Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 30 maja 2025 16:32
  • Data zakończenia: 30 maja 2025 16:46

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W przypadku, gdy nierównomierna praca podłoża prowadzi do rozłączenia ścian konstrukcyjnych, jakie działania można podjąć, aby je ponownie połączyć?

A. wypełnienie pęknięć zaczynem cementowym
B. iniekcję środka wiążącego
C. zastosowanie ściągów metalowych
D. wypełnienie środkami bitumicznymi
Ściągi metalowe to naprawdę świetny sposób na to, żeby naprawić ściany, które się rozdzieliły przez nierówne podłoże. Działają jak mostki między górną a dolną częścią ścian, co fajnie stabilizuje całą konstrukcję. W sytuacjach, gdy budynek osiada na fundamentach, takie ściągi mogą pomóc wzmocnić całość, zwiększając wytrzymałość. Z tego, co widziałem, często używa się stali do ich wykonania, bo jest odporna na różne trudne warunki. W dodatku, według norm budowlanych, jak Eurokod 3, ważne jest, żeby projektować je z myślą o różnych obciążeniach, żeby były skuteczne i bezpieczne. Dobrze dobrane ściągi nie tylko przywracają dawną integralność konstrukcji, ale też pomagają w przyszłości znieść możliwe przemieszczenia. Ich instalacja zazwyczaj nie jest jakoś bardzo inwazyjna, co jest dużym plusem, bo pozwala zachować estetykę budynku.

Pytanie 2

Szczeliny powietrzne w murach murowanych wprowadza się, aby poprawić

A. ognioodporność ściany
B. izolacyjność termiczną ściany
C. grubość ściany
D. izolacyjność akustyczną
Szczeliny powietrzne w ścianach murowanych są kluczowym elementem, który znacząco zwiększa izolacyjność termiczną tych ścian. Dzięki odpowiedniej konstrukcji, powietrze w szczelinach działa jako izolator, co redukuje wymianę ciepła między wnętrzem a otoczeniem. Zjawisko to jest szczególnie istotne w budownictwie energooszczędnym, gdzie celem jest minimalizacja strat ciepła. W praktyce, odpowiednia szerokość i umiejscowienie szczelin powietrznych mogą znacznie poprawić współczynniki przenikania ciepła (U), spełniając normy określone w przepisach budowlanych, takich jak Warunki Techniczne. Na przykład, w budynkach jednorodzinnych, stosowanie szczelin powietrznych może pomóc w osiągnięciu efektywności energetycznej zgodnej z wymaganiami dla budynków pasywnych. Warto również zauważyć, że skuteczne wykorzystanie szczelin powietrznych wpływa pozytywnie na komfort termiczny mieszkańców, co jest kluczowe w kontekście zrównoważonego rozwoju budownictwa.

Pytanie 3

Kiedy wykonuje się poziomą izolację przeciwwilgociową na ścianie fundamentowej?

A. ze styropianu
B. z polistyrenu ekstrudowanego
C. z folii paroizolacyjnej
D. z papy asfaltowej
Izolacja przeciwwilgociowa ściany fundamentowej jest niezbędna dla ochrony konstrukcji przed działaniem wody, jednak zastosowanie materiałów innych niż papa asfaltowa może być nieodpowiednie. Styropian, mimo że jest materiałem o dobrych właściwościach termoizolacyjnych, nie zapewnia wystarczającej ochrony przed wilgocią. Jego struktura jest porowata, co może prowadzić do absorpcji wody, a w efekcie do uszkodzeń fundamentów oraz osłabienia całej konstrukcji. Polistyren ekstrudowany, chociaż lepszy od styropianu pod względem trwałości i odporności na wilgoć, nie jest przeznaczony do stosowania jako materiał izolacyjny w bezpośrednim kontakcie z wodą gruntową. Użycie folii paroizolacyjnej w tym kontekście również jest niewłaściwe, ponieważ folia ma inne przeznaczenie – jej główną funkcją jest ochrona przed migracją pary wodnej, a nie wody gruntowej. Izolacja fundamentów musi być wykonana z materiałów odpornych na długotrwałe działanie wody, co wyklucza stosowanie nieodpowiednich produktów. Niewłaściwy dobór materiałów do izolacji fundamentów może prowadzić do poważnych problemów, takich jak infiltracja wilgoci, co z kolei może prowadzić do powstawania pleśni, rozwoju grzybów oraz uszkodzeń strukturalnych budynku. Dlatego kluczowe jest, aby zawsze stosować się do rekomendacji branżowych i standardów budowlanych przy wyborze materiałów do izolacji przeciwwilgociowej.

Pytanie 4

Fabrycznie przygotowane tynki akrylowe w pojemnikach wymagają przed zastosowaniem

A. dodania pigmentu
B. dodania utwardzacza
C. wymieszania z wodą
D. wymieszania bez dodatków
Tynki akrylowe, które są dostępne w pojemnikach i przygotowywane fabrycznie, są zaprojektowane w taki sposób, że po otwarciu wymagają jedynie wymieszania, aby uzyskać jednolitą konsystencję. Wymieszanie bez dodatków pozwala na zachowanie właściwości chemicznych i fizycznych materiału, co jest kluczowe dla uzyskania optymalnej przyczepności oraz wytrzymałości na różne czynniki atmosferyczne. Dobre praktyki zalecają, aby przed aplikacją tynków akrylowych stosować mikser mechaniczny, co umożliwia dokładne wymieszanie produktu, eliminując ryzyko pojawienia się grudek lub nierówności. W przypadku dodawania utwardzacza, pigmentu lub wody, mogłoby to prowadzić do zmiany właściwości tynku, co w konsekwencji mogłoby wpłynąć na trwałość i estetykę powłoki. Właściwe przygotowanie tynku akrylowego jest kluczowe, by zapewnić długotrwały efekt estetyczny oraz efektywność krycia, co jest zgodne z normami obowiązującymi w branży budowlanej i malarskiej.

Pytanie 5

Aby postawić ścianę z bloczków gazobetonowych, niezbędne jest użycie kielni oraz

A. sznurka murarskiego i poziomicy
B. spoinówki i poziomicy
C. sznurka murarskiego i cykliny
D. pacy i poziomicy
Odpowiedź sznurek murarski i poziomica jest poprawna, ponieważ te narzędzia są kluczowe w procesie murowania ścian z bloczków gazobetonowych. Sznurek murarski służy do oznaczania linii poziomej i pionowej, co jest niezbędne do zapewnienia prostoliniowości oraz równoległości ściany. Używając sznurka, można uniknąć błędów, które mogą wystąpić przy murowaniu 'na oko'. Poziomica natomiast pozwala na dokładne sprawdzenie, czy bloczki są ułożone w poziomie, co jest istotne dla stabilności całej konstrukcji. W praktyce, przed rozpoczęciem murowania, wyznacza się linię za pomocą sznurka, a następnie każdy bloczek należy kontrolować przy pomocy poziomicy. Warto dodać, że zgodnie z normami budowlanymi, poprawne ułożenie elementów murowych ma kluczowe znaczenie dla trwałości i bezpieczeństwa budowli. Bez tych narzędzi, ryzyko błędów konstrukcyjnych wzrasta, co może prowadzić do poważnych problemów w przyszłości, takich jak pęknięcia czy osiadanie ścian.

Pytanie 6

Jakie działania powinny być podjęte jako pierwsze przed nałożeniem suchego tynku na nierównomierne podłoże ściany z cegły kratówki?

A. Wykonać na ścianie placki "marki"
B. Uformować pasy kierunkowe z zaprawy cementowo-wapiennej
C. Nałożyć zaprawę gipsową na płyty suchego tynku i mocno je przycisnąć do podłoża
D. Zastosować na ścianie warstwę gładzi gipsowej
Naniesienie zaprawy gipsowej na płyty suchego tynku i mocne dociskanie ich do podłoża to podejście, które może wydawać się praktyczne, jednak w rzeczywistości jest niewłaściwe, zwłaszcza w kontekście nierównych ścian. Zaprawa gipsowa nie jest odpowiednia do stosowania na nierównych powierzchniach, ponieważ jej właściwości nie zapewniają odpowiedniego wyrównania i przyczepności. Właściwe przygotowanie podłoża powinno obejmować najpierw zidentyfikowanie i skorygowanie nierówności ściany, a nie jedynie nakładanie warstwy gipsu. Ponadto, wykonanie gładzi gipsowej na nierównym podłożu nie przynosi oczekiwanych efektów, ponieważ gładź nie jest w stanie wypełnić dużych ubytków czy nierówności, co może prowadzić do pęknięć i odspojenia w przyszłości. Wykonanie pasów kierunkowych z zaprawy cementowo-wapiennej to kolejna koncepcja, która ma swoje miejsce w praktyce budowlanej, ale nie jest pierwszym krokiem w przypadku nierównych ścian. Te koncepcje często wynikają z błędnego zrozumienia procesu przygotowania podłoża oraz znaczenia dokładności w budownictwie. W praktyce, kluczowe jest przestrzeganie zasad i dobrych praktyk, co w tym przypadku oznacza najpierw ustalenie punktów odniesienia za pomocą placków 'marki', a następnie wyrównanie powierzchni przed dalszymi pracami. Ignorowanie tych zasad prowadzi do problemów w końcowym etapie wykończenia, co może być kosztowne i czasochłonne w poprawie.

Pytanie 7

Przygotowanie kruszywa naturalnego do wytworzenia zaprawy tynkarskiej, która ma być użyta do nałożenia tynku zwykłego, polega na

A. ustaleniu stopnia zagęszczenia kruszywa
B. przesianiu kruszywa przez sito o oczkach 2 mm
C. przesianiu kruszywa przez sito o oczkach 5 mm
D. ustaleniu gęstości pozornej kruszywa
Przesianie kruszywa przez sito o oczkach 2 mm jest kluczowym etapem w przygotowaniu zaprawy tynkarskiej przeznaczonej do wykonania narzutu tynku zwykłego. Użycie sita o takiej wielkości oczek pozwala na usunięcie większych zanieczyszczeń oraz fragmentów kruszywa, które mogłyby negatywnie wpłynąć na właściwości mechaniczne i estetyczne gotowego tynku. Zastosowanie właściwego rozmiaru kruszywa jest zgodne z normami budowlanymi, które wskazują, że do zapraw tynkarskich powinno się używać kruszywa o odpowiednich uziarnieniach, aby zapewnić optymalną przyczepność i jednorodność zaprawy. Przesiewanie kruszywa ma także na celu poprawę jego jednorodności, co jest istotne dla uzyskania stabilnych właściwości tynków oraz zapobiega pojawianiu się pęknięć. W praktyce, w zależności od wymagań projektu, można przeprowadzać dodatkowe testy, aby określić, czy wybrane kruszywo spełnia normy jakościowe, co przyczynia się do długotrwałych i estetycznych efektów końcowych w budownictwie.

Pytanie 8

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. drabinowe
B. na wysuwnicach
C. na kozłach
D. stojakowe
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 9

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3

A. 100 kg cementu i 900 kg piasku.
B. 100 kg piasku i 450 kg cementu.
C. 200 kg cementu i 900 kg piasku.
D. 200 kg piasku i 900 kg cementu.
Stosowanie niewłaściwych proporcji w zaprawie cementowej może prowadzić do wielu problemów, takich jak obniżenie wytrzymałości zaprawy oraz jej trwałości. Proporcje podane w odpowiedziach, które nie są zgodne z wymaganiami dla zaprawy klasy M7, wynikają z nieporozumień dotyczących podstawowych zasad mieszania składników. Na przykład, odpowiedzi sugerujące użycie 100 kg cementu i 900 kg piasku, czy 200 kg piasku i 900 kg cementu, nie spełniają wymagań proporcji 1:4,5. W pierwszym przypadku, stosunek wynosi 1:9, co oznacza, że na jednostkę cementu przypada znacznie za dużo piasku. W drugim przypadku również proporcja jest błędna, ponieważ zamiast stosować większą ilość cementu, zgodnie z wymogami, użyto go w niewystarczającej ilości. Takie podejście może prowadzić do nadmiernego porowatości zaprawy, co z kolei przekłada się na jej mniejszą wytrzymałość i większą podatność na uszkodzenia. Kluczowe jest, aby przy mieszaniu zaprawy przestrzegać norm i dobrych praktyk budowlanych, co pozwala uniknąć problemów w późniejszym użytkowaniu budowli. Zrozumienie tych zasad jest kluczowe dla każdego, kto zajmuje się pracami budowlanymi.

Pytanie 10

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. klamry stalowe oraz zaczyn cementowy
B. cegły kominowe i zaprawę cementową
C. stalowe pręty oraz zaprawę gipsową
D. cegły dziurawe wraz z zaczynem gipsowym
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 11

Ile trzeba zapłacić za cegły potrzebne do zbudowania ściany o powierzchni 28 m2, jeżeli 140 cegieł jest wymaganych do wykonania 1 m2 ściany o grubości 38 cm, a cena jednej cegły wynosi 1,50 zł?

A. 5 880,00 zł
B. 1 596,00 zł
C. 7 980,00 zł
D. 3 920,00 zł
Aby obliczyć koszt cegieł potrzebnych do wykonania ściany o powierzchni 28 m², zaczynamy od ustalenia, ile cegieł potrzebujemy. Z danych wynika, że do wykonania 1 m² ściany potrzeba 140 cegieł. Zatem dla 28 m² obliczamy: 28 m² * 140 cegieł/m² = 3 920 cegieł. Następnie, znając cenę jednej cegły, która wynosi 1,50 zł, obliczamy całkowity koszt: 3 920 cegieł * 1,50 zł/cegła = 5 880,00 zł. To podejście jest zgodne z najlepszymi praktykami w budownictwie, gdzie przed rozpoczęciem prac kosztorysowych dokonuje się szczegółowych obliczeń, aby uniknąć niedoszacowania materiałów budowlanych. Dobrze przeprowadzone obliczenia pozwalają na efektywne zarządzanie budżetem i uniknięcie dodatkowych kosztów na etapie realizacji projektu.

Pytanie 12

Podczas budowy wewnętrznych ścian działowych o wysokości nieprzekraczającej 2,5 m nie wolno stosować rusztowań

A. drabinowego
B. kozłowego
C. warszawskiego
D. stojakowego teleskopowego
Odpowiedzi 'stojakowego teleskopowego', 'warszawskiego' oraz 'kozłowego' są niewłaściwe z kilku kluczowych powodów. Rusztowania stojakowe teleskopowe, choć oferują stabilność i dużą powierzchnię roboczą, są przeznaczone do znacznie wyższych konstrukcji, co czyni je niepraktycznymi i nieefektywnymi przy pracy na wysokości do 2,5 m. Ich skomplikowana konstrukcja wymaga także znacznie więcej miejsca do rozstawienia, co może być problematyczne w wąskich pomieszczeniach. Rusztowanie warszawskie, z kolei, jest bardziej skomplikowane w montażu i demontażu, co w przypadku niskich wysokości mija się z celem, a jego użycie wiąże się z większym ryzykiem niewłaściwego zabezpieczenia. Zastosowanie rusztowania kozłowego jest również nieodpowiednie, ponieważ, mimo że jest ono stabilne, jego konstrukcja nie jest dostosowana do wykonywania precyzyjnych prac murarskich na niższych wysokościach. Często błędnym podejściem jest myślenie, że większa stabilność rusztowania będzie korzystna w każdej sytuacji, gdy w rzeczywistości proste rozwiązania, takie jak drabina, mogą być bardziej odpowiednie. Z kolei zbyt duża ilość sprzętu na małej przestrzeni może prowadzić do zagrożeń związanych z bezpieczeństwem natomiast użycie drabiny, w połączeniu z przestrzeganiem zasad BHP, pozwala na efektywniejszą i bezpieczniejszą pracę.

Pytanie 13

Można zmniejszyć chłonność podłoża przeznaczonego do tynkowania poprzez

A. pomalowanie powierzchni farbą
B. zastosowanie gruntów podkładowych
C. wcześniejsze wysuszenie ściany
D. wykonanie tynków dedykowanych
Wysuszenie ściany przed tynkowaniem jest praktyką, która może wydawać się logiczna, jednak nie prowadzi do zmniejszenia chłonności podłoża. W rzeczywistości, zbyt wysoka temperatura i wentylacja mogą prowadzić do mikropęknięć, co w konsekwencji osłabia przyczepność tynku. Tynki specjalne, takie jak tynki wapienne czy cementowe, mogą mieć swoje unikalne właściwości, ale nie eliminują one problemu chłonności podłoża. Właściwy dobór tynku powinien być uzależniony od podłoża, a nie od jego wysuszenia. Pomalowanie ściany farbą również nie rozwiązuje problemu, ponieważ większość farb nie jest zaprojektowana do ograniczenia wchłaniania wilgoci, a ich warstwa może wręcz stworzyć barierę dla pary wodnej, co prowadzi do gromadzenia się wilgoci pod tynkiem. Typowe błędy polegają na przyjmowaniu, że wysuszenie i użycie farb wystarczą do prawidłowego przygotowania podłoża. Kluczowym elementem jest zrozumienie, że gruntowanie to proces, który nie tylko poprawia przyczepność, ale także zabezpiecza cały system tynkarski na dłuższy czas, zapewniając jego trwałość i estetykę.

Pytanie 14

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 12 950,00 zł
B. 10 360,00 zł
C. 4 662,00 zł
D. 9 324,00 zł
Analizując pozostałe odpowiedzi, możemy zauważyć, że niepoprawne wyniki wynikają głównie z błędnych obliczeń lub założeń dotyczących powierzchni ścian. Wiele osób może błędnie oszacować całkowitą powierzchnię, pomijając istotne czynniki, takie jak wysokość pomieszczenia lub wymiary ścian. Zdarza się, że pomijane są też mniejsze elementy, takie jak okna czy drzwi, które zmieniają całkowitą powierzchnię wyburzenia. Kolejnym typowym błędem jest nieprawidłowe przeliczenie kosztów, gdzie użytkownik błędnie mnoży powierzchnię przez niewłaściwą stawkę lub pomija jednostki. Możliwe jest także, że błędne odpowiedzi są wynikiem niepoprawnego założenia dotyczącego grubości ścian, co wprowadza dodatkowe zamieszanie w kalkulacji. W kontekście branży budowlanej, precyzyjne wyliczenia są kluczowe, gdyż błędne oszacowanie kosztów może prowadzić do poważnych problemów finansowych dla inwestora. Warto również zwrócić uwagę na znaczenie stosowania standardowych metod kalkulacji kosztów budowlanych, które opierają się na ugruntowanych zasadach i praktykach w branży, co znacznie zwiększa dokładność wyliczeń i pomaga uniknąć pułapek błędnych założeń.

Pytanie 15

W specyfikacji technicznej planowanego remontu w obiekcie budowlanym zawarto informację, że do wszystkich prac murarskich należy wykorzystać materiał ceramiczny o korzystnych właściwościach cieplnych. Który z typów cegieł spełnia wymagania zawarte w dokumentacji?

A. Silikatowa
B. Klinkierowa
C. Szamotowa
D. Kratówka
Cegła kratówkowa jest materiałem ceramicznym, który charakteryzuje się doskonałymi właściwościami termicznymi, co czyni ją odpowiednią do robót murowych w budynkach. Jej struktura, z wieloma otworami, umożliwia lepszą izolację termiczną i akustyczną niż inne rodzaje cegieł. Dzięki temu, budynki wzniesione z użyciem cegły kratówki są bardziej energooszczędne, co jest szczególnie istotne w kontekście współczesnych standardów budowlanych, które kładą duży nacisk na efektywność energetyczną. Zastosowanie cegły kratówki pozwala także na łatwiejsze ogrzewanie pomieszczeń, co ma kluczowe znaczenie w chłodniejszych klimatach. W praktyce, cegła ta jest często wykorzystywana w budownictwie mieszkaniowym oraz użyteczności publicznej, gdzie wymagane są zarówno dobre właściwości termiczne, jak i trwałość konstrukcji. Ponadto, zgodnie z normami budowlanymi, materiały stosowane w budownictwie powinny spełniać określone wymagania dotyczące izolacyjności termicznej, co czyni cegłę kratówkową idealnym wyborem.

Pytanie 16

Tynk III kategorii powszechny to

A. tynk trójwarstwowy wygładzony pacą pokrytą filcem
B. narzut jedno- lub dwu-warstwowy wygładzany pacą
C. narzut o jednej warstwie, wyrównany kielnią
D. tynk trójwarstwowy zatarty packą na gładko
Tynk pospolity III kategorii, jako tynk trójwarstwowy zatarty packą na gładko, jest odpowiednim rozwiązaniem w przypadku, gdy zależy nam na uzyskaniu estetycznej, gładkiej powierzchni. Tego rodzaju tynk składa się z trzech warstw: warstwy podkładowej, warstwy zasadniczej oraz warstwy wykończeniowej, co pozwala na uzyskanie odpowiedniej wytrzymałości oraz trwałości. Takie podejście jest zgodne z normami budowlanymi, które zalecają stosowanie trzech warstw w celu osiągnięcia najlepszych właściwości termoizolacyjnych oraz akustycznych. Przykładem zastosowania tynku pospolitego III kategorii mogą być wnętrza budynków mieszkalnych, gdzie gładka powierzchnia ścian jest zarówno estetyczna, jak i funkcjonalna. Dobra praktyka polega na prawidłowym wykonaniu każdej z warstw, co wpływa na końcowy efekt estetyczny oraz trwałość tynku, a także na jego odporność na uszkodzenia mechaniczne czy wilgoć. Dodatkowo, tynk taki może być malowany, co otwiera dodatkowe możliwości aranżacyjne w przestrzeni. Zastosowanie tynku trójwarstwowego zwiększa też wartość estetyczną obiektów budowlanych.

Pytanie 17

Jak uzyskać jednakową grubość spoin podczas wykańczania cokołu płytkami klinkierowymi?

A. spoinówki
B. miarki centymetrowej
C. suwmiarki
D. krzyżyków dystansowych
Krzyżyki dystansowe są kluczowym narzędziem w procesie układania płytek klinkierowych, które pozwala na uzyskanie jednakowej grubości spoin. Ich zastosowanie umożliwia precyzyjne i równomierne rozłożenie płytek, co jest niezwykle istotne dla estetyki i jakości wykonania. Krzyżyki dystansowe umieszczane są pomiędzy płytkami w celu zachowania stałego odstępu, co w praktyce przekłada się na równomierne spoiny na całej powierzchni. W przypadku płytek klinkierowych, które są często używane na cokołach, odpowiednia grubość spoin ma znaczenie nie tylko estetyczne, ale także funkcjonalne, wpływając na odprowadzanie wody oraz redukcję pęknięć w materiałach. Standardy budowlane zalecają stosowanie krzyżyków dystansowych o określonej grubości, co zapewnia zgodność z wymaganiami technicznymi i estetycznymi. Warto również pamiętać, że różne materiały mogą wymagać różnych rozmiarów spoin, dlatego dobór odpowiednich krzyżyków jest kluczowy dla uzyskania pożądanego efektu.

Pytanie 18

Reperacja pojedynczych uszkodzeń oraz niewielkich pęknięć na powierzchni tynku ściany nośnej polega na klinowym usunięciu tynku oraz

A. uzupełnieniu ubytków zaprawą cementową
B. wzmocnieniu konstrukcji klamrowo i ponownym otynkowaniu
C. nasączeniu pękniętych miejsc wodą i uzupełnieniu ubytków zaprawą taką jak tynk
D. wprowadzeniu zaczynu cementowego pod ciśnieniem
Odpowiedź dotycząca nasączenia miejsc spękań wodą i wypełnienia ubytków zaprawą tynkarską jest poprawna, ponieważ taka procedura pozwala na skuteczne zminimalizowanie ryzyka dalszych uszkodzeń oraz zapewnienie właściwej przyczepności materiału naprawczego. Przed przystąpieniem do naprawy, ważne jest, aby dokładnie oczyścić uszkodzoną powierzchnię z luźnych fragmentów tynku oraz zanieczyszczeń, co pozwoli na lepsze wnikanie wody do spękań. Następnie, nasączenie wodą umożliwia aktywację drobnych cząsteczek cementu w zaprawie, co w połączeniu z odpowiednim wypełnieniem ubytków zaprawą tynkarską przyczynia się do uzyskania trwałej i estetycznej naprawy. Zgodnie z normą PN-EN 998-1, właściwe przygotowanie powierzchni oraz użycie odpowiednich materiałów budowlanych jest kluczowe dla zapewnienia długotrwałej jakości wykończenia. Takie podejście jest zgodne z najlepszymi praktykami w dziedzinie budownictwa i renowacji, co potwierdza jego skuteczność w zakresie zachowania estetyki oraz integralności konstrukcyjnej ścian. Przykładowo, w budynkach zabytkowych, gdzie estetyka ma kluczowe znaczenie, podejście to jest szczególnie istotne, aby zachować autentyczność i charakter oryginalnych materiałów.

Pytanie 19

Po zakończeniu nakładania tynków gipsowych, ich odbiór może nastąpić najwcześniej po upływie

A. 2 dni
B. 7 dni
C. 5 dni
D. 4 dni
Odpowiedzi wskazujące na 5 dni, 4 dni czy 2 dni, są błędne z kilku powodów, które mają swoje korzenie w zrozumieniu procesów technologicznych związanych z tynkowaniem. Pierwszym z nich jest zbyt krótki czas potrzebny na wyschnięcie tynku gipsowego, który w praktyce wymaga minimum 5 dni, ale zalecane jest dłuższe oczekiwanie, by osiągnąć pełne utwardzenie. Krótszy czas schnięcia może prowadzić do nieodwracalnych uszkodzeń, takich jak pęknięcia czy zmniejszona przyczepność do podłoża. Ponadto, wilgotność otoczenia oraz temperatura mają kluczowe znaczenie dla procesu schnięcia. W zimnych i wilgotnych warunkach, czas schnięcia może się wydłużyć, co dodatkowo wymaga zachowania ostrożności w czasie odbioru. Przyspieszone odbiory mogą prowadzić do nieprawidłowości, które będą widoczne dopiero po pewnym czasie, co generuje dodatkowe koszty w zakresie naprawy i ponownego wykończenia tynku. Dlatego, ważne jest, by nie ignorować standardów branżowych, które jasno określają optymalny czas na odbiór tynków, co w dłuższej perspektywie zapewnia jakość i trwałość robót budowlanych.

Pytanie 20

Na podstawie fragmentu instrukcji producenta oblicz, ile bloczków gazobetonowych o wymiarach
240×240×590 mm potrzeba do wymurowania ściany grubości 24 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Wymiary bloczków
[mm]
Zużycie bloczków
[szt./m²]
240×240×5907
120×240×5907

A. 672 szt.
B. 80 szt.
C. 8064 szt.
D. 336 szt.
Dobrze, że obliczyłeś ilość bloczków gazobetonowych, które potrzebujesz na ścianę. Z tego co widzę, wykorzystałeś dane wymiary ściany i bloczków. Ściana 12 m długości i 4 m wysokości daje nam 48 m² powierzchni. Potem ładnie obliczyłeś powierzchnię bloczka, która wynosi 0,0576 m². Jeżeli podzielisz 1 m² przez tę wartość, otrzymasz coś koło 17,36 bloczków na m². To oznacza, że do pokrycia całej ściany potrzebujesz około 833 bloczków. Ale pamiętaj, że zazwyczaj warto doliczyć trochę więcej na wszelki wypadek, żeby uniknąć problemów na budowie. W końcu w praktyce budowlanej to nie tylko liczby, ale też umiejętność przewidywania strat materiałowych, więc dobrze, że wziąłeś to pod uwagę!

Pytanie 21

Spoiwa hydrauliczne to zestaw spoiw, które po zmieszaniu z wodą twardnieją i wiążą

A. tylko w czasie polewania wodą
B. pod wpływem wzrostu temperatury
C. wyłącznie na powietrzu
D. na powietrzu i pod wodą
Spoiwa hydrauliczne, takie jak cement czy zaprawy murarskie, są unikalną grupą materiałów budowlanych, które mają zdolność wiązania zarówno w warunkach atmosferycznych, jak i pod wodą. Ta właściwość wynika z ich składników chemicznych, które reagują z wodą, tworząc trwałe i mocne połączenia. Przykładem mogą być zaprawy cementowe stosowane w konstrukcjach hydrotechnicznych, gdzie konieczne jest uzyskanie odpowiedniej wytrzymałości w warunkach stale narażonych na wodę. W praktyce oznacza to, że spoina hydrauliczna nie tylko wiąże w powietrzu, ale także może utwardzać się pod wodą, co jest niezbędne w przypadku budowy tam, mostów czy fundamentów w trudnych warunkach. Stosowanie spoiów hydraulicznych w inżynierii lądowej i wodnej jest zgodne z normami PN-EN 197-1, które określają wymagania dla cementów stosowanych w budownictwie. Wdrożenie tych materiałów zapewnia nie tylko wytrzymałość konstrukcji, ale także ich odporność na działanie wody i innych niekorzystnych warunków atmosferycznych.

Pytanie 22

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. szamotowej
B. ciepłochronnej
C. wodoszczelnej
D. polimerowej
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 23

Wzmocnienie budowlanych ław fundamentowych wykonanych z cegły poprzez podmurowanie oraz zwiększenie ich szerokości powinno się przeprowadzać w odcinkach o długości

A. 2,0 m
B. 1,0 m
C. 2,5 m
D. 3,0 m
Wybór długości odcinków do wzmocnienia ław fundamentowych jest kluczowym aspektem w procesie budowlanym. Odpowiedzi sugerujące 2,0 m, 2,5 m czy 3,0 m opierają się na błędnych założeniach dotyczących sposobu reakcji materiałów budowlanych na obciążenia. Długie odcinki mogą skutkować powstawaniem niepożądanych naprężeń w konstrukcji, co prowadzi do ryzyka pęknięć, osiadania czy kruszenia się materiałów. W praktyce budowlanej, zbyt duża długość podmurowania ogranicza możliwość skutecznego zarządzania deformacjami, a ich kontrola staje się utrudniona. W przypadku ław fundamentowych z cegły, które mają ograniczoną wytrzymałość na rozciąganie, kluczowe jest stosowanie zasad tzw. „pracy sekcyjnej”, w której każdy segment jest wzmocniony w sposób pozwalający na jednoczesne rozłożenie obciążeń i minimalizację ryzyka lokalnych uszkodzeń. Normy budowlane oraz najlepsze praktyki inżynieryjne jednoznacznie wskazują na preferencję dla krótszych odcinków, co umożliwia bardziej efektywną adaptację do lokalnych warunków gruntowych oraz obciążeń. Dlatego należy unikać długich segmentów, które mogą prowadzić do nieefektywnego wzmocnienia i potencjalnych problemów strukturalnych w przyszłości.

Pytanie 24

Na ilustracji przedstawiono fragment stropu

Ilustracja do pytania
A. Fert.
B. Teriva.
C. Kleina.
D. Akermana.
Wybór innych typów stropów, takich jak Teriva, Fert czy Akermana, wskazuje na zrozumienie niepełne koncepcji stropów budowlanych i ich zastosowań. Strop Teriva, oparty na prefabrykowanych elementach ceramicznych, choć również szeroko stosowany, różni się od stropu Kleina zarówno pod względem konstrukcji, jak i materiałów. Teriva wykorzystuje system pustaków, co może prowadzić do obniżenia ciężaru, ale i zmiany w właściwościach akustycznych oraz cieplnych. Strop Fert, z kolei, to często stosowane rozwiązanie w nowoczesnym budownictwie, lecz jego konstrukcja nie zapewnia takiej samej elastyczności w dostosowywaniu do różnych obciążeń. Również strop Akermana, który jest systemem stropów gęstożebrowych, charakteryzuje się innymi parametrami wytrzymałościowymi oraz długością przęseł. Wybór niewłaściwego stropu może prowadzić do licznych problemów inżynieryjnych, w tym niesprawności w przenoszeniu obciążeń oraz ograniczonej trwałości konstrukcji. Dobrze jest znać różnice między tymi typami stropów, aby skutecznie podejmować decyzje projektowe. Właściwe zrozumienie materiałów oraz ich zastosowań jest kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności budynków.

Pytanie 25

Aby sprawdzić precyzję poziomego ustawienia kolejnych warstw cegieł, należy użyć

A. sznura murarskiego.
B. warstwomierza.
C. łaty.
D. poziomicy.
Poziomica to narzędzie niezbędne do zapewnienia, że warstwy cegieł są ułożone w poziomie, co jest kluczowe dla trwałości i estetyki budowli. Użycie poziomicy pozwala na dokładne pomiary, które wskazują, czy trzymana powierzchnia jest idealnie równa. Jest to szczególnie ważne w przypadku konstrukcji, gdzie nawet niewielkie odchylenia mogą prowadzić do problemów strukturalnych. Standardy budowlane zalecają używanie poziomicy do kontroli poziomu podłoża przed rozpoczęciem murowania oraz podczas układania kolejnych warstw. Przykładem zastosowania poziomicy może być postawienie pierwszej warstwy cegieł na fundamentach, gdzie jej użycie pozwala na uzyskanie idealnego poziomu, co jest podstawą dla kolejnych etapów budowy. Warto również pamiętać, że poziomica może być wykorzystana w różnych sytuacjach budowlanych, takich jak montaż okien czy drzwi, gdzie precyzyjne ułożenie ma kluczowe znaczenie dla funkcjonalności i wyglądu. W związku z tym, posługiwanie się poziomicą jest nie tylko dobrą praktyką, ale także niezbędnym standardem w branży budowlanej.

Pytanie 26

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.

A. wysokich.
B. wysokościowych.
C. średniowysokich.
D. niskich.
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 27

Do czego jest używana poziomica wężowa?

A. Do sprawdzania pionowości murowanej ściany
B. Do kontrolowania grubości muru w ścianie
C. Do określania zewnętrznej krawędzi warstw muru
D. Do wyznaczania i przenoszenia poziomu murowanej ściany na odległość
Rozumienie, jak działa poziomica wężowa, jest naprawdę ważne w budownictwie. Wiele osób myśli, że służy ona do mierzenia grubości murów, ale tak nie jest. Ta poziomica skupia się na wyznaczaniu poziomu, a nie na pomiarze odległości czy grubości. Na pewno lepiej do tego użyć miarki albo kątownika. Również pomysł, że poziomica wężowa kontroluje pion murowanych ścian, jest błędny. Do tego są inne narzędzia, jak pion, które są stworzone do takich zadań. Jeśli chodzi o wyznaczanie krawędzi murowanych warstw, to znów lepszą opcją będą łaty murarskie albo poziomice libelowe, bo są bardziej precyzyjne. Często ludzie mylą funkcje różnych narzędzi, co może prowadzić do późniejszych problemów na budowie. Dlatego trzeba wiedzieć, do czego służy każde narzędzie, żeby uniknąć błędów w pracy.

Pytanie 28

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Liny nierdzewne
B. Zetowniki zimnogięte
C. Kątowniki stalowe
D. Narożniki aluminiowe
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 29

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 10,125 kg
B. 101,25 kg
C. 10 125 kg
D. 1 012,5 kg
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.

Pytanie 30

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. łopatę
B. taczki
C. czerpaka szufelkowego
D. wiadra z podziałką
Kiedy rozważamy inne narzędzia do dozowania kruszywa i wody, takie jak taczki czy łopaty, istotne staje się zrozumienie ich ograniczeń w kontekście precyzyjnego dozowania. Taczki, mimo że są praktycznym narzędziem do transportu materiałów, nie oferują dokładnego pomiaru objętości. Ich pojemność może się różnić w zależności od konstrukcji oraz sposobu napełnienia, co wprowadza niepewność w procesie dozowania. Używanie łopaty również wiąże się z ryzykiem błędów, ponieważ objętość materiału, który można nałożyć na łopatę, jest niezwykle trudna do oceny i może się różnić w zależności od techniki załadunku. Czerpak szufelkowy, choć jest użyteczny do pobierania materiałów sypkich, nie pozwala na precyzyjne odmierzanie potrzebnych ilości. W każdym z tych przypadków brak dokładności może prowadzić do niezgodności w mieszankach, co w konsekwencji wpływa na właściwości mechaniczne i trwałość końcowego produktu. Dlatego w kontekście objętościowego dozowania materiałów budowlanych najlepszym wyborem pozostaje wiadro z podziałką, które zapewnia kontrolę i precyzję, eliminując ryzyko związane z innymi narzędziami.

Pytanie 31

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. dociśnięciu świeżej zaprawy za pomocą packi.
B. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
C. zatarciu świeżej zaprawy packą obłożoną filcem.
D. przeszlifowaniu stwardniałej zaprawy osełką.
Zatarcie świeżej zaprawy packą obłożoną filcem jest prawidłowym procesem wykończenia tynku zwykłego kategorii IVf. Ta technika ma na celu uzyskanie gładkiej, estetycznej powierzchni, która będzie dobrze współpracować z późniejszymi warstwami wykończeniowymi, takimi jak farby czy tynki dekoracyjne. Packa obłożona filcem pozwala na równomierne rozprowadzenie zaprawy, a także wygładzenie jej powierzchni, co jest kluczowe dla uzyskania właściwej przyczepności i trwałości. Użycie filcu zmniejsza ryzyko powstawania rys i innych uszkodzeń, co przekłada się na lepszy efekt końcowy. Dobrą praktyką jest wykonanie zatarcia po około 24 godzinach od nałożenia zaprawy, kiedy materiał jest jeszcze wystarczająco wilgotny, ale już na tyle stwardniały, by można było z nim pracować. Standardy budowlane wskazują, że odpowiednie wykończenie tynku ma kluczowe znaczenie dla jego funkcji ochronnych i estetycznych, dlatego warto stosować sprawdzone metody i materiały.

Pytanie 32

Zaprawy murarskie ogólnego zastosowania, produkowane na małych budowach, przygotowuje się w sposób

A. betoniarki wolnospadowej
B. węzła betoniarskiego
C. agregatu tynkarskiego
D. wiertarki z mieszadłem
Betoniarka wolnospadowa jest odpowiednim narzędziem do sporządzania zapraw murarskich ogólnego przeznaczenia, szczególnie na małych budowach. Jej konstrukcja pozwala na efektywne mieszanie składników zaprawy, takich jak cement, piasek i woda, co zapewnia jednorodność i odpowiednią konsystencję mieszanki. W betoniarce wolnospadowej materiały są wprowadzane do bębna, który obraca się, umożliwiając ich swobodne mieszanie. To podejście jest zgodne z najlepszymi praktykami budowlanymi, które podkreślają znaczenie używania odpowiednich narzędzi do uzyskania wysokiej jakości materiałów budowlanych. W sytuacjach, gdzie wydajność i jakość mieszanki są kluczowe, betoniarka wolnospadowa staje się idealnym wyborem, pozwalając na produkcję większej ilości zaprawy w krótkim czasie, co jest szczególnie istotne w przypadku prac wymagających dużej ilości zaprawy, takich jak murowanie. Dodatkowo, użycie betoniarki zmniejsza ryzyko błędów ludzkich w procesie mieszania, co przyczynia się do lepszej jakości końcowego produktu.

Pytanie 33

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 240 zł
B. 480 zł
C. 2 400 zł
D. 400 zł
Aby obliczyć całkowity koszt robocizny w tym przypadku, musimy najpierw ustalić całkowitą liczbę roboczogodzin przepracowanych przez brygadę. Znamy liczbę robotników, dni pracy oraz czas pracy w ciągu jednego dnia. Brygada składa się z 6 robotników, którzy pracowali przez 5 dni po 8 godzin dziennie. Możemy to obliczyć jako: 6 robotników * 5 dni * 8 godzin = 240 roboczogodzin. Następnie, aby uzyskać całkowity koszt robocizny, mnożymy liczbę roboczogodzin przez stawkę za 1 roboczogodzinę, która wynosi 10 zł. Zatem 240 roboczogodzin * 10 zł = 2400 zł. Prawidłowa odpowiedź to 2400 zł, co jest zgodne z praktykami w branży budowlanej, gdzie precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania budżetem projektu oraz ustalania stawek wynagrodzeń. Tego typu kalkulacje są powszechnie stosowane w ofertach przetargowych oraz w budżetowaniu projektów budowlanych, co pozwala na lepszą kontrolę kosztów oraz optymalizację wydatków.

Pytanie 34

Jakie narzędzia są niezbędne do przeprowadzenia demontażu ścian?

A. Strug, szpachelka, wiertarka wolnoobrotowa
B. Kilof, oskard, młot pneumatyczny
C. Przecinak, kielnia, młotek murarski
D. Poziomnica, paca, młotek gumowy
Kilof, oskard i młot pneumatyczny to zestaw narzędzi idealnie nadający się do rozbiórki ścian. Kilof, znany z wysokiej efektywności w przełamywaniu twardych materiałów, jest używany do rozbijania betonu i cegieł. Oskard, z kolei, jest narzędziem o płaskiej, szerokiej końcówce, które doskonale sprawdza się w odrywanie i usuwaniu różnych materiałów budowlanych, jak np. tynki czy płyty gipsowo-kartonowe. Młot pneumatyczny, będący narzędziem elektrycznym, znacznie przyspiesza proces rozbiórki dzięki swojej mocy i szybkości. Dzięki połączeniu tych trzech narzędzi, możliwe jest efektywne i szybkie wykonywanie prac rozbiórkowych, co jest zgodne z dobrymi praktykami w budownictwie, gdzie priorytetem jest bezpieczeństwo i wydajność. Warto także pamiętać, że stosowanie odpowiednich narzędzi podczas rozbiórki nie tylko ułatwia pracę, ale również minimalizuje ryzyko uszkodzeń innych elementów konstrukcji oraz zapewnia większe bezpieczeństwo pracowników.

Pytanie 35

Na podstawie informacji zamieszczonych w tabeli określ maksymalną dopuszczalną grubość tynku pospolitego dwuwarstwowego na siatce stalowej.

Rodzaj tynkuGrubość tynku [mm]Dopuszczalne odchyłki grubości [mm]
pospolity dwuwarstwowy na podłożu z prefabrykowanych płyt betonowych5+3
pospolity dwuwarstwowy na stalowej siatce20±3
pospolity trójwarstwowy na podłożu gipsowym12-4
+2
pospolity trójwarstwowy na podłożu betonowym18-4
+2

A. 22 mm
B. 23 mm
C. 20 mm
D. 17 mm
Maksymalna dopuszczalna grubość tynku pospolitego dwuwarstwowego na siatce stalowej wynosi 23 mm. Ta wartość została ustalona jako suma podstawowej grubości tynku, która wynosi 20 mm, oraz maksymalnego dodatniego odchyłu, równym 3 mm. Tynki dwuwarstwowe są szeroko stosowane w budownictwie ze względu na ich właściwości termoizolacyjne i estetyczne. W praktyce, przestrzeganie norm dotyczących grubości tynku ma kluczowe znaczenie dla zapewnienia trwałości i bezpieczeństwa konstrukcji. Zbyt gruby tynk może prowadzić do odspajania się warstw, co wpływa na integralność całej ściany. Zalecenia dotyczące grubości tynku są określone w normach budowlanych, takich jak PN-EN 998-1, które wskazują na optymalne parametry dla różnych rodzajów tynków. Dlatego ważne jest, aby projektanci i wykonawcy tynków dokładnie przestrzegali tych norm, aby zapewnić odpowiednią jakość i długowieczność wykończenia budynku.

Pytanie 36

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 30 zł
B. 48 zł
C. 45 zł
D. 60 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 37

Zanim przystąpi się do otynkowania stalowych części konstrukcji budynku, ich powierzchnię należy

A. chronić siatką stalową
B. oszlifować
C. nawilżyć wodą
D. zaimpregnować
Odpowiedź "osłonić siatką stalową" jest poprawna, ponieważ przed nałożeniem tynku na stalowe elementy konstrukcyjne należy zapewnić ich odpowiednią ochronę. Siatka stalowa działa jako zbrojenie, które zwiększa przyczepność tynku do powierzchni oraz zapobiega pękaniu i odspajaniu się warstwy tynkowej. Dodatkowo, stosowanie siatki stalowej jest zgodne z normami budowlanymi, które podkreślają jej rolę w systemach ociepleń oraz w zabezpieczaniu elementów narażonych na różne obciążenia mechaniczne. Przykładem zastosowania siatki stalowej może być budowa elewacji, gdzie odpowiednie przygotowanie podłoża przyczynia się do trwałości oraz estetyki wykończenia. Właściwe wykonanie tego etapu prac budowlanych jest kluczowe, aby uniknąć wad budowlanych i kosztownych napraw w przyszłości.

Pytanie 38

Na podstawie wyciągu ze Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych SST wskaż, ile litrów zaprawy gipsowej można uzyskać z 20 kg worka suchej, gotowej mieszanki?

Szczegółowa Specyfikacja Techniczna Wykonania i Odbioru Robót Budowlanych SST
(wyciąg)
B.3.03. Tynk gipsowy
Dane techniczne:
- średnia grubość tynku: 10 mm (grubość min.8 mm)
- ciężar nasypowy: 800kg/m3
- uziarnienie: do 1,2 mm
- wydajność: 100 kg = 125 l zaprawy
- zużycie: 0,8 kg na mm i m2
- czas schnięcia: średnio około 14 dni

A. 50,01
B. 2,51
C. 5,01
D. 25,01
Odpowiedź 25,01 l jest poprawna, ponieważ wynika z właściwego przeliczenia masy suchej mieszanki na objętość zaprawy. Zgodnie z danymi technicznymi w Szczegółowej Specyfikacji Technicznej Wykonania i Odbioru Robót Budowlanych, stosunek masy do objętości wynosi 100 kg do 125 l. Oznacza to, że na każdy kilogram suchej mieszanki przypada 1,25 l zaprawy. W przypadku 20 kg suchej mieszanki, obliczenia są proste: 20 kg x 1,25 l/kg = 25 l. Tę wartość można również zaokrąglić do 25,01 l, co jest zgodne z wymaganiami technicznymi dotyczącymi precyzyjnego podawania objętości. Wiedza ta jest istotna nie tylko w kontekście przygotowania zaprawy, ale także w planowaniu ilości materiałów budowlanych. Znajomość przeliczeń pozwala na lepsze zarządzanie kosztami projektów budowlanych oraz minimalizację odpadów, co jest zgodne z zasadami zrównoważonego rozwoju i efektywnego gospodarowania zasobami.

Pytanie 39

Zaprawy szamotowe powinny być wykorzystywane do budowania

A. ścian w piwnicach
B. ścian osłonowych
C. kanałów wentylacyjnych
D. kominów niezwiązanych z budynkiem
Stosowanie zapraw szamotowych w innych elementach budowlanych, takich jak ściany piwniczne, kanały wentylacyjne czy ściany osłonowe, nie jest uzasadnione ich właściwościami. Ściany piwniczne nie są narażone na wysokie temperatury, a ich konstrukcja wymaga zastosowania zapraw cementowych, które zapewniają odpowiednią nośność oraz odporność na wilgoć. W przypadku kanałów wentylacyjnych, kluczowe jest, aby materiał był odporny na korozję chemiczną, a niekoniecznie na wysoką temperaturę, co czyni zaprawy szamotowe niewłaściwym wyborem. Ściany osłonowe, z kolei, pełnią funkcję izolacyjną oraz estetyczną, co także wyklucza wykorzystanie zaprawy szamotowej, gdyż ich głównym zadaniem nie jest wytrzymałość na wysoką temperaturę, lecz skuteczna ochrona przed warunkami atmosferycznymi. Wybór niewłaściwego materiału może prowadzić do uszkodzeń konstrukcji, a tym samym do zwiększenia kosztów napraw oraz obniżenia bezpieczeństwa. Dlatego ważne jest, aby każdy element budowlany był murowany z użyciem materiałów odpowiednio skomponowanych do jego funkcji i miejsca zastosowania.

Pytanie 40

Strzępia zazębione tworzy się, pozostawiając w każdej drugiej warstwie muru puste miejsce o głębokości

A. 1/2 cegły
B. 1 cegła
C. 2 cegły
D. 1/4 cegły
Strzępia zazębione to technika stosowana w murarstwie, która polega na wprowadzeniu do muru pustek w regularnych odstępach. Pozostawienie pustki o głębokości 1/4 cegły w co drugiej warstwie muru pozwala na uzyskanie odpowiednich właściwości strukturalnych oraz estetycznych. Głębokość 1/4 cegły jest standardowym rozwiązaniem, które umożliwia efektywne łączenie różnych warstw muru, co zwiększa jego stabilność. Pustki te mają kluczowe znaczenie dla przewietrzania muru oraz jego zabezpieczenia przed wilgocią. W praktyce, murarz wykonujący strzępia zazębione musi dokładnie przestrzegać określonych wymiarów, aby zapewnić trwałość konstrukcji. Zgodnie z zasadami sztuki budowlanej, odpowiednia głębokość pustek jest niezbędna do uzyskania właściwej cyrkulacji powietrza, co z kolei wpływa na długowieczność muru. Dodatkowo, w budownictwie wykorzystuje się różne rodzaje zapraw, które również powinny być dostosowane do wykonywanych strzępów, aby zapewnić odpowiednią przyczepność i wytrzymałość.