Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 5 maja 2025 13:03
  • Data zakończenia: 5 maja 2025 13:21

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Zbadaj rezystancję izolacji instalacji elektrycznej
B. Zmierz czas samoczynnego wyłączenia zasilania
C. Przeprowadź próbę ciągłości połączeń wyrównawczych
D. Zweryfikuj poprawność doboru przekroju przewodów
Sprawdzenie poprawności doboru przekroju przewodów jest kluczowym krokiem przed oddaniem do użytku instalacji elektrycznej w budynkach mieszkalnych. Przekroje przewodów muszą być odpowiednio dobrane, aby zapewnić bezpieczeństwo użytkowania oraz efektywność energetyczną. Zbyt mały przekrój przewodu może prowadzić do przegrzewania się, co z kolei zwiększa ryzyko pożaru. Podczas tego sprawdzenia należy uwzględnić obciążenie prądowe, długość przewodów oraz rodzaj instalacji. Przykładowo, w przypadku instalacji oświetleniowej w domach jednorodzinnych zazwyczaj stosuje się przewody o przekroju 1,5 mm², natomiast w instalacjach zasilających urządzenia o większej mocy stosuje się przewody o przekroju 2,5 mm² lub nawet większym, w zależności od specyfiki obciążenia. Standardy takie jak PN-IEC 60364-5-52 wyraźnie określają zasady doboru przekrojów przewodów w zależności od zastosowania oraz warunków środowiskowych, co podkreśla znaczenie tego etapu w procesie inspekcji instalacji elektrycznej.

Pytanie 2

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B10
B. B16
C. C16
D. C10
Wybór innego wyłącznika nadprądowego nie spełnia wymagań dotyczących ochrony przeciwporażeniowej przy podanej impedancji pętli zwarcia, co może prowadzić do poważnych konsekwencji w aspekcie bezpieczeństwa. Wyłączniki C10 oraz C16, które mają charakterystykę C, są przeznaczone do zabezpieczania obwodów, w których występują duże prądy rozruchowe, typowe dla silników i urządzeń indukcyjnych. Chociaż mogą być skuteczne w pewnych zastosowaniach, to w kontekście ochrony przed porażeniem elektrycznym są niewłaściwe, zwłaszcza przy niskich impedancjach pętli zwarcia. Czas reakcji tych wyłączników jest dłuższy niż w przypadku charakterystyki B, co może skutkować dłuższym czasem, w którym osoba narażona na porażenie prądem elektrycznym jest narażona na niebezpieczeństwo. W praktyce, niewłaściwy dobór wyłącznika może prowadzić do obniżonego poziomu bezpieczeństwa użytkowników oraz zwiększonego ryzyka uszkodzenia instalacji. Percepcja, że wyłączniki o wyższej charakterystyce są bardziej skuteczne, jest błędna w kontekście ochrony ludzkiego życia, co jest kluczowe w normach i zaleceniach dotyczących instalacji elektrycznych. Ważne jest, aby dobrze rozumieć zasady działania wyłączników oraz ich odpowiednie zastosowanie w zależności od specyfikacji instalacji elektrycznych.

Pytanie 3

Jaką wartość powinien mieć prąd znamionowy bezpiecznika aparatowego zamontowanego w obwodzie uzwojenia pierwotnego transformatora jednofazowego, którego parametry to: U1N = 230 V, U2N = 13 V, używanego w ładowarce do akumulatorów, jeżeli przewidywany prąd obciążenia podczas ładowania akumulatorów wynosi 15 A?

A. 6 A
B. 1 A
C. 10 A
D. 16 A
Poprawna odpowiedź wynosi 1 A, co jest zgodne z wartością prądu znamionowego, jaką powinien mieć bezpiecznik aparaturowy zainstalowany w obwodzie uzwojenia pierwotnego transformatora jednofazowego. Wartość prądu znamionowego bezpiecznika określa maksymalny prąd, jaki może płynąć przez obwód przed wystąpieniem uszkodzenia lub awarii. W przypadku transformatora, który pracuje w charakterze ładowarki do akumulatorów, kluczowe jest, aby dobrać odpowiednią wartość prądu zabezpieczenia. W analizowanej sytuacji, przy napięciu 230 V na uzwojeniu pierwotnym i przewidywanym prądzie obciążenia 15 A na uzwojeniu wtórnym, istotne jest uwzględnienie współczynnika wydajności oraz strat mocy. Zgodnie z normami, przyjmuje się, aby wartość prądu znamionowego bezpiecznika była co najmniej 20-25% wyższa od prądu obciążenia. W praktyce często stosuje się bezpieczniki o wartości 1 A dla obwodów, w których prąd nie przekracza 15 A. Takie podejście ma na celu zapewnienie dodatkowego marginesu bezpieczeństwa oraz ochrony urządzenia. Wartości te są zgodne z normami IEC 60269 oraz IEC 60947, które zalecają dobór odpowiednich zabezpieczeń w zależności od charakterystyki obciążenia.

Pytanie 4

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 5

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE

A. B.
B. C.
C. A.
D. D.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 6

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zatrzymanie wirnika
B. zwiększenie prędkości obrotowej
C. zmniejszenie prędkości obrotowej
D. zmianę kierunku obrotu
Kierunek wirowania silnika indukcyjnego zależy od fazy zasilania oraz układu połączeń uzwojeń, a sama zmiana liczby par biegunów nie wpływa na tę charakterystykę. Przełączenie cewek w silniku indukcyjnym nie może spowodować zmiany kierunku obrotów, chyba że reinterpretujemy układ połączeń w sposób, który to umożliwia. Niezrozumienie tego aspektu prowadzi do błędnego wniosku, że kierunek obrotów zmienia się w wyniku zwiększenia liczby par biegunów. Z kolei stwierdzenie, że zmiana ta mogłaby spowodować zwiększenie prędkości obrotowej, jest również nieprawidłowe. W rzeczywistości, przy stałej częstotliwości zasilania, im więcej par biegunów, tym mniejsza prędkość obrotowa. W odniesieniu do pojęcia zatrzymania się wirnika, zmiana liczby par biegunów sama w sobie nie prowadzi do zatrzymania, chyba że towarzyszą temu inne czynniki, jak przerwy w zasilaniu czy zbyt duże obciążenie. W praktyce, zrozumienie zasad pracy silników indukcyjnych, w tym zależności między prędkością a liczbą par biegunów, jest kluczowe dla właściwego projektowania i eksploatacji tych urządzeń. Ignorując te zasady, można łatwo wprowadzić się w błąd, co może prowadzić do poważnych konsekwencji w aplikacjach przemysłowych.

Pytanie 7

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. pięć lat
B. cztery lata
C. dwa lata
D. rok
Odpowiedzi wskazujące na cztery lata, rok lub pięć lat jako okres pomiędzy przeglądami urządzeń napędowych wykazują brak zrozumienia zasadności i potrzeby regularnych inspekcji. Zbyt długi okres przeglądów, na przykład cztery czy pięć lat, może prowadzić do nieodkrycia istotnych usterek, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować poważne straty finansowe w wyniku awarii. Często mylone jest również pojęcie regularności przeglądów z intensywnością eksploatacji urządzeń; niezależnie od tego, jak intensywnie urządzenie jest używane, powinno być regularnie sprawdzane. Z kolei odpowiedź 'rok' jest niewystarczająca, ponieważ w przypadku wielu urządzeń napędowych, taki okres może być zbyt krótki, a niewłaściwe przeglądy mogą prowadzić do nadmiernych kosztów operacyjnych. Każdy system napędowy ma swoje specyficzne wymagania i normy, które powinny być brane pod uwagę przy ustalaniu harmonogramu przeglądów, a ogólne zasady wskazują na dwa lata jako maksymalny okres, który zapewnia bezpieczeństwo i efektywność działania urządzeń. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w obszarze zarządzania urządzeniami oraz ich konserwacją.

Pytanie 8

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000

A. uzwojenia V1-V2.
B. uzwojeń U1-U2 i V1-V2.
C. uzwojenia U1-U2.
D. uzwojeń U1-U2 i W1-W2.
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.

Pytanie 9

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Warsztat sprzętu RTV
B. Plac budowy
C. Laboratorium
D. Pracownia szkolna
W laboratorium, warsztacie sprzętu RTV oraz pracowni szkolnej istnieją znacznie lepsze warunki do stosowania izolacji jako formy ochrony przed dotykiem pośrednim. W laboratorium, gdzie prace są przeprowadzane w kontrolowanym środowisku, możliwość zastosowania odpowiednich materiałów izolacyjnych jest większa. Laboratoria często są wyposażone w sprzęt pomiarowy i zabezpieczenia, które zmniejszają ryzyko wystąpienia niebezpiecznych sytuacji związanych z prądem elektrycznym. W warsztacie sprzętu RTV, gdzie korzysta się z mniejszych napięć, izolacja może być skuteczną metodą zabezpieczenia, szczególnie w przypadku pracy z urządzeniami o niewielkiej mocy. Natomiast w pracowni szkolnej, gdzie nauka o bezpieczeństwie elektrycznym jest kluczowa, izolacja staje się jednym z podstawowych sposobów ochrony, a nauczyciele mają obowiązek edukacji uczniów na temat właściwego stosowania takich rozwiązań. Typowym błędem jest założenie, że izolacja wystarczy wszędzie, podczas gdy każde środowisko pracy ma swoje specyficzne wymagania i ryzyka, co podkreśla znaczenie analizy ryzyka oraz wdrażania odpowiednich norm i praktyk w zależności od miejsca pracy. Zgodność z normami bezpieczeństwa, takimi jak PN-IEC 61140, jest kluczowa, a prawidłowa ocena ryzyka w różnych środowiskach może znacząco wpłynąć na skuteczność zastosowanych środków ochrony.

Pytanie 10

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Sprawdzenie stopnia nagrzewania obudowy
B. Ocena stanu pierścieni ślizgowych i komutatora
C. Kontrola stanu szczotek oraz szczotkotrzymaczy
D. Weryfikacja stabilności połączeń elementów napędowych
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.

Pytanie 11

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Trzy osoby
B. Jedna osoba
C. Cztery osoby
D. Dwie osoby
Odpowiedź, że co najmniej dwie osoby powinny wykonywać prace w warunkach szczególnego zagrożenia, jest zgodna z zasadami bezpieczeństwa i higieny pracy (BHP). W praktyce oznacza to, że w sytuacjach stwarzających ryzyko dla zdrowia lub życia, konieczne jest, aby jedna osoba mogła nie tylko wykonać dane zadanie, ale także zapewnić wsparcie oraz interwencję w przypadku nagłego wypadku. Taka zasada jest szczególnie ważna w środowiskach, gdzie występują czynniki niebezpieczne, takie jak substancje chemiczne, prace na wysokości czy w zamkniętych przestrzeniach. W odniesieniu do standardów OSHA (Occupational Safety and Health Administration) oraz normy ISO 45001, które dotyczą zarządzania bezpieczeństwem i zdrowiem w pracy, posiadanie co najmniej dwóch pracowników przy takich zadaniach jest kluczowe dla zapewnienia odpowiedniej reakcji na potencjalne zagrożenia. Przykładem może być sytuacja, w której jeden pracownik może doznać kontuzji lub stracić przytomność, a drugi będzie w stanie wezwać pomoc lub udzielić pierwszej pomocy, co może uratować życie. Dwuosobowa obsada w trudnych warunkach stanowi także dodatkowy element kontroli i bezpieczeństwa, co jest zalecane w wielu branżach, takich jak budownictwo czy przemysł chemiczny.

Pytanie 12

Jak zastosowanie w instalacji puszek rozgałęźnych o stopniu ochrony IP 43 zamiast wymaganych w projekcie o stopniu ochrony IP44 wpłynie na jej jakość?

A. Zmniejszy się odporność na wilgoć.
B. Poprawi się klasa ochrony.
C. Zmniejszy się odporność na pył.
D. Poprawi się klasa izolacji.
Dobra robota, że zwróciłeś uwagę na wybór puszek rozgałęźnych z IP 43. Wiesz, że to gorsza opcja w porównaniu do IP 44? IP oznacza, jak dobrze urządzenie radzi sobie z wodą i innymi nieprzyjemnościami. W przypadku IP 43, ochrona przed wilgocią nie jest zbyt silna, więc urządzenia mogą być narażone na wodne mgły, ale nie na krople wody spadające pod kątem. W przeciwieństwie do tego, IP 44 to lepsza opcja, jeśli chodzi o odporność na wilgoć, co jest super ważne w miejscach jak łazienki czy piwnice. Tak naprawdę, dobierając odpowiednie puszki, nie tylko dbamy o bezpieczeństwo, ale też o długość życia całej instalacji elektrycznej. Wybór elementów z właściwą klasą ochrony ma ogromny wpływ na to, jak system będzie działał i zmniejsza ryzyko różnych awarii związanych z wilgocią.

Pytanie 13

Jakie z wymienionych uszkodzeń można zidentyfikować podczas inspekcji instalacji elektrycznej?

A. Pogorszenie stanu mechanicznego połączeń przewodów
B. Obniżenie rezystancji izolacji przewodów
C. Przerwanie pionowego uziomu w ziemi
D. Zbyt długi czas reakcji wyłącznika różnicowoprądowego
Pogorszenie się stanu mechanicznego połączeń przewodów jest odpowiedzią prawidłową, ponieważ podczas oględzin instalacji elektrycznej można fizycznie ocenić jakość połączeń. W praktyce, mechaniczne uszkodzenia, takie jak luźne złącza, korozja czy pęknięcia, mogą prowadzić do zwiększonego oporu, co z kolei zwiększa ryzyko przegrzewania się i potencjalnych awarii. Standardy takie jak PN-IEC 60364 podkreślają znaczenie regularnych inspekcji połączeń w celu zapewnienia ich niezawodności. W sytuacjach awaryjnych, takich jak pożar spowodowany zwarciem, wiele incydentów można przypisać właśnie do niewłaściwego stanu połączeń. Przykładem skutków takiego pogorszenia może być utrata ciągłości elektrycznej prowadząca do nieprawidłowego działania urządzeń czy nawet ich uszkodzenia. Dlatego też, podczas oględzin, należy szczegółowo badać stan wszystkich połączeń, aby zapewnić bezpieczeństwo i sprawność całej instalacji elektrycznej.

Pytanie 14

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. YDY
B. LgY
C. DYd
D. YDYt
Odpowiedzi DYd, LgY oraz YDYt są niepoprawne z różnych powodów związanych z ich właściwościami i przeznaczeniem. Przewód DYd, mimo że również może być używany w instalacjach oświetleniowych, nie jest dedykowany do natynkowych instalacji w pomieszczeniach narażonych na wilgoć, takich jak piwnice. Przewód ten może nie spełniać wszelkich norm dotyczących odporności na czynniki zewnętrzne, co wpływa na jego trwałość i bezpieczeństwo instalacji. LgY to przewód przeznaczony głównie do zastosowań w telekomunikacji i nie jest odpowiedni do instalacji elektrycznych, co czyni go niewłaściwym wyborem do oświetlenia. Użycie przewodu przeznaczonego do telekomunikacji w instalacji elektrycznej może prowadzić do poważnych problemów, takich jak przegrzewanie się przewodu i ryzyko pożaru. Z kolei YDYt, z dodatkowym oznaczeniem 't', sugeruje zastosowanie w warunkach zewnętrznych lub w instalacjach, gdzie może wystąpić wpływ czynników atmosferycznych. W związku z tym, jego użycie w piwnicy może być nadmierne i niewłaściwe, prowadząc do niepotrzebnych kosztów i komplikacji instalacyjnych. Wybór odpowiedniego przewodu jest kluczowym aspektem projektowania instalacji elektrycznych, dlatego ważne jest, aby stosować przewody zgodnie z ich przeznaczeniem i właściwościami, co pozwoli zapewnić bezpieczeństwo oraz długowieczność instalacji.

Pytanie 15

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 100 mA
B. 30 mA
C. 1 000 mA
D. 500 mA
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 16

Które z wymienionych wskazówek nie dotyczy projektanta oraz realizatora nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Rozdzielenie obwodów oświetleniowych od obwodów gniazd wtykowych
B. Zasilanie gniazd wtykowych w kuchni z oddzielnego obwodu
C. Zasilanie odbiorników o dużej mocy, zainstalowanych na stałe, z wydzielonych obwodów
D. Zasilanie gniazd wtykowych w każdym pomieszczeniu z oddzielnego obwodu
Podejście polegające na zasilaniu gniazd wtykowych w każdym pomieszczeniu z osobnego obwodu może budzić wątpliwości, ale ważne jest zrozumienie, dlaczego inne odpowiedzi są uznawane za zasady dobrej praktyki w instalacjach elektrycznych. Separacja obwodów oświetleniowych od gniazd wtykowych jest kluczowa dla zachowania bezpieczeństwa. W przypadku awarii w instalacji oświetleniowej, gniazda pozostaną funkcjonalne, co jest istotne w sytuacjach awaryjnych, kiedy światło może być potrzebne do bezpiecznego poruszania się w pomieszczeniu. Odbiorniki dużej mocy, takie jak klimatyzatory czy piekarniki, powinny być zasilane z wydzielonych obwodów, aby uniknąć przeciążeń, które mogą prowadzić do wyzwolenia zabezpieczeń. W kuchni, z uwagi na dużą liczbę urządzeń elektrycznych, zasilanie gniazd wtykowych z osobnego obwodu jest niezbędne dla zachowania bezpieczeństwa użytkowników oraz stabilności zasilania. Ignorowanie tych zasad może prowadzić do sytuacji, w których przeciążone obwody będą powodować nie tylko problemy techniczne, ale także poważne zagrożenie pożarowe. Dlatego kluczowe jest zrozumienie, że nie wszystkie pomieszczenia wymagają zasilania z odrębnych obwodów, a przemyślane projektowanie instalacji elektrycznych zgodne z obowiązującymi normami zapewnia bezpieczeństwo i efektywność użytkowania.

Pytanie 17

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT/NHaM
B. WT-00 gF
C. WT-2gTr
D. WT/NH DC
Wybór nieodpowiedniej wkładki topikowej do zabezpieczenia silnika indukcyjnego może prowadzić do poważnych skutków, w tym uszkodzenia silnika lub awarii całego systemu. Wybrane opcje, takie jak WT/NH DC, WT-2gTr oraz WT-00 gF, nie są optymalne w kontekście ochrony silników indukcyjnych. Wkładka WT/NH DC, przeznaczona głównie do systemów prądu stałego, nie jest przystosowana do warunków pracy, w jakich funkcjonują silniki indukcyjne zasilane prądem zmiennym, co może prowadzić do niewłaściwej reakcji na zwarcia. Z kolei WT-2gTr nie jest odpowiednia ze względu na swoje ograniczenia w obszarze prądów zwarciowych, mogących być znacznie wyższe w przypadku silników indukcyjnych. Wkładka WT-00 gF, mimo że może znaleźć zastosowanie w innych obszarach, również nie jest dedykowana do ochrony silników, bowiem nie zapewnia wymaganej charakterystyki prądowej oraz czasowej reakcji. Typowe błędy myślowe związane z tymi odpowiedziami mogą obejmować nieprawidłowe założenie, że każda wkładka bezpiecznikowa jest uniwersalna, co jest sprzeczne z zasadami inżynierii elektrycznej. Właściwy dobór ochrony nadprądowej powinien opierać się na specyfikacjach danego urządzenia oraz warunkach jego pracy, aby zapewnić maksymalną efektywność ochrony.

Pytanie 18

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
B. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. wcześniejszego zweryfikowania efektywności ochrony w instalacji
Zasilanie urządzeń elektrycznych klasy 0 z gniazd wyposażonych w ochronny bolec uziemiający jest podejściem błędnym, ponieważ sama obecność bolca nie zapewnia ochrony przed porażeniem, gdyż urządzenia te nie posiadają żadnej formy ochrony izolacyjnej. Klasa 0 oznacza, że urządzenie nie ma dodatkowej izolacji ani zabezpieczeń, co czyni je narażonym na porażenie elektryczne w przypadku uszkodzenia. Zastosowanie nadzoru technicznego ze strony dostawcy energii elektrycznej również nie gwarantuje bezpieczeństwa, ponieważ jest to odpowiedzialność użytkownika, aby zapewnić odpowiednie warunki eksploatacyjne. Ponadto wcześniejsze sprawdzenie skuteczności ochrony w instalacji nie ma zastosowania, jeśli urządzenia nie są zaprojektowane z myślą o ochronie przed porażeniem. Stosunek do wymagań zawartych w polskich normach budowlanych oraz wytycznych dotyczących użytkowania urządzeń elektrycznych jest kluczowy - błędne założenia mogą prowadzić do poważnych wypadków. Dlatego istotne jest, aby przed użyciem urządzeń klasy 0, bardzo dokładnie ocenić ich stan oraz warunki użytkowania, a nie polegać na nieadekwatnych metodach ochrony.

Pytanie 19

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 4 mm²
B. 2,5 mm²
C. 1,5 mm²
D. 1 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 20

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Falownikiem
B. Autotransformatorem
C. Dzielnikiem napięcia
D. Transformatorem bezpieczeństwa
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 21

Jak wpłynie na wartość mocy generowanej przez elektryczny grzejnik, jeśli długość jego spirali grzejnej zostanie skrócona o 50%, a napięcie zasilające pozostanie niezmienne?

A. Zwiększy się czterokrotnie
B. Zmniejszy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się dwukrotnie
Gdy skracasz długość spirali grzejnej w grzejniku elektrycznym o połowę, to ma to spory wpływ na opór elektryczny. Zgodnie z prawem Ohma, im krótszy przewodnik, tym jego opór jest mniejszy. Więc jak długość spirali zmniejszamy, mamy też mniejszy opór, co automatycznie zwiększa naszą moc. Wzór na moc grzejnika to P = U²/R, więc jak R spada o połowę, to P rośnie dwa razy, zakładając, że napięcie U zostaje takie samo. Na przykład, jeśli miałeś grzejnik na 1000 W, to po skróceniu spirali do 2000 W to już nie taka niespodzianka. Tego typu zmiany są istotne, bo prowadzą do lepszej efektywności energetycznej i lepszego używania nowoczesnych materiałów w grzejnikach. Takie rozwiązania pozwalają na szybsze nagrzewanie pomieszczeń, co jest mega praktyczne w codziennym użytkowaniu.

Pytanie 22

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. spadek napięcia zasilania poniżej 3 %
B. nadmierne wibracje
C. spadek rezystancji izolacji uzwojeń do 5 MΩ
D. znamionowe zużycie prądu
Odpowiedzi 1, 2 i 4 nie są adekwatne w kontekście zagrożeń związanych z bezpieczeństwem operacyjnym urządzeń napędowych. Spadek rezystancji izolacji uzwojeń do 5 MΩ, choć jest ważnym wskaźnikiem stanu technicznego izolacji, nie wskazuje bezpośrednio na zagrożenie bezpieczeństwa. Izolacja na poziomie 5 MΩ wciąż może być uznawana za akceptowalną w wielu zastosowaniach, o ile nie spada poniżej minimalnych wartości normatywnych. W związku z tym, ten wskaźnik nie powinien być podstawą do wstrzymania ruchu urządzeń. Znamionowy pobór prądu jest również parametrem, który niekoniecznie informuje o zagrożeniu dla bezpieczeństwa, ponieważ zmiany w poborze prądu mogą być spowodowane normalnym cyklem pracy maszyny lub obciążeniem, co nie zawsze jest związane z uszkodzeniem. Spadek napięcia zasilania mniejszy niż 3% zwykle mieści się w granicach tolerancji i nie wpływa negatywnie na funkcjonowanie urządzeń. W przemyśle, bezpieczeństwo operacyjne powinno być oparte na konkretnych i sprawdzonych wskaźnikach, a nie na ogólnych założeniach, co może prowadzić do niepotrzebnych przestojów i strat finansowych. Właściwa interpretacja danych i reagowanie na realne zagrożenia powinny być kluczowymi elementami strategii zarządzania ryzykiem.

Pytanie 23

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF

A. Ciągłej.
B. Przerywanej z hamowaniem elektrycznym.
C. Przerywanej z rozruchem.
D. Dorywczej.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 24

Które z poniższych stwierdzeńnie jest rezultatem przeglądu instalacji elektrycznej?

A. Na podstawie danych dostarczonych przez producenta, oznaczeń oraz certyfikatów, elementy instalacji są zgodne z normami bezpieczeństwa
B. Elementy instalacji zostały odpowiednio dobrane i poprawnie zainstalowane
C. Zachowana jest ciągłość przewodów ochronnych oraz połączeń wyrównawczych
D. W instalacji nie stwierdzono widocznych uszkodzeń, które mogłyby deteriorować bezpieczeństwo
Zachowanie ciągłości przewodów ochronnych oraz połączeń wyrównawczych jest kluczowym elementem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Dobrze zaprojektowane i wykonane połączenia ochronne są niezbędne do skutecznego odprowadzenia prądów zwarciowych do ziemi, co minimalizuje ryzyko porażenia elektrycznego oraz pożaru. W praktyce, ciągłość tych połączeń można zweryfikować za pomocą pomiarów rezystancji, które powinny wykazywać wartości zgodne z normami, np. PN-EN 61557-4. W przypadku ich braku, nawet jeśli inne elementy instalacji wydają się być w dobrym stanie, istnieje realne niebezpieczeństwo wystąpienia awarii, co podkreśla znaczenie regularnych inspekcji i pomiarów. Działania te są zgodne z najlepszymi praktykami zawartymi w dokumentach normatywnych, co pozwala na prewencję oraz zapewnienie wysokiego poziomu bezpieczeństwa użytkowników instalacji elektrycznej.

Pytanie 25

Jaka jest maksymalna wartość skuteczna napięcia przemiennego, która może być wykorzystana do zasilania lamp oświetleniowych umieszczonych w strefie 0 łazienki?

A. 60 V
B. 25 V
C. 12 V
D. 30 V
Wybór niewłaściwej wartości maksymalnego napięcia skutecznego do zasilania lamp w strefie 0 łazienki może wydawać się trudny do zrozumienia, ale wynika z fundamentalnych zasad bezpieczeństwa elektrycznego. Odpowiedzi takie jak 60 V, 25 V czy 30 V są niezgodne z obowiązującymi normami, które mają na celu ochronę użytkowników przed niebezpieczeństwem porażenia prądem w obszarach o wysokiej wilgotności. W normach, takich jak PN-IEC 60364, jasno określono, że strefa 0 zdefiniowana jest jako miejsce, gdzie narażenie na wodę jest najwyższe, a zatem wymaga zastosowania napięć bezpiecznych. Napięcie 60 V, choć bezpieczniejsze niż wyższe wartości, wciąż niesie ze sobą ryzyko w kontakcie z wodą. Podobnie, napięcia 25 V i 30 V, mimo że niższe, również nie spełniają wymagań bezpieczeństwa w warunkach strefy 0. Często przyczyną wyboru wyższych napięć jest brak wiedzy na temat zasadności stosowania niskonapięciowych źródeł zasilania w obszarach zagrożonych. Użytkownicy mogą mylnie sądzić, że im wyższe napięcie, tym lepsza efektywność i jasność oświetlenia, co jest błędnym podejściem, ponieważ nowoczesne technologie LED oferują wysoką wydajność przy niskim napięciu. W kontekście praktycznym, stosowanie napięć skutecznych przekraczających 12 V w strefie 0 nie tylko zwiększa ryzyko, ale także może prowadzić do niezgodności z przepisami i potencjalnych konsekwencji prawnych, które mogą wpłynąć na bezpieczeństwo użytkowników oraz odpowiedzialność wykonawców i projektantów instalacji elektrycznych.

Pytanie 26

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C40
B. S303 C20
C. S303 C32
D. S303 C25
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 27

Który z wymienionych materiałów eksploatacyjnych nie jest konieczny do wykorzystania przy przezwajaniu trójfazowego silnika indukcyjnego o mocy 7,5 kW?

A. Łożysko igiełkowe
B. Drut nawojowy
C. Izolacja żłobkowa
D. Lakier izolacyjny
Łożysko igiełkowe nie jest materiałem, który musi być wykorzystany podczas przezwajania trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego funkcja dotyczy głównie mechaniki silnika, a nie jego uzwojeń. Proces przezwajania koncentruje się na wymianie drutu nawojowego, lakieru izolacyjnego oraz izolacji żłobkowej, które mają kluczowe znaczenie dla funkcjonowania i wydajności silnika. Drut nawojowy jest niezbędny do odtworzenia uzwojeń silnika, a jego parametry, takie jak przekrój i materiał, muszą być dobierane zgodnie z wymaganiami mocy i napięcia. Lakier izolacyjny pełni istotną rolę w ochronie uzwojeń przed wilgocią i uszkodzeniami mechanicznymi, natomiast izolacja żłobkowa jest niezbędna do zapewnienia odpowiedniej separacji między uzwojeniami a rdzeniem silnika, co zapobiega zwarciom. Właściwe dobieranie tych materiałów zgodnie z normami, jak IEC 60034, zapewnia długotrwałe i efektywne działanie silnika.

Pytanie 28

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Woltomierz oraz omomierz
B. Woltomierz i amperomierz
C. Waromierz oraz amperomierz
D. Amperomierz oraz licznik
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 29

Obroty silnika indukcyjnego klatkowego obciążonego nominalnym momentem znacząco spadły. Jakie mogą być tego przyczyny?

A. Przepalony bezpiecznik topikowy w jednej z faz
B. Zwarcie w obwodzie wirnika
C. Zbyt wysoka temperatura uzwojeń
D. Zadziałanie przekaźnika termicznego
Zadziałanie przekaźnika termicznego zazwyczaj wskazuje na nadmierne nagrzewanie się silnika, co w konsekwencji prowadzi do wyłączenia go w celu ochrony przed uszkodzeniem. Chociaż taki stan rzeczy może również skutkować zmniejszeniem obrotów, to nie jest on pierwotną przyczyną opisanego scenariusza, gdyż w przypadku zadziałania przekaźnika termicznego silnik zwykle zatrzymuje się całkowicie, a nie zmienia jedynie obroty. Z kolei zwarcie w obwodzie wirnika powoduje poważne uszkodzenia, a nie tylko spadek obrotów. Tego rodzaju usterka prowadzi do natychmiastowego wyłączenia silnika z powodu nadmiernego prądu, a nie delikatnego spadku wydajności. Ponadto, zbyt wysoka temperatura uzwojeń jest zwykle wynikiem niewłaściwego chłodzenia lub nadmiernego obciążenia, a nie bezpośrednią przyczyną nagłego spadku obrotów, co jest istotnym zagadnieniem w kontekście eksploatacji silników. Typowe błędy myślowe w tym przypadku polegają na myleniu symptomów z przyczynami; zrozumienie mechanizmu działania silnika indukcyjnego oraz jego zabezpieczeń jest kluczowe dla prawidłowej diagnostyki i utrzymania urządzeń w ruchu. Dlatego istotne jest stosowanie się do standardów eksploatacyjnych oraz okresowe przeglądy instalacji.

Pytanie 30

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 16 A
B. 13 A
C. 10 A
D. 20 A
Aby obliczyć minimalną wartość znamionowego prądu wyłącznika nadprądowego, należy zastosować wzór na moc elektryczną, który łączy moc (P), napięcie (U) oraz prąd (I). Wzór ten można przedstawić jako P = U * I. Z naszej sytuacji mamy moc 2 kW (2000 W) oraz napięcie 230 V. Przekształcając wzór, otrzymujemy I = P / U. Podstawiając wartości, otrzymujemy I = 2000 W / 230 V, co daje około 8,7 A. Jabłko z tej wartości, zgodnie z normami i zaleceniami stosuje się wyłączniki nadprądowe o wartościach znamionowych, które są standardowo dostępne w sklepach. Wyłączniki te są dostępne w wartościach 6 A, 10 A, 16 A, 20 A i wyższych. Zatem, aby zapewnić odpowiedni margines bezpieczeństwa oraz zgodność z przepisami, minimalna wartość wyłącznika powinna wynosić 10 A. Dobrym przykładem zastosowania tego wyłącznika jest jego użycie w domowych instalacjach elektrycznych, gdzie piekarniki oporowe są powszechnie używane. Wybór wyłącznika o wartości znamionowej 10 A chroni obwód przed przeciążeniem oraz awarią sprzętu.

Pytanie 31

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość napięcia wzrośnie, a częstotliwość zmaleje
B. Wartość i częstotliwość napięcia wzrosną
C. Wartość i częstotliwość napięcia zmniejszą się
D. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
Wybór błędnych odpowiedzi wynika często z niepełnego zrozumienia zasad działania prądnic synchronicznych oraz ich charakterystyki. W przypadku stwierdzenia, że wartość napięcia się zmniejszy lub częstotliwość spadnie, można zauważyć typowe nieporozumienia. Zmniejszenie wartości napięcia sugerowałoby, że wzrost prędkości obrotowej turbiny jest w jakiś sposób negatywnie skorelowany z wydajnością prądnicy, co jest niezgodne z teorią i praktyką. W rzeczywistości, prądnica synchroniczna jest zaprojektowana tak, aby wydajnie przetwarzać energię mechaniczną na elektryczną, a zwiększenie obrotów wirnika powinno prowadzić do lepszej wydajności. Częstotliwość napięcia jest bezpośrednio związana z prędkością obrotową wirnika, co oznacza, że wzrost prędkości zawsze prowadzi do wzrostu częstotliwości, o ile inne parametry, takie jak prąd wzbudzenia, pozostają niezmienne. Zrozumienie tej dynamiki jest kluczowe dla inżynierów zajmujących się projektowaniem i eksploatacją systemów energetycznych, a także dla zapewnienia stabilności i niezawodności dostaw energii.

Pytanie 32

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 2 A
B. 4 A
C. 1 A
D. 3 A
Aby obliczyć wymagany zakres pomiarowy amperomierza dla silnika elektrycznego o mocy 0,55 kW, sprawności η = 70% oraz współczynniku mocy cosα = 0,96, należy najpierw obliczyć prąd pobierany przez urządzenie. Wzór na moc elektryczną to P = U * I * cosα, gdzie P to moc, U to napięcie, I to natężenie prądu, a cosα to współczynnik mocy. Przyjmując napięcie 230 V, przekształcamy wzór: I = P / (U * cosα). Wartość mocy czynnej P wynosi 0,55 kW / 0,7 (sprawność) = 0,7857 kW. Po podstawieniu wartości do wzoru otrzymujemy I = 0,7857 kW / (230 V * 0,96) co daje około 3,5 A. W związku z tym, potrzebny jest amperomierz o zakresie pomiarowym co najmniej 4 A, co daje możliwość bezpiecznego pomiaru prądu, uwzględniając ewentualne przeciążenia. W praktyce, dla pomiarów w instalacjach elektrycznych, zaleca się wybór przyrządów o zakresie pomiarowym przynajmniej 20% wyższym niż maksymalne oczekiwane wartości, co zapewnia dokładność i bezpieczeństwo pomiaru.

Pytanie 33

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. cewka stycznika jest uszkodzona
B. przewód neutralny jest odłączony
C. cewka stycznika działa prawidłowo
D. przewód fazowy jest odłączony
Pomiar rezystancji cewki stycznika wynoszący 0 Ω jednoznacznie wskazuje na zwarcie w tej cewce, co sugeruje jej uszkodzenie. W praktyce, cewka stycznika jest elementem wykonawczym, który za pomocą pola elektromagnetycznego kontroluje włączanie i wyłączanie obwodów elektrycznych. W przypadku, gdy wartość rezystancji cewki wynosi zero, oznacza to, że nie ma oporu dla przepływu prądu, co jest typowym objawem uszkodzenia. Stosując się do normy IEC 60204-1, która reguluje wymogi dotyczące bezpieczeństwa maszyn, należy regularnie kontrolować stan elementów sterujących, aby zapewnić ich prawidłowe funkcjonowanie i unikać sytuacji, które mogą prowadzić do awarii całego systemu. Przykładowo, w zastosowaniach przemysłowych, gdzie styczniki sterują silnikami, uszkodzenie cewki może prowadzić do poważnych problemów operacyjnych, jak zatrzymanie produkcji. Dlatego ważne jest, aby po zidentyfikowaniu takiej usterki, niezwłocznie przeprowadzić wymianę cewki na nową, aby przywrócić pełną funkcjonalność układu.

Pytanie 34

W układzie, którego schemat zamieszczono na rysunku, sprawdzono cztery różne urządzenia ochronne różnicowoprądowe. Wyniki wskazań amperomierza (IA) w momencie zadziałania urządzenia zestawiono w tabeli. Które urządzenie ochronne jest sprawne?

Urządzenie
ochronne
różnicowoprądowe
Prąd
znamionowy IΔN
Prąd IA
A.10 mA0,02 A
B.30 mA0,04 A
C.100 mA0,15 A
D.300 mA0,24 A

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Urządzenie ochronne różnicowoprądowe D zostało uznane za sprawne, ponieważ jego prąd zadziałania wynosi 0,24 A (240 mA), co mieści się w określonym zakresie od 0,5 IΔn do IΔn, gdzie IΔn dla tego urządzenia wynosi 300 mA. Oznacza to, że urządzenie zadziała w odpowiednim momencie, skutecznie chroniąc instalację elektryczną oraz osoby przed skutkami porażenia prądem. W branży elektroenergetycznej zasady działania urządzeń różnicowoprądowych są ściśle regulowane przez normy, takie jak PN-EN 61008-1. Te urządzenia są kluczowe w zapewnieniu bezpieczeństwa, zwłaszcza w obiektach, gdzie występuje ryzyko kontaktu z wodą lub innymi przewodnikami prądu. Właściwy dobór urządzenia ochronnego i jego parametry są fundamentalne dla efektywności ochrony. Przykładem zastosowania może być instalacja w łazience, gdzie obecność wody zwiększa ryzyko porażenia prądem, a zastosowanie różnicowoprądowego urządzenia ochronnego o odpowiednich parametrach jest koniecznością. To pokazuje, jak ważne jest nie tylko zrozumienie działania tych urządzeń, ale również ich praktyczne zastosowanie w codziennym życiu.

Pytanie 35

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H07RR-F 4G2,5
B. H03V2V2H2-F 3X2,5
C. H07VV-U 4G2,5
D. H03V2V2-F 3X2,5
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 36

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Brakiem symetrii napięć zasilających.
B. Zbyt słabym dociskiem szczotek do pierścieni
C. Zbyt wysoką temperaturą otoczenia.
D. Nieprawidłową kolejnością faz.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 37

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 2000 MΩ, 1000 V
B. 2000 MΩ, 2500 V
C. 200 MΩ, 1000 V
D. 200 MΩ, 2500 V
Pomiar rezystancji izolacji kabli elektroenergetycznych jest kluczowym elementem diagnostyki stanu technicznego instalacji. Użycie zakresu 2000 MΩ oraz napięcia 2500 V zapewnia, że wykonany pomiar będzie zarówno bezpieczny, jak i precyzyjny. Wysoka wartość rezystancji izolacji (2000 MΩ) jest niezbędna w kontekście kabli wysokiego napięcia, gdzie izolacja musi utrzymywać wyjątkowo dużą odporność elektryczną, aby zapobiec przebiciom i innym awariom. Napięcie 2500 V jest standardowym wyborem w branży do testowania izolacji, ponieważ pozwala na uzyskanie wiarygodnych wyników, które odzwierciedlają rzeczywistą kondycję izolacji. Przykładowe zastosowanie to regularne pomiary przed rozpoczęciem sezonu zimowego, co pozwala na zidentyfikowanie ewentualnych defektów izolacji, które mogą prowadzić do awarii w trudnych warunkach atmosferycznych. Dobrą praktyką w branży elektroenergetycznej jest przestrzeganie norm IEC 60216 oraz PN-EN 60529, które określają wymagania dotyczące pomiarów izolacji.

Pytanie 38

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Zwarcia pomiarowego
B. Obciążenia znamionowego
C. Zwarcia awaryjnego
D. Biegu jałowego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 39

W instalacji domowej 230/400 V obwód zasilający elektryczną kuchnię o grzaniu rezystancyjnym jest chroniony przez wyłącznik nadprądowy typu S 194 B20. Jaką największą moc może mieć kuchnia podłączona do tego obwodu?

A. 8,0 kW
B. 24,0 kW
C. 13,8 kW
D. 6,6 kW
Odpowiedź 13,8 kW jest poprawna, ponieważ wyłącznik nadprądowy typu S 194 B20 ma wartość znamionową 20 A. W instalacji 230/400 V maksymalna moc obwodu można obliczyć za pomocą wzoru P = U * I, gdzie P to moc, U to napięcie, a I to prąd. W przypadku zasilania jednofazowego, przy napięciu 230 V, moc oblicza się jako: P = 230 V * 20 A = 4600 W, co odpowiada 4,6 kW. Jednak w przypadku kuchni elektrycznej z nagrzewaniem rezystancyjnym możliwe jest także wykorzystanie zasilania trójfazowego. Przy wykorzystaniu napięcia 400 V i prądu 20 A, całkowita moc wynosi: P = 400 V * 20 A * √3 = 13,8 kW. Taki przydział mocy jest zgodny z normami i dobrymi praktykami w zakresie instalacji elektrycznych, co pozwala na bezpieczne użytkowanie kuchni elektrycznej, zapewniając jednocześnie odpowiednią funkcjonalność urządzeń. W praktyce, warto dbać o to, aby całkowite obciążenie obwodu nie przekraczało jego maksymalnych dopuszczalnych wartości, co zapobiega awariom i gwarantuje bezpieczne korzystanie z urządzeń elektrycznych.

Pytanie 40

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń wirnika
B. natężenia pola magnetycznego rozproszenia
C. rezystancji uzwojeń stojana
D. stratności magnetycznej blach stojana
Pomiar stratności magnetycznej blach stojana, choć istotny w kontekście strat energetycznych, nie jest bezpośrednio związany z podstawowymi badaniami eksploatacyjnymi silnika klatkowego. Używanie tej metody mogą prowadzić do błędnych wniosków, ponieważ skupia się na innych aspektach konstrukcji silnika. Użytkownicy mogą mylić ten pomiar z diagnostyką stanu silnika, co jest nieprecyzyjne, gdyż blachy stojana mają na celu redukcję strat energetycznych, a nie bezpośrednią ocenę stanu uzwojeń. Kolejną nieprawidłową koncepcją jest pomiar rezystancji uzwojeń wirnika, który, chociaż ma znaczenie dla detekcji usterek, nie jest częścią standardowej procedury badań eksploatacyjnych silnika klatkowego. Użytkownicy mogą błędnie przypisywać równą wagę pomiarom uzwojeń wirnika i stojana, co prowadzi do niepełnej analizy stanu silnika. Właściwe podejście do badań eksploatacyjnych powinno koncentrować się na pomiarach, które dostarczają natychmiastowych informacji o stanie silnika, takich jak rezystancja uzwojeń stojana, co jest zgodne z najlepszymi praktykami branżowymi. Natężenie pola magnetycznego rozproszenia, mimo że jest istotne dla analizy działania silnika, nie jest typowo mierzone w kontekście rutynowych badań eksploatacyjnych. Błędem może być również założenie, że wszystkie wymienione pomiary są równie ważne, co prowadzi do nieefektywnej diagnostyki i potencjalnych problemów w eksploatacji silnika.