atuty, które sprawiają, że topologia siatki jest wybierana w wielu przypadkach.

Pytanie 33

Jakie są zasadnicze różnice pomiędzy poleceniem ps a poleceniem top w systemie Linux?

A. Polecenie ps nie przedstawia stopnia obciążenia CPU, natomiast polecenie top oferuje tę funkcjonalność
B. Polecenie ps pozwala na zobaczenie uprawnień, z jakimi działa proces, natomiast top tego nie umożliwia
C. Polecenie top przedstawia aktualnie działające procesy w systemie, odświeżając informacje na bieżąco, co nie jest możliwe w przypadku ps
D. Polecenie top umożliwia pokazanie PID procesu, podczas gdy ps tego nie robi
Wiele osób może mieć trudności z poprawnym zrozumieniem różnic pomiędzy poleceniami 'ps' i 'top', co może prowadzić do nieprecyzyjnych wniosków. Na przykład, stwierdzenie, że polecenie 'top' wyświetla PID procesu, podczas gdy 'ps' nie, jest nieprawdziwe. Zarówno 'top', jak i 'ps' wyświetlają PID (identyfikator procesu), co jest podstawową informacją dla zarządzania procesami w systemie. Drugim błędem jest twierdzenie, że 'ps' nie pokazuje uprawnień, z jakimi działa proces. W rzeczywistości, 'ps' ma możliwość wyświetlania informacji dotyczących uprawnień, jeśli zostanie odpowiednio skonfigurowane. Istnieją różne opcje, takie jak 'ps aux', które dostarczają szczegółowych informacji na temat procesów, w tym ich uprawnień. Ponadto, polecenie 'top' rzeczywiście pokazuje stopień wykorzystania CPU, co jest jedną z jego kluczowych funkcji, ale twierdzenie, że 'ps' nie pokazuje stopnia wykorzystania CPU, jest mylące. Rzeczywiście, podstawowe użycie 'ps' nie pokazuje tego bezpośrednio, ale można użyć dodatkowych narzędzi i opcji, aby uzyskać te informacje. Finalnie, niektóre z tych nieporozumień mogą wynikać z braku zrozumienia, w jaki sposób te narzędzia działają i jakie mają zastosowanie w rzeczywistych scenariuszach administracji systemem, co może prowadzić do niewłaściwego użycia i interpretacji wyników.

Pytanie 34

Aby zabezpieczyć system przed oprogramowaniem mającym możliwość reprodukcji, konieczne jest zainstalowanie

A. programu narzędziowego
B. programu szpiegowskiego
C. programu antywirusowego
D. programu diagnostycznego
Program antywirusowy to naprawdę ważna rzecz, jeśli chodzi o ochronę komputerów przed różnymi zagrożeniami, jak wirusy czy robaki. Jego główną rolą jest znajdowanie i usuwanie tych problemów. Żeby to działało dobrze, programy antywirusowe muszą być regularnie aktualizowane, bo tylko wtedy mogą rozpoznać nowe zagrożenia. W praktyce, programy te nie tylko skanują pliki na dysku, ale też analizują ruch w sieci. Dzięki temu można szybko wykryć i zablokować coś podejrzanego. Dobrze jest też pamiętać o aktualizowaniu systemu operacyjnego i programów, bo to zmniejsza ryzyko ataków. Ważne jest, żeby mieć kilka różnych warstw zabezpieczeń oraz nauczyć się, jak rozpoznawać potencjalne zagrożenia. W dzisiejszych czasach, kiedy zagrożeń jest coraz więcej, posiadanie sprawnego programu antywirusowego to podstawa, jeśli chodzi o bezpieczeństwo w sieci.

Pytanie 35

Na przedstawionym schemacie urządzeniem, które łączy komputery, jest

Ilustracja do pytania
A. regenerator
B. przełącznik
C. ruter
D. most
Ruter to urządzenie sieciowe, które łączy różne sieci komputerowe i kieruje ruchem danych między nimi. W przeciwieństwie do przełączników, które działają na poziomie drugiej warstwy modelu OSI i zajmują się przesyłaniem danych w obrębie tej samej sieci lokalnej, rutery funkcjonują w trzeciej warstwie, co pozwala im na międzysegmentową komunikację. Ruter analizuje nagłówki pakietów i decyduje o najlepszej ścieżce przesłania danych do ich docelowego adresu. Jego użycie jest kluczowe w sieciach rozległych (WAN), gdzie konieczna jest efektywna obsługa ruchu pomiędzy różnymi domenami sieciowymi. Rutery wykorzystują protokoły routingu, takie jak OSPF czy BGP, umożliwiając dynamiczną adaptację tras w odpowiedzi na zmiany w topologii sieci. Dzięki temu zapewniają redundancję i optymalizację trasy danych, co jest niezbędne w środowiskach o dużym natężeniu ruchu. W praktyce ruter pozwala również na nadawanie priorytetów i zarządzanie przepustowością, co jest istotne dla utrzymania jakości usług w sieciach obsługujących różnorodne aplikacje i protokoły.

Pytanie 36

Na płycie głównej z chipsetem Intel 865G

A. można zainstalować kartę graficzną z interfejsem ISA
B. można zainstalować kartę graficzną z interfejsem AGP
C. można zainstalować kartę graficzną z interfejsem PCI-Express
D. nie ma możliwości zainstalowania karty graficznej
Zainstalowanie karty graficznej z PCI-Express na płycie głównej z układem Intel 865G to zły pomysł, bo ten chipset nie obsługuje PCI-Express. Różnica między PCI-Express a AGP tkwi w strukturze złącza i tym, jak przesyłane są dane. PCI-Express, które weszło na rynek na początku lat 2000, ma o wiele lepszą przepustowość i elastyczność w porównaniu do AGP, ale płyta Intel 865G nie ma odpowiednich slotów do PCI-Express. Też nie ma co myśleć o złączu ISA, które było popularne w latach 80. i 90., bo nie nadaje się do nowoczesnych kart graficznych. Wiele osób myli te standardy, nie zdając sobie sprawy, że AGP było stworzone tylko dla kart graficznych w starszych systemach. To, że nie rozumie się różnic między nimi, prowadzi do błędnych przekonań, jak to, że nowsze złącza mogą działać na starszych płytach. Więc, jak myślisz o modernizacji sprzętu, pamiętaj, żeby wszystkie podzespoły były kompatybilne, a w przypadku Intel 865G będziesz musiał wybierać karty graficzne z AGP.

Pytanie 37

Jak nazywa się topologia fizyczna, w której wszystkie urządzenia końcowe są bezpośrednio połączone z jednym punktem centralnym, takim jak koncentrator lub przełącznik?

A. siatki
B. pierścienia
C. gwiazdy
D. magistrali
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, w której wszystkie urządzenia końcowe, takie jak komputery, drukarki czy serwery, są bezpośrednio podłączone do centralnego urządzenia, którym zazwyczaj jest koncentrator (hub) lub przełącznik (switch). Taka konfiguracja pozwala na łatwe zarządzanie i diagnostykę sieci, ponieważ w przypadku awarii jednego z urządzeń końcowych nie wpływa to na działanie pozostałych. Przykładem zastosowania topologii gwiazdy może być biuro, gdzie wszystkie komputery są podłączone do jednego przełącznika, co umożliwia szybkie przesyłanie danych i współpracę między pracownikami. Ponadto, w sytuacji awarii centralnego urządzenia, cała sieć może przestać działać, co jest jej główną wadą, ale w praktyce nowoczesne przełączniki oferują wyspecjalizowane funkcje redundancji, które mogą zminimalizować ten problem. Zgodnie z najlepszymi praktykami branżowymi, topologia gwiazdy jest preferowana w wielu instalacjach, ze względu na swoją elastyczność i łatwość w rozbudowie oraz konserwacji.

Pytanie 38

W systemie Linux uruchomiono skrypt z czterema argumentami. Jak można uzyskać dostęp do listy wszystkich wartości w skrypcie?

A. $@
B. $*
C. $X
D. $all
Użycie $* w kontekście przekazywania argumentów w skryptach Bash nie jest optymalne. Choć $* pozwala na dostęp do wszystkich argumentów, łączy je w jeden ciąg bez uwzględniania spacji, co może prowadzić do poważnych błędów w sytuacjach, gdy argumenty zawierają spacje. Na przykład, wywołując skrypt z argumentami 'arg1', 'arg 2', $* wyprodukuje wynik traktujący wszystkie te argumenty jako jeden, co zniekształca ich rzeczywistą wartość i może prowadzić do nieprawidłowego działania skryptu. Ponadto, używanie $X jest zupełnie niepoprawne, ponieważ nie jest to standardowy zmienny w Bash, a zastosowanie $all jest również nietypowe i niepoprawne. Te niepoprawne podejścia wynikają często z nieporozumienia na temat sposobu, w jaki Bash interpretuje argumenty. Często programiści nie zdają sobie sprawy, że brak cudzysłowów przy użyciu $* może prowadzić do utraty kontekstu argumentów, co jest typowym błędem w praktyce skryptowej. Aby uniknąć tych sytuacji, istotne jest, aby zgłębić dokumentację oraz zastosować dobre praktyki w zakresie przetwarzania argumentów, co z pewnością przyczyni się do wyższej jakości skryptów i ich niezawodności.

Pytanie 39

Czy możesz wskazać, jak wygląda zapis maski podsieci /23 w systemie dziesiętnym, wiedząc, że pierwsze 23 bity z 32-bitowej liczby binarnej to jedynki, a pozostałe to zera? Każdemu z kolejnych 8 bitów odpowiada jedna liczba dziesiętna?

A. 255.255.255.128
B. 255.255.0.0
C. 255.255.255.0
D. 255.255.254.0
Maska podsieci /23 oznacza, że pierwsze 23 bity w 32-bitowej reprezentacji adresu IP są zajęte przez jedynki, co oznacza, że adresy IP w danej podsieci mają wspólne 23 bity. W zapisie binarnym maski podsieci /23 wygląda to następująco: 11111111.11111111.11111110.00000000. Przekładając to na wartości dziesiętne, otrzymujemy 255.255.254.0. Ta maska pozwala na uzyskanie 512 adresów IP w podsieci (2^(32-23)), z czego 510 z nich może być używanych do przypisywania urządzeniom, ponieważ jeden adres jest zarezerwowany dla identyfikacji podsieci, a drugi dla rozgłoszenia. Użycie maski /23 jest powszechnie stosowane w większych sieciach, gdzie potrzeba większej liczby adresów IP, ale nie tak dużej jak w przypadku maski /22. Przykładowo, w organizacjach z dużą liczbą urządzeń, taka maska może być idealnym rozwiązaniem, umożliwiającym efektywne zarządzanie adresacją IP.

Pytanie 40

Symbol "LGA 775" obecny w dokumentacji technicznej płyty głównej wskazuje na typ gniazda dla procesorów:

A. których obudowa zawiera pola dotykowe
B. które mają mniej połączeń zasilających niż gniazdo dla procesorów w obudowie PGA
C. które są zgodne z szyną systemową o maksymalnej częstotliwości taktowania do 1 333 MHz
D. których obudowa zawiera piny
Stwierdzenie, że 'LGA 775' odnosi się do procesorów, których obudowa posiada piny, jest nieprawidłowe, ponieważ koncept pinu w kontekście LGA odnosi się do technologii PGA, gdzie procesor ma wystające piny, które wchodzą w gniazdo na płycie głównej. W przypadku LGA, procesor jest płaski i posiada pola dotykowe, co eliminuje wiele problemów związanych z mechanicznym uszkodzeniem pinów. Wybór gniazda LGA 775 ma swoje uzasadnienie w potrzebie zwiększenia niezawodności połączeń oraz prostoty montażu. Kolejna nieścisłość dotyczy połączeń zasilających. W rzeczywistości LGA 775 obsługuje standardowe połączenia zasilające, które są wystarczające dla większości procesorów z tej serii, a stwierdzenie, że obudowy te mają mniej połączeń zasilających niż ich odpowiedniki w technologii PGA jest mylące. To zróżnicowanie w konstrukcji gniazd nie wpływa bezpośrednio na efektywność zasilania procesora, lecz na sposób, w jaki procesor łączy się z płytą główną. Warto również zwrócić uwagę na częstotliwość szyny systemowej. Podczas gdy LGA 775 obsługuje procesory z różnymi częstotliwościami taktowania, twierdzenie, że gniazdo to ogranicza się do częstotliwości 1 333 MHz, jest zbyt ogólne, ponieważ różne modele procesorów mogą współpracować z szyną systemową o różnych prędkościach, co było istotne w kontekście rozwoju technologii oraz zastosowań w standardowych komputerach i zaawansowanych stacjach roboczych.