Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 10 maja 2025 21:39
  • Data zakończenia: 10 maja 2025 22:08

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas przewozu pompy ciepła szczególnie ważne jest, aby zwrócić uwagę na jej wrażliwość na

A. wilgotność powietrza
B. promienie słoneczne
C. przechylania
D. niską temperaturę
Podczas transportu pompy ciepła szczególnie istotne jest unikanie ich przechylania, ponieważ te urządzenia są wrażliwe na zmiany pozycji, które mogą prowadzić do uszkodzenia ich wewnętrznych komponentów. Przechylanie pompy ciepła może powodować przesunięcia lub uszkodzenia sprężarki, wymienników ciepła oraz systemu chłodzenia. W praktyce, zaleca się transport pompy w pozycji pionowej, aby zminimalizować ryzyko takich uszkodzeń. Warto również pamiętać, że podczas załadunku i rozładunku urządzenia, należy stosować odpowiednie uchwyty i podpory, aby zapewnić stabilność. Dobre praktyki w branży dotyczące transportu pomp ciepła obejmują również stosowanie specjalistycznych opakowań, które amortyzują wstrząsy i drgania. W przypadku transportu na dłuższych dystansach, warto również monitorować warunki atmosferyczne, aby zapewnić, że urządzenie nie jest narażone na niekorzystne czynniki zewnętrzne, ale kluczowe pozostaje zachowanie odpowiedniej pozycji podczas transportu.

Pytanie 2

Na dokumentacji dotyczącej zapotrzebowania materiałowego do realizacji instalacji znajduje się symbol Cu-DHP 22x1 R220. Co to oznacza w kontekście rur?

A. o średnicy 22 mm i długości 1m, twarda
B. o średnicy 22 mm i grubości 1mm, miękka
C. o promieniu 22 mm i grubości 1 mm, twarda
D. o średnicy 22 mm i długości 1m, miękka
Odpowiedź wskazująca, że jest to rura miedziana o średnicy 22 mm i grubości 1 mm, miękka, jest poprawna ze względu na standardowe oznaczenia rur miedzianych. Symbol Cu-DHP oznacza miedź dekarbonizowaną, która jest szeroko stosowana w instalacjach wodnych i grzewczych. Średnica 22 mm to typowy rozmiar dla rur stosowanych w instalacjach domowych, co czyni je idealnymi do transportu wody oraz dla systemów grzewczych. Grubość 1 mm wskazuje na uniwersalność i łatwość w montażu, co jest korzystne w przypadku zastosowań, gdzie elastyczność materiału jest ważna. Rury miękkie są często wykorzystywane, gdyż łatwiej je formować i dopasowywać do istniejącej instalacji. Przykłady zastosowań obejmują instalacje hydrauliczne w budynkach mieszkalnych, gdzie miedź jest preferowana ze względu na swoją odporność na korozję oraz właściwości antybakteryjne. Dobrą praktyką jest stosowanie takich rur w miejscach, które wymagają częstych zmian kierunku lub w przypadku trudnego dostępu do instalacji.

Pytanie 3

Przez realizację odwiertów weryfikuje się hydrotermalne zasoby energii, dotyczące

A. suchych, ogrzanych i porowatych skał
B. atmosfery
C. gorących suchych skał
D. wody, pary lub mieszaniny parowo-wodnej
Hydrotermiczne zasoby energii nie odnoszą się do suchych, ogrzanych skał, atmosfery ani gorących suchych skał, ponieważ te koncepcje pomijają kluczowy element, jakim jest obecność wody. Odpowiedzi wskazujące na suche skały sugerują, że ciepło geotermalne może być wykorzystywane w suchych, porowatych materiałach, co jest mylne, ponieważ brak medium ciekłego lub parowego ogranicza możliwości efektywnego pozyskiwania energii. W systemach geotermalnych kluczową rolę odgrywa woda jako nośnik energii; jej obecność umożliwia transport ciepła z głębszych warstw ziemi na powierzchnię. Atmosfera także nie jest źródłem hydrotermicznych zasobów energii, ponieważ energia atmosferyczna jest z reguły związana z innymi formami energii, takimi jak energia wiatru czy słoneczna. Gorące suche skały natomiast mogą być wykorzystywane w tzw. systemach EGS (Enhanced Geothermal Systems), ale nie są uznawane za hydrotermiczne zasoby energii, gdyż nie zawierają wody w stanie ciekłym, a ich eksploatacja jest bardziej skomplikowana i wymaga dodatkowych procesów hydraulicznych. Kluczowym błędem jest więc niezrozumienie, że efektywność pozyskiwania energii geotermalnej w dużej mierze zależy od obecności wody, która działa jako nośnik ciepła, w przeciwieństwie do skał suchych.\

Pytanie 4

Jaką wartość ma maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 roku przy t1 >= 16°C?

A. 0,25 W/m2∙K
B. 0,20 W/m2∙K
C. 0,28 W/m2∙K
D. 0,23 W/m2∙K
Wartości współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków są ściśle regulowane przez normy budowlane, a ich nieprzestrzeganie może prowadzić do wielu negatywnych konsekwencji. Odpowiedzi 0,28 W/m2∙K, 0,20 W/m2∙K oraz 0,25 W/m2∙K nie spełniają wymagań nałożonych przez aktualne regulacje. Wskazywanie na wyższe wartości, takie jak 0,28 W/m2∙K, może sugerować mylne przekonanie, że budynki mogą być mniej energooszczędne, co stoi w sprzeczności z obowiązującymi trendami w budownictwie, które kładą duży nacisk na zrównoważony rozwój i efektywność energetyczną. Natomiast niższe wartości, jak 0,20 W/m2∙K, mogą być mylnie interpretowane jako bardziej korzystne, ale w rzeczywistości nie są one zgodne z wymaganiami dla nowych budynków. W kontekście budownictwa, odpowiednie wartości współczynnika Uc są kluczowe, ponieważ wpływają na komfort cieplny, efektywność energetyczną oraz koszty eksploatacji budynków. W praktyce, projektanci i inżynierowie powinni starannie dobierać materiały izolacyjne i technologie budowlane, aby nie tylko spełniać normy, ale także zapewnić długoterminowe oszczędności i zrównoważony rozwój. Nieprzestrzeganie tych zasad prowadzi do nieefektywności energetycznej oraz wyższych rachunków za energię, co jest szczególnie istotne w kontekście rosnących cen energii oraz globalnych działań na rzecz ochrony środowiska.

Pytanie 5

Czym jest niskotemperaturowe źródło energii cieplnej?

A. kocioł opalany olejem grzewczym
B. kocioł na paliwo stałe
C. kocioł na gaz ziemny o wysokim metanie
D. pompa ciepła
Pompa ciepła jest uznawana za niskotemperaturowe źródło ciepła, ponieważ wykorzystuje energię z otoczenia, taką jak powietrze, woda czy ziemia, do ogrzewania budynków. W procesie tym pompa ciepła przekształca niskotemperaturową energię w cieplną, co pozwala na obniżenie kosztów eksploatacji w porównaniu do tradycyjnych źródeł ciepła. Przykładem zastosowania pompy ciepła w praktyce może być ogrzewanie domów jednorodzinnych, gdzie pompa ciepła dostarcza ciepło do systemu ogrzewania podłogowego, które działa efektywnie przy niższych temperaturach. Zgodnie z zasadami efektywności energetycznej, pompy ciepła mogą osiągać bardzo wysokie współczynniki wydajności (COP), co czyni je popularnym wyborem zarówno w budynkach nowych, jak i modernizowanych. Warto również zauważyć, że w połączeniu z systemami fotowoltaicznymi stanowią one systemy o niskiej emisji CO2, zgodne z europejskimi normami zrównoważonego rozwoju.

Pytanie 6

Połączenie zaciskowe przewodów solarnych z twardymi rurami miedzianymi jest wykonane nieprawidłowo, gdy

A. brak daty opisującej połączenie
B. nie oznaczono pełnego wsunięcia rury do kielicha złączki
C. połączenie nie zostało oznaczone jako zaciśnięte
D. nie podano numeru porządkowego do opisu połączenia
Oznaczenie połączenia datą, numerem porządkowym oraz informacja o zaciśnięciu, mimo że mogą być użyteczne w kontekście dokumentacji, nie mają kluczowego znaczenia dla jakości samego połączenia zaciskowego. W praktyce, oznaczenie daty wykonania połączenia może być ważne dla celów serwisowych lub kontrolnych, jednak nie wpływa bezpośrednio na trwałość i funkcjonalność połączenia. Z kolei brak oznaczenia jako 'zaciśnięte' może wynikać z niewłaściwych procedur dokumentacyjnych, ale nie prowadzi bezpośrednio do fizycznych problemów z połączeniem. Oznaczenia tego typu są bardziej praktyczne w kontekście zarządzania projektami niż technicznych aspektów montażu. Właściwe wykonanie połączenia, na co wskazuje kluczowe znaczenie pełnego wsunięcia rury do kielicha, jest podstawowym elementem bezpieczeństwa i efektywności instalacji. Użytkownicy często pomijają ten aspekt, koncentrując się na kwestiach administracyjnych, co prowadzi do nieprawidłowych wniosków. Dlatego istotne jest, aby dokładnie rozumieć znaczenie każdego kroku w procesie montażu, a nie tylko skupić się na dokumentacji. Właściwe połączenia wymagają kompleksowego podejścia, w którym wszystkie aspekty, w tym techniczne, administracyjne i serwisowe, są odpowiednio zintegrowane.

Pytanie 7

Odległość gruntowa pomiędzy sondami pionowymi nie może być mniejsza niż

A. 18 m
B. 6 m
C. 12 m
D. 24 m
Odpowiedź 6 m jest poprawna, ponieważ zgodnie z aktualnymi normami i najlepszymi praktykami w inżynierii geotechnicznej, odległość między sondami pionowymi powinna wynosić co najmniej 6 m. Taka odległość pozwala na uzyskanie reprezentatywnych próbek gruntu, co jest kluczowe dla przeprowadzenia dokładnych badań geotechnicznych. W praktyce oznacza to, że jeśli sondy są umieszczone zbyt blisko siebie, mogą wystąpić zjawiska interferencji, które mogą zniekształcić wyniki badań. Na przykład, w przypadku przeprowadzania badań nośności gruntu, zbyt mała odległość między sondami może prowadzić do błędnych ocen parametrów gruntowych, co w konsekwencji wpłynie na bezpieczeństwo i stabilność projektowanych obiektów budowlanych. W związku z tym, zachowanie odpowiedniej odległości jest kluczowe dla zapewnienia dokładności wyników oraz ich interpretacji w kontekście projektowania i budowy infrastruktury. W praktyce, wiele instytucji i organizacji branżowych zaleca stosowanie tej odległości jako standardu w projektach geotechnicznych.

Pytanie 8

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. aksonometrycznego
B. schematycznego
C. zasadniczego
D. szczegółowego
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 9

Rury powinny być zabezpieczone przed działaniem promieni słonecznych podczas składowania

A. ze stali ocynkowanej
B. z miedzi
C. ze stali nierdzewnej
D. z tworzyw sztucznych
Rury z tworzyw sztucznych, takie jak PVC, PE czy PP, są dość wrażliwe na słońce. Ważne jest, żeby dobrze je przechowywać, bo inaczej mogą się zniszczyć. Jak będą długo wystawione na promieniowanie UV, mogą stracić swoje właściwości, co w efekcie skraca ich żywotność. Dlatego najlepiej trzymać je w cieniu lub przykrywać czymś, co chroni przed UV. W branży budowlanej i inżynieryjnej często używa się dodatków, które pomagają zwiększyć odporność tych rur na słońce. Przykładowo, takie rury idealnie nadają się do instalacji wodociągowych, ponieważ są odporne na korozję i lekkie. Zgadzam się, że warto też pamiętać o normach ISO i PN, które pokazują, że te materiały muszą mieć konkretne parametry wytrzymałościowe, co czyni je świetnym wyborem w wielu zastosowaniach.

Pytanie 10

W celu regulacji przepływu wody bezpośrednio na grzejnikach instaluje się

A. zawór trójdrożny
B. zawór termostatyczny
C. odpowietrznik
D. zawór czterodrożny
Zawór termostatyczny jest kluczowym elementem systemu grzewczego, który umożliwia precyzyjną regulację temperatury w pomieszczeniach. Jego działanie opiera się na automatycznym dopasowywaniu przepływu wody do aktualnych potrzeb grzewczych, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Dzięki zastosowaniu zaworów termostatycznych można uniknąć przegrzewania pomieszczeń, co jest szczególnie istotne w okresie grzewczym. Przykładowo, w systemach ogrzewania podłogowego, gdzie temperatura może łatwo osiągać zbyt wysokie wartości, zawór termostatyczny działa jako zabezpieczenie, regulując ilość ciepłej wody wpływającej do obiegu. Ważne jest również, aby zawory te były odpowiednio dobrane do specyfiki instalacji, co powinno być zgodne z normami takimi jak PN-EN 215, które dotyczą wymagań dotyczących zaworów termostatycznych. Dzięki ich zastosowaniu można zwiększyć efektywność energetyczną budynków oraz poprawić ich komfort termiczny.

Pytanie 11

Aby zredukować wahania wskazań rotametru w jednostce pompującej w instalacji solarnej, należy wykonać

A. zmniejszenie ciśnienia w układzie solarnym
B. odpowietrzenie instalacji
C. zwiększenie ciśnienia w układzie solarnym
D. regulację pompy obiegowej
Odpowiedź 'odpowietrzenie instalacji' jest prawidłowa, ponieważ wahania wskazań rotametru w instalacji solarnej mogą być spowodowane obecnością powietrza w systemie. Kiedy w układzie hydraulicznym znajduje się powietrze, może to prowadzić do zmniejszenia efektywności przepływu cieczy, co z kolei przekłada się na niestabilne wskazania rotametru. Odpowietrzenie instalacji, czyli usunięcie zbędnych pęcherzyków powietrza, przywraca poprawny przepływ wody, co stabilizuje działanie rotametru. W praktyce, aby skutecznie odpowietrzyć instalację, należy zlokalizować i otworzyć odpowietrzniki, które znajdują się w najwyższych punktach systemu. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu odpowietrzników, aby zapewnić ich sprawność oraz unikać problemów związanych z gromadzeniem się powietrza. Zgodnie z normami dotyczącymi instalacji solarnych, odpowiednie odpowietrzenie systemu jest kluczowe dla zapewnienia jego efektywności energetycznej oraz długowieczności.

Pytanie 12

Który rodzaj kosztorysu tworzony na podstawie przedmiaru robót, jest wykorzystywany do określenia kosztów całej planowanej inwestycji przez ustalenie cen materiałów budowlanych oraz wynagrodzenia za pracę sprzętu i ludzi?

A. Powykonawczy
B. Ślepy
C. Inwestorski
D. Dodatkowy
Odpowiedzi 'Powykonawczy', 'Ślepy' oraz 'Dodatkowy' nie są właściwe w kontekście pytania dotyczącego kosztorysu sporządzanego na bazie przedmiaru robót dla ustalania kosztów całej inwestycji. Kosztorys powykonawczy, na przykład, jest dokumentem tworzonym po zakończeniu robót budowlanych, który służy do udokumentowania rzeczywistych kosztów poniesionych podczas realizacji projektu. Jego rola jest bardziej związana z kontrolą kosztów i rozliczeniem inwestycji, a nie z planowaniem budżetu przed rozpoczęciem prac. Kosztorys ślepy, z kolei, jest stosowany, gdy nie ma pełnych danych dotyczących zakresu robót, co czyni go mało użytecznym w rzetelnym oszacowaniu kosztów całej inwestycji. Taki kosztorys często opiera się na założeniach i szacunkach, co zwiększa ryzyko nieprzewidzianych wydatków. Kosztorys dodatkowy może dotyczyć prac, które nie były uwzględnione w pierwotnym kosztorysie, jednak jego zastosowanie jest ograniczone do przypadków, gdy już istniejące prace wymagają dodatkowych nakładów finansowych, a nie do całościowego ustalania kosztów inwestycji. Warto zauważyć, że błędne podejście do klasyfikacji kosztorysów prowadzi do mylnych wniosków i może skutkować niewłaściwym zarządzaniem budżetem oraz nieefektywnym planowaniem projektu.

Pytanie 13

W celu stworzenia kosztorysu dla inwestora, jakie narzędzia są wykorzystywane?

A. protokół odbioru częściowego
B. protokół odbioru końcowego
C. dziennik budowy
D. katalogi nakładów rzeczowych
Katalogi nakładów rzeczowych są fundamentalnym narzędziem stosowanym w procesie opracowywania kosztorysów inwestorskich. Zawierają one szczegółowe informacje na temat ilości i kosztów materiałów oraz robót budowlanych, co pozwala na precyzyjne oszacowanie całkowitych wydatków związanych z realizacją projektu. Przykładowo, w katalogach można znaleźć stawki kosztów dla różnych rodzajów robót, takich jak wykopy, fundamenty czy prace wykończeniowe, co pozwala na ich bezpośrednie zastosowanie w kosztorysie. W praktyce, korzystanie z katalogów zmniejsza ryzyko błędów w obliczeniach, ponieważ są one oparte na rzeczywistych danych z rynku budowlanego. Ponadto, stosowanie katalogów nakładów rzeczowych jest zalecane przez standardy branżowe, takie jak Zasadnicze Zasady Kosztorysowania (ZKZ), co czyni je niezbędnym elementem profesjonalnego kosztorysowania. Warto również zaznaczyć, że katalogi te mogą być dostosowane do specyfiki danego projektu, co zwiększa ich użyteczność.

Pytanie 14

Pompę solarną należy zainstalować na rurze

A. bezpieczeństwa
B. powrotnym
C. napełniającym
D. zasilającym
Prawidłową odpowiedzią jest montaż pompy solarnej na przewodzie powrotnym, co jest zgodne z zasadami efektywności systemów grzewczych opartych na energii słonecznej. W układach solarnych, przewód powrotny to ten, który transportuje schłodzoną ciecz z wymiennika ciepła z powrotem do kolektorów słonecznych. Montując pompę na tym przewodzie, zapewniamy jej optymalne warunki pracy, co zwiększa efektywność całego systemu. Pompa wspomaga krążenie płynu roboczego, co pozwala na efektywne pobieranie ciepła zgromadzonego w kolektorach. W praktyce, takie rozwiązanie pozwala na szybsze osiągnięcie pożądanej temperatury w układzie i minimalizuje ryzyko przegrzewania się cieczy. Zgodnie z normami branżowymi, takimi jak EN 12975, należy stosować odpowiednie komponenty i techniki montażowe, aby zapewnić długoterminową i niezawodną pracę systemów solarnych, a lokalizacja pompy na przewodzie powrotnym jest jednym z kluczowych elementów tych standardów.

Pytanie 15

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. łącznika zaprasowywano-gwintowanego.
B. łącznika zaprasowywanego.
C. złączki nakrętnej, określanej jako mufy.
D. złączki wkrętnej, znanej jako nypl.
Zastosowanie złączki wkrętnej, znanej jako nypl, do łączenia dwóch stalowych rur zakończonych gwintem zewnętrznym jest nieodpowiednie. Nypl to złączka, która ma gwinty z obu stron i jest przeznaczona do łączenia rur o różnych średnicach lub do wydłużania istniejących połączeń. W przypadku rur o tej samej średnicy, użycie nypla może doprowadzić do problemów z montażem, ponieważ nie zapewnia on właściwego dopasowania ani stabilności połączenia. Z kolei łącznik zaprasowywany jest przeznaczony do rur wykonanych z materiałów takich jak miedź lub PVC, które są zaprasowywane w specjalny sposób, co również nie ma zastosowania w przypadku stalowych rur z gwintem zewnętrznym. Natomiast łącznik zaprasowywano-gwintowany łączy cechy obu tych typów złączek, jednak nie jest on przystosowany do bezpośredniego łączenia rur zakończonych gwintem zewnętrznym, co czyni go niewłaściwym wyborem w tej sytuacji. W praktyce, wybór niewłaściwej złączki może prowadzić do wycieków, osłabienia strukturalnego połączeń oraz innych problemów operacyjnych, co podkreśla znaczenie odpowiedniego doboru elementów instalacyjnych.

Pytanie 16

Przy transporcie kolektora słonecznego na dach, co należy zrobić?

A. użyć bloczków wyciągowych
B. usunąć osłony zabezpieczające
C. zastosować pas transportowy przymocowany do przyłączy kolektora
D. skorzystać z drabiny i w dwie osoby wciągnąć kolektor
Wybór drabiny i wspólnego wciągania kolektora może wydawać się praktyczny, jednak takie podejście niesie ze sobą poważne ryzyko. Przede wszystkim, użycie drabiny do transportu ciężkiego przedmiotu wymaga znacznej koordynacji i siły, co może prowadzić do utraty równowagi, a w konsekwencji do upadku. Kiedy dwie osoby starają się jednocześnie wciągnąć kolektor, istnieje duże prawdopodobieństwo, że jedna z nich może nieoczekiwanie puścić przedmiot, co stanowi poważne zagrożenie dla zdrowia. Zdejmowanie osłon zabezpieczających przed transportem również nie jest zalecane, ponieważ osłony te mają na celu ochronę delikatnych elementów kolektora przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi. Ich usunięcie może prowadzić do nieodwracalnych uszkodzeń przed transportem i negatywnie wpłynąć na wydajność kolektora po jego zainstalowaniu. Użycie pasa transportowego przymocowanego do przyłączy kolektora również nie jest właściwe, ponieważ takie podejście może prowadzić do uszkodzenia przyłączy, co może skutkować nieszczelnościami lub innymi problemami eksploatacyjnymi po zamontowaniu kolektora. Właściwe metody transportu powinny opierać się na standardach bezpieczeństwa i dobrych praktykach, które zapewniają zarówno bezpieczeństwo, jak i integralność transportowanego urządzenia.

Pytanie 17

Tworząc harmonogram prac związanych z montażem instalacji do usuwania pyłów z gazów spalinowych, wybrano cyklon, którego rolą jest zatrzymywanie zanieczyszczeń powietrza pod wpływem działania

A. pola elektromagnetycznego
B. siły odśrodkowej
C. filtracji
D. grawitacji
Chociaż pojawiają się różne koncepcje dotyczące mechanizmu działania urządzeń do usuwania zanieczyszczeń, takie jak pola elektromagnetyczne, grawitacja czy filtracja, każda z tych odpowiedzi nie uwzględnia kluczowych zasad, które rządzą cyklonami. Pola elektromagnetyczne nie mają zastosowania w procesie separacji pyłów, ponieważ działanie cyklonów opiera się na mechanice fluidów, gdzie dominującą rolę odgrywa grawitacja i siła odśrodkowa, a nie przyciąganie elektromagnetyczne. Grawitacja wpływa na osadzanie się cząstek, ale sama w sobie nie wyjaśnia procesu separacji, który zachodzi w cyklonie. Filtracja, z kolei, jest procesem, w którym cząstki są zatrzymywane przez medium filtracyjne, a nie poprzez rotację i siły odśrodkowe. W kontekście cyklonów, zrozumienie, że to siła odśrodkowa jest kluczowa dla ich działania, jest fundamentem prawidłowego pojmowania ich funkcji. Wiele osób myli proces separacji z ogólnymi zasadami fizyki, co prowadzi do błędnych wniosków. Kluczowe jest, aby rozpoznać, że skuteczna separacja pyłów występuje w wyniku działania wiru, w którym cięższe cząstki są odrzucane na zewnątrz przez siły odśrodkowe, a nie jakiekolwiek inne mechanizmy, które mogą wydawać się bardziej intuicyjne, ale nie są odpowiednie w kontekście cyklonów.

Pytanie 18

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. ochrony akumulatorów przed całkowitym wyładowaniem
B. ochrony systemu przed przetężeniem
C. przekształcania prądu stałego na prąd przemienny
D. kontrolowania procesu ładowania akumulatorów
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 19

Jaką minimalną odległość powinny mieć rurociągi w poziomym wymienniku gruntowym, aby została zachowana odpowiednia normatywność?

A. 400 cm
B. 80 cm
C. 200 cm
D. 20 cm
Kiedy rozważamy kwestie związane z odległością pomiędzy rurociągami poziomego wymiennika gruntowego, często spotykamy się z nieporozumieniami, które mogą prowadzić do błędnych wniosków. Odpowiedzi, które sugerują zbyt małe odległości, takie jak 20 cm czy 80 cm, mogą wynikać z braku zrozumienia podstawowych zasad wymiany ciepła oraz hydrodynamiki w kontekście instalacji gruntowych. Zbyt małe odstępy mogą prowadzić do nieefektywnej wymiany ciepła, co z kolei skutkuje obniżoną wydajnością systemu. Rurociągi umieszczone zbyt blisko siebie będą odbierać ciepło od siebie, co powoduje, że dochodzi do ich ogrzewania, zamiast do efektywnego transferu ciepła z gruntu do czynnika grzewczego. W przypadku odpowiedzi wskazujących na 200 cm czy 400 cm, można zauważyć, że takie wartości są przesadzone. Chociaż zbyt duża odległość może nieco poprawić efektywność wymiany ciepła, w praktyce również prowadzi do nieuzasadnionego zwiększenia kosztów instalacji oraz zajmowania większej powierzchni gruntu, co nie jest korzystne w kontekście lokalnych warunków zabudowy. Przy projektowaniu systemów geotermalnych warto kierować się normami oraz wytycznymi branżowymi, które jednoznacznie wskazują na najlepsze praktyki, co pozwoli na optymalne wykorzystanie dostępnych zasobów oraz zapewnienie efektywności energetycznej instalacji.

Pytanie 20

Na podstawie danych zawartych w tabeli określ roczny uzysk energii z elektrowni wiatrowej w instalacji o mocy 1500 kW i średniej prędkości wiatru 7 m/s.

Wielkość instalacjiRoczny uzysk energii w MWh
wirnikmocV = 5 m/s6 m/s7 m/s8 m/s9 m/s
30 m200 kW320500670820950
40 m500 kW610970136017302050
55 m1000 kW11501840257032803920
65 m1500 kW15202600375048605860
80 m2500 kW23804030583077009220
120 m5000 kW53009000130001700020000

A. 3 750 MWh
B. 1 520 MWh
C. 4 830 MWh
D. 2 600 MWh
Roczny uzysk energii z elektrowni wiatrowej można obliczyć, uwzględniając moc instalacji oraz średnią prędkość wiatru. W przypadku instalacji o mocy 1500 kW i średniej prędkości wiatru wynoszącej 7 m/s, roczny uzysk energii wynosi 3750 MWh. Obliczenia bazują na standardzie IEC 61400, który określa metody oceny wydajności turbin wiatrowych. Przykładowo, przy takiej prędkości wiatru, turbiny wiatrowe generują znaczną ilość energii, co czyni je efektywnym rozwiązaniem w zakresie odnawialnych źródeł energii. W praktyce, elektrownie wiatrowe są kluczowe w realizacji celów związanych z ograniczeniem emisji CO2 i przejściem na zrównoważone źródła energii. Warto również wspomnieć o roli analizy zasobów wiatrowych, która jest niezbędna do optymalizacji lokalizacji elektrowni oraz ich wydajności.

Pytanie 21

Podczas serwisowania pompy cyrkulacyjnej w systemie solarnym zauważono, że urządzenie nie funkcjonuje z powodu uszkodzenia kondensatora. Co należy wykonać jako pierwsze przed jego wymianą?

A. usunąć glikol z instalacji
B. odłączyć zasilanie elektryczne pompy
C. zamknąć zawór przyłączeniowy wody do systemu
D. odkręcić złączki, aby wyciągnąć pompę z systemu
Zamknięcie zaworu doprowadzającego wodę do układu, zlanie glikolu z układu oraz odkręcenie śrubunków w celu demontażu pompy mogą wydawać się logicznymi krokami w procesie konserwacji, jednak nie biorą pod uwagę kluczowych zasad bezpieczeństwa związanych z pracą z urządzeniami elektrycznymi. Zamykanie zaworów w autonomicznych układach, takich jak systemy solarne, może pomóc w prewencji wycieków, ale nie eliminuje ryzyka porażenia prądem, które jest najważniejsze w kontekście pracy nad nienaładowanymi komponentami elektrycznymi. Praktyka zlania glikolu, chociaż może być częścią konserwacji, nie jest pierwszym krokiem, który powinien być podjęty, ponieważ nie zabezpiecza użytkownika przed potencjalnym zagrożeniem. Demontaż pompy bez wcześniejszego wyłączenia zasilania jest skrajnie niebezpieczny, ponieważ w przypadku przypadkowego uruchomienia silnika może dojść do poważnych obrażeń. Typowe błędy myślowe związane z takimi podjęciami mają swoje źródło w niedocenianiu ryzyka związanego z prądem elektrycznym i pomijaniu procedur związanych z bezpieczeństwem pracy. Każdy profesjonalista powinien kierować się zasadą, że najpierw należy zapewnić bezpieczeństwo, a dopiero później przystąpić do działań konserwacyjnych, co jest fundamentem dobrych praktyk w branży instalacyjnej.

Pytanie 22

Na podstawie cech przewodnictwa cieplnego, wybierz materiał szeroko wykorzystywany do ociepleń budynków?

A. Pustak ceramiczny.
B. Cement.
C. Miedź.
D. Styropian.
Styropian, znany także jako polistyren ekspandowany (EPS), jest jednym z najczęściej stosowanych materiałów izolacyjnych w budownictwie, zwłaszcza do dociepleń budynków. Jego niska przewodność cieplna, wynosząca około 0,035-0,040 W/mK, sprawia, że jest on bardzo skuteczny w ograniczaniu strat ciepła. Styropian jest lekki, odporny na wilgoć, a także charakteryzuje się dobrą odpornością na działanie chemikaliów. Dla przykładu, powszechnie stosuje się go w systemach ociepleń ścian zewnętrznych (ETICS), gdzie przyklejany jest do powierzchni budynku, a następnie pokrywany tynkiem. W zgodzie z normami budowlanymi, takimi jak PN-EN 13163, styropian spełnia wymagania dotyczące trwałości i efektywności energetycznej, co czyni go podstawowym materiałem w praktykach budowlanych dotyczących izolacji termicznej. Dodatkowo, jego zdolność do recyklingu przyczynia się do zrównoważonego rozwoju w budownictwie.

Pytanie 23

Kotły biomasowe o mocy większej niż 2 MW powinny być montowane w obiekcie

A. mieszkalnym, w pomieszczeniach, które nie są przeznaczone na cele mieszkalne
B. mieszkalnym, w wydzielonych pomieszczeniach technicznych na poziomie podziemnym
C. mieszkalnym, w wydzielonych pomieszczeniach technicznych na parterze
D. wolnostojącym, które jest przeznaczone wyłącznie na kotłownię
Wybór wolnostojącego budynku przeznaczonego wyłącznie na kotłownię dla kotłów na biopaliwo o mocy powyżej 2 MW jest zgodny z najlepszymi praktykami branżowymi oraz wymogami bezpieczeństwa. Tego typu instalacje powinny znajdować się w odizolowanych pomieszczeniach, aby zminimalizować ryzyko pożarowe i zapewnić odpowiednią wentylację. Ponadto, wolnostojące budynki pozwalają na łatwiejsze spełnienie norm dotyczących emisji spalin oraz zapewniają dostęp do odpowiednich systemów chłodzenia i odprowadzania spalin. Przykładowo, w przypadku dużych instalacji, takich jak kotły na biomasę, konieczne jest przestrzeganie przepisów technicznych, takich jak PN-EN 303-5, które określają wymagania dotyczące konstrukcji i eksploatacji takich obiektów, co znacząco podnosi poziom bezpieczeństwa eksploatacyjnego oraz efektywności energetycznej systemu grzewczego.

Pytanie 24

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 90,00 zł
B. 960,00 zł
C. 560,00 zł
D. 720,00 zł
W przypadku wskazania nieprawidłowej wartości kosztorysowej, warto zrozumieć, jakie błędne założenia mogły prowadzić do takiego wniosku. Wiele osób może pominąć kluczowy element, jakim jest różnica w stawkach roboczych pomiędzy instalatorem a pomocnikami. Wybierając odpowiedź 560,00 zł, można zakładać, że osoba obliczyła jedynie koszty pracy pomocników, co jest dużym uproszczeniem. Koszt samej pracy pomocników wyniósłby 320,00 zł, co nie jest zgodne z całościowym podejściem do wyceny robocizny. Z kolei wybór 90,00 zł może wynikać z mylnego obliczenia, bazującego na niepełnym zestawieniu stawek lub liczby pracowników. Inna możliwość to błędne mnożenie stawki godzinowej przez liczbę godzin bez uwzględnienia faktu, że dwóch pomocników pracowało równocześnie. W przypadku wyboru wartości 960,00 zł można zauważyć, że osoba ta mogła pomylić się w obliczeniach, doliczając za dużo godzin lub stawkę dla każdego z pracowników. Kluczowe jest zrozumienie, że dokładna wycena robocizny wymaga analizy wszystkich elementów składających się na koszt, w tym różnicy w stawkach oraz liczby pracowników zaangażowanych w dany projekt. Przy obliczaniu kosztów robocizny należy kierować się zasadą dokładności, co pozwala na uniknięcie nieporozumień i błędów w przyszłych projektach.

Pytanie 25

W instalacji grzewczej, jaki element kontroluje pracę sterownik solarny?

A. zaworu zabezpieczającego
B. pompy obiegowej centralnego ogrzewania
C. pompy obiegowej ciepłej wody użytkowej
D. pompy solarnej
Sterownik solarny nie kontroluje zaworu bezpieczeństwa, który jest elementem zabezpieczającym system przed nadmiernym ciśnieniem lub temperaturą. Zawór ten pełni funkcję ochronną, ale nie jest bezpośrednio związany z zarządzaniem energią słoneczną. Chociaż ważne jest, aby instalacja miała odpowiednie zabezpieczenia, to nie są one sterowane przez system solarny. Inną pomyłką jest przypisanie roli sterownika do pompy obiegowej centralnego ogrzewania (c.o.) lub ciepłej wody użytkowej (c.w.u.), które mają inne zadania. Pompy te odpowiedzialne są za cyrkulację wody w systemie grzewczym, ale nie są bezpośrednio kontrolowane przez urządzenia solarne. W przypadku pompy obiegowej c.o. jej działanie jest związane z układem grzewczym opartym na kotle, który podgrzewa wodę, a pompa jedynie ją przemieszcza. Zrozumienie tych różnic jest kluczowe, aby uniknąć mylnych przekonań o funkcji różnych elementów instalacji grzewczych. W praktyce, pompy obiegowe muszą być odpowiednio dostosowane do pracy z systemami solarnymi, ale ich zarządzanie odbywa się na innych zasadach niż w przypadku pompy solarnej.

Pytanie 26

Jakie urządzenie należy zastosować do określenia temperatury zamarzania cieczy solarnej?

A. wiskozymetr.
B. fluksometr.
C. anemometr.
D. refraktometr.
Refraktometr jest narzędziem pomiarowym, które służy do określenia współczynnika załamania światła cieczy, co jest kluczowe w kontekście pomiaru progu zamarzania cieczy solarnej. Ciecz solarna, zazwyczaj na bazie glikolu, musi spełniać określone parametry, aby zapewnić efektywne działanie systemów solarnych w zimie. Pomiar współczynnika załamania pozwala na ocenę stężenia roztworu i jego właściwości termicznych. Przy użyciu refraktometru można dokładnie ustalić, przy jakiej temperaturze ciecz zaczyna zamarzać, co ma istotne znaczenie dla prawidłowego funkcjonowania instalacji. Przykładem może być zastosowanie refraktometru w systemach grzewczych, gdzie monitorowanie właściwości cieczy chłodzącej pozwala na optymalizację wydajności systemu i zapobieganie uszkodzeniom spowodowanym zamarznięciem. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu cieczy roboczych, co może przyczynić się do dłuższej żywotności systemów solarnych oraz ich efektywności. Wspieranie procesów decyzyjnych na podstawie dokładnych pomiarów jest kluczowe w kontekście zrównoważonego rozwoju technologii odnawialnych.

Pytanie 27

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. zawór zwrotny
B. grupę pompową
C. naczynie wzbiorcze
D. zawór bezpieczeństwa
Zawór zwrotny to już zupełnie inna bajka w systemach grzewczych. Jego rola to zapobieganie cofaniu się czynnika grzewczego, czyli tak naprawdę dba o to, by płynął w jednym kierunku. To ważne dla działania pomp, bo jak nie, to mogą się pojawić różne nieprzyjemne zjawiska, takie jak problemy hydrauliczne, które mogą prowadzić do uszkodzeń. Tylko, że zawór zwrotny nie ma wpływu na kontrolę ciśnienia instalacji, co w kontekście wzrostu objętości wody przy podwyższonej temperaturze jest kluczowe. Grupa pompową z kolei odpowiada za to, żeby zapewnić odpowiedni przepływ czynnika grzewczego, i może coś tam regulować ciśnienie, ale sama w sobie nie zapobiegnie jego wzrostowi w sytuacjach awaryjnych. Zawór bezpieczeństwa to już inna sprawa – on działa, żeby chronić instalację przed zbyt dużym ciśnieniem, ale jego rola to spuszczenie nadmiaru, a nie kontrolowanie tego ciśnienia. Dlatego ważne jest, żeby zrozumieć, że te różne elementy mają swoje unikalne funkcje, ale żadne z nich nie zastąpi kluczowej roli naczynia wzbiorczego w zabezpieczaniu instalacji przed skutkami termicznej ekspansji czynnika grzewczego. Po prostu, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie, trzeba stosować naczynie wzbiorcze zgodnie z aktualnymi standardami i dobrymi praktykami w branży.

Pytanie 28

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w czopuchu kotła
B. w podajniku ślimakowym
C. na obudowie podajnika
D. w komorze paleniskowej
Montaż czujnika termostatycznego w podajniku ślimakowym może wydawać się sensownym rozwiązaniem, jednak wiąże się z kilkoma istotnymi zagrożeniami. Przede wszystkim, podajnik może być miejscem o zmiennym cieple, gdzie temperatura materiału opałowego nie jest jednolita. W praktyce, czujnik umieszczony w takim miejscu może nie dostarczać precyzyjnych danych o temperaturze, co w efekcie prowadzi do niewłaściwego działania systemu zabezpieczeń. Ponadto, umiejscowienie czujnika w czopuchu kotła, gdzie odpływają gazy spalinowe, jest błędne, ponieważ temperatury w tym obszarze mogą być znacznie wyższe, co może prowadzić do fałszywych alarmów lub uszkodzenia czujnika. Montaż czujnika w komorze paleniskowej również jest nieodpowiedni, ponieważ ekstremalne warunki panujące w tym miejscu mogą zdemolować czujnik, co z kolei grozi poważnymi skutkami dla bezpieczeństwa systemu. Typowym błędem w myśleniu jest założenie, że czujnik termostatyczny można umieścić w dowolnym miejscu, byle tylko był blisko źródła ciepła. Tego typu podejście ignoruje zasady działania i odpowiednie normy, które jasno wskazują, że lokalizacja czujnika powinna sprzyjać stabilności i dokładności pomiarów, co jest kluczowe dla efektywnego i bezpiecznego działania systemów grzewczych.

Pytanie 29

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 30°
B. 45°
C. 65°
D. 70°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 30

Rekuperator to urządzenie służące do odzyskiwania energii cieplnej z

A. gazów
B. gruntu
C. ciepłej wody użytkowej
D. ścieków
Widzę, że odpowiedzi dotyczące ciepłej wody użytkowej, gruntu i ścieków to trochę nieporozumienie, jeśli chodzi o działanie rekuperatorów. Ciepła woda użytkowa to źródło energii, ale nie ma nic wspólnego z tym, co robi rekuperator. On nie odzyskuje energii z wody, tylko z powietrza. Grunt w systemach geotermalnych to inna bajka, tam wymienia się ciepło z otoczeniem. Ścieki mogą oddać trochę energii, ale to też nie to samo, co robi rekuperator. Często ludzie mylą te technologie, bo rekuperacja to głównie wymiana ciepła między strumieniami powietrza. Odpowiedni współczynnik odzysku ciepła powinien wynosić przynajmniej 70%. Także, ważne jest, żeby pamiętać, że rekuperator działa w ramach wentylacji mechanicznej, nie w kontekście odzysku energii z wody czy gruntu.

Pytanie 31

Określ przyczynę zmniejszenia ciśnienia w instalacji solarnej?

A. Osiągnięta lub przekroczona maksymalna temperatura zbiornika ustawiona na regulatorze
B. Czujnik temperatury niewłaściwie umiejscowiony po stronie gorącej absorbera
C. Przecieki na złączach, wymienniku ciepła, zaworze bezpieczeństwa lub w miejscach lutowania
D. Uszkodzony czujnik temperatury lub problemy z jego zasilaniem
Przecieki w systemie solarnym mogą prowadzić do znacznego spadku ciśnienia, co wpływa na efektywność całej instalacji. W przypadku nieszczelności w miejscach takich jak śrubunki, wymiennik ciepła czy zawór bezpieczeństwa, woda może wydostawać się z systemu, co prowadzi do obniżenia ciśnienia roboczego. Zgodnie z normami branżowymi, takie jak EN 12976, które dotyczą systemów solarnych, zabezpieczenie przed przeciekami jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa. W praktyce, regularne przeglądy i konserwacja systemów solarowych powinny obejmować kontrolę tych elementów, aby nie dopuścić do poważniejszych uszkodzeń. Przykładowo, w przypadku stwierdzenia nieszczelności, konieczne może być wymienienie uszczelek lub dokonanie napraw w miejscach lutowania, co przywróci optymalne ciśnienie w systemie i zapewni jego prawidłowe funkcjonowanie. Dobrą praktyką jest również stosowanie materiałów wysokiej jakości oraz odpowiednich technik montażu, co minimalizuje ryzyko powstawania przecieków.

Pytanie 32

Kolektory słoneczne umieszczone na gruncie, w przeciwieństwie do tych instalowanych na dachach, są bardziej podatne na

A. częstsze uszkodzenia mechaniczne.
B. większe straty ciepła.
C. większe pokrycie śniegiem.
D. gorsze warunki nasłonecznienia.
Kolektory słoneczne montowane na powierzchni terenu rzeczywiście są bardziej narażone na uszkodzenia mechaniczne. W porównaniu z instalacjami dachowymi, które korzystają z naturalnej ochrony budynku, kolektory na gruncie mogą być narażone na różnorodne zagrożenia. Przykładowo, mogą być łatwym celem dla zwierząt, które mogą próbować zniszczyć instalację w poszukiwaniu schronienia lub pożywienia. Dodatkowo, na poziomie terenu, kolektory mogą być uszkodzone przez ruch ludzi czy pojazdów, zwłaszcza w miejscach publicznych. Ekstremalne warunki atmosferyczne, takie jak silny wiatr i grad, również mogą prowadzić do uszkodzeń, ponieważ kolektory są bezpośrednio wystawione na te czynniki. W praktyce, aby zminimalizować ryzyko uszkodzeń mechanicznych, zaleca się stosowanie osłon lub lokalizowanie kolektorów w obszarach, gdzie są mniej narażone na takie zagrożenia. Dobre praktyki instalacyjne uwzględniają również analizę lokalnych warunków środowiskowych, co może pomóc w wyborze odpowiedniej lokalizacji dla kolektorów.

Pytanie 33

Na podstawie tabeli dołączonej do instrukcji dobierz średnicę rury, jeżeli w słonecznej instalacji grzewczej przewidziano montaż 16 kolektorów.

Średnica ruryIlość czynnika w 1 mb rury [dm³/mb]Ilość podłączonych kolektorów
15 x 1,00,131 – 3
18 x 1,00,24 – 6
22 x 1,00,317 – 9
28 x 1,50,4910 – 20
35 x 1,50,821 – 30
42 x 1,51,231 – 40

A. 28 x 1,0
B. 35 x 1,5
C. 18 x 1,0
D. 28 x 1,5
Odpowiedź 28 x 1,5 jest poprawna, ponieważ zgodnie z tabelą, dla instalacji z 16 kolektorami, odpowiednia średnica rury powinna wynosić 28 mm, przy grubości ścianki 1,5 mm. Tego rodzaju rury są najczęściej stosowane w instalacjach solarnych, ponieważ zapewniają odpowiedni przepływ medium grzewczego oraz minimalizują straty ciśnienia. Użycie rury o tej średnicy pozwala na efektywne zbieranie energii ze słońca i jej późniejsze wykorzystanie w systemie grzewczym budynku. W praktyce, stosując rury o odpowiedniej średnicy, zapewniasz zarówno bezpieczeństwo, jak i efektywność energetyczną instalacji. Według norm branżowych, dobór średnicy rur powinien być oparty na analizie przepływu oraz liczbie kolektorów, co pozwala uniknąć problemów z przegrzewaniem lub zbyt słabym przepływem. Dlatego też, w przypadku 16 kolektorów, wybór rury 28 x 1,5 jest zgodny z najlepszymi praktykami w dziedzinie instalacji solarnych.

Pytanie 34

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło woda, gromadzenie energii woda
B. dolne źródło woda, gromadzenie energii powietrze
C. dolne źródło solanka, gromadzenie energii powietrze
D. dolne źródło powietrze, gromadzenie energii woda
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 35

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. niedostosowanie prądowe paneli
B. zacienienie modułów
C. rozładowany akumulator
D. uszkodzony przewód
Niedopasowanie prądowe paneli, zacienienie paneli oraz rozładowany akumulator to sytuacje, które mogą wpływać na wydajność systemu fotowoltaicznego, jednak nie są bezpośrednio przyczyną zwarcia doziemnego. Niedopasowanie prądowe paneli odnosi się do różnic w parametrach elektrycznych, które mogą prowadzić do obniżonej efektywności, ale nie stwarzają zagrożenia zwarciowego. Zacienienie paneli wpływa na moc wyjściową systemu, co może powodować spadki wydajności, ale również nie prowadzi do zwarcia doziemnego. Z kolei rozładowany akumulator, choć może wpływać na działanie całego systemu, nie jest przyczyną zwarcia, lecz problemem z zasilaniem. Takie typowe błędy myślowe prowadzą do mylenia objawów z przyczynami. W rzeczywistości, zwarcie doziemne jest związane z uszkodzeniem przewodów, a nie z wydajnością poszczególnych komponentów. Właściwe zrozumienie działania instalacji fotowoltaicznej wymaga znajomości standardów bezpieczeństwa oraz zasad działania poszczególnych elementów, co pozwala na skuteczniejsze diagnozowanie problemów oraz podejmowanie właściwych działań naprawczych.

Pytanie 36

W trakcie transportu samochodowego gruntowej pompy ciepła do klienta, gdy moduł chłodniczy jest umieszczony na dole urządzenia, należy ją przewozić

A. w pozycji stojącej pionowo
B. w pozycji leżącej na bocznej ściance
C. w pozycji pochylonej pod kątem 45°
D. w pozycji leżącej na tylnej ściance
Odpowiedź 'stojącą pionowo' jest faktycznie na miejscu. Kiedy transportujesz gruntową pompę ciepła w tej pozycji, to wszystko działa lepiej – ciśnienie w układzie chłodniczym jest ok, a ryzyko jakichś uszkodzeń się zmniejsza. Jeśli masz moduł chłodniczy na dole, to pionowa pozycja utrzymuje płyny na swoim miejscu, co z kolei jest kluczowe dla działania systemu. W praktyce, dobrze jest przewozić takie urządzenia w sposób, który nie pozwoli na przesuwanie się elementów wewnętrznych i chroni je przed wstrząsami. Przykładem może być transport klimatyzacji, gdzie jak źle je przewieziemy, to po zainstalowaniu mogą się pojawić problemy. Lepiej zawsze trzymać się wytycznych producentów i norm, bo one zazwyczaj mówią, że pionowa pozycja transportowa to najlepszy wybór, żeby sprzęt działał jak należy.

Pytanie 37

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. południową
B. zachodnią
C. północną
D. wschodnią
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 38

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. turbiny wodnej
B. elektrowni wiatrowej
C. pompy ciepła
D. biogazowni
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 39

Jakie kryterium oddziałuje na ocenę stanu technicznego pompy ciepła podczas przeglądu technicznego?

A. Ciśnienie czynnika chłodniczego
B. Prąd przy zwarciu
C. Natężenie prądu w punkcie maksymalnej mocy
D. Tempo obrotowe wirnika
Ciśnienie czynnika chłodniczego jest kluczowym wskaźnikiem stanu technicznego pompy ciepła, ponieważ ma bezpośredni wpływ na jej wydajność oraz efektywność energetyczną. Podczas przeglądów technicznych, monitorowanie ciśnienia czynnika chłodniczego pozwala na ocenę, czy system działa w optymalnych warunkach. Zbyt niskie ciśnienie może sugerować nieszczelność w układzie lub niedobór czynnika chłodniczego, co prowadzi do obniżenia efektywności pompy. Z kolei zbyt wysokie ciśnienie może wskazywać na problemy z odprowadzaniem ciepła lub zator w układzie. Standardy branżowe, takie jak normy ISO 5151 dotyczące wydajności pomp ciepła, podkreślają znaczenie monitorowania ciśnienia czynnika chłodniczego jako części rutynowych przeglądów oraz diagnostyki. Praktyczne przykłady zastosowania tej wiedzy obejmują regulację parametrów pracy urządzenia i planowanie działań serwisowych, co przekłada się na zwiększenie żywotności systemu oraz oszczędności energetyczne.

Pytanie 40

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. wodę z instalacji kotła centralnego ogrzewania
B. wodę destylowaną
C. roztwór soli kuchennej
D. mieszaninę glikolu propylenowego i wody
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."