Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 8 kwietnia 2025 13:29
  • Data zakończenia: 8 kwietnia 2025 13:35

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przełącznika.
B. routera.
C. mostu.
D. modemu.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego różnicy pomiędzy różnymi urządzeniami sieciowymi. Modem, który nie został wybrany, jest urządzeniem, które łączy lokalną sieć domową z internetem, przetwarzając sygnały cyfrowe na analogowe i odwrotnie. Jego symbol graficzny zazwyczaj różni się od symbolu routera, przedstawiając inną funkcję, jaką jest konwersja sygnału. Most, będący kolejnym z możliwych wyborów, służy do łączenia dwóch segmentów sieci w celu zwiększenia wydajności, ale nie kieruje ruchu między sieciami tak jak router. Z kolei przełącznik to urządzenie, które łączy różne urządzenia w ramach tej samej sieci, działając na poziomie warstwy drugiej modelu OSI. Wybór tych odpowiedzi świadczy o myleniu funkcji różnych urządzeń sieciowych, co jest powszechnym błędem w zrozumieniu architektury sieci. Zastosowanie routerów, mostów i przełączników w odpowiednich kontekstach jest kluczowe dla efektywnego projektowania i zarządzania sieciami komputerowymi. Warto zatem zapoznać się z ich specyfikacją i rolą, aby uniknąć takich nieporozumień w przyszłości.

Pytanie 2

Na który z parametrów fali nośnej oddziałuje sygnał modulujący w modulacji PM?

A. Fazy
B. Częstotliwości
C. Amplitudy
D. Pulsacji
Modulacja fazy (PM) jest techniką, w której zmiana sygnału modulującego wpływa na fazę fali nośnej. W przeciwieństwie do modulacji amplitudy (AM) czy częstotliwości (FM), w PM istotne jest utrzymanie stałej amplitudy fali nośnej. Zmiana fazy umożliwia przesyłanie informacji w postaci skoków fazowych, co jest szczególnie korzystne w systemach telekomunikacyjnych, takich jak łączność bezprzewodowa czy systemy satelitarne. Przykładem zastosowania modulacji fazy jest standard komunikacyjny PSK (Phase Shift Keying), który jest często wykorzystywany w transmisji danych. W praktyce, modulacja PM pozwala na uzyskanie większej odporności na zakłócenia oraz lepszą efektywność widmową. W kontekście dobrych praktyk branżowych, modulacja fazy znajduje zastosowanie w systemach wymagających niskiego opóźnienia oraz wysokiej niezawodności przesyłania informacji, co czyni ją istotnym narzędziem w nowoczesnych technologiach komunikacyjnych.

Pytanie 3

Sprzęt DVR w technologii 960H pozwala na rejestrację obrazu o maksymalnej rozdzielczości

A. 960 x 582 px
B. 720 x 480 px
C. 1280 x 720 px
D. 360 x 240 px
To prawda, że DVR w technologii 960H pozwala na zapis obrazu w rozdzielczości 960 x 582 px. Jak wiesz, to dzięki szerszemu formatowi obrazu, który jest uznawany za standard w monitoringu. Technologia 960H to coś więcej niż klasyczny D1, co oznacza lepszą jakość obrazu, bo zwiększa liczbę pikseli. Wyobraź sobie, że gdy używasz kamer o wyższej rozdzielczości, jak 960H, to możesz zobaczyć więcej szczegółów, a to jest naprawdę ważne, gdy musisz rozpoznać kogoś lub zobaczyć detale. W praktyce, te urządzenia są słynne w systemach zabezpieczeń, bo jakość nagrania ma ogromne znaczenie, prawda? Dodatkowo, branżowe organizacje, które zajmują się bezpieczeństwem, polecają stosowanie 960H, co świadczy o jego skuteczności.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Urządzenie, które automatycznie przerywa zasilanie, gdy prąd elektryczny wypływający z obwodu różni się od prądu wpływającego, to

A. bezpiecznik wymienny
B. wyłącznik różnicowoprądowy
C. wyłącznik nadmiarowoprądowy
D. ochronnik przeciwprzepięciowy
Ograniczniki przepięć, bezpieczniki topikowe oraz wyłączniki nadmiarowoprądowe pełnią różne funkcje w systemie elektrycznym, ale nie są zaprojektowane do monitorowania różnic w prądach wpływających i wypływających. Ogranicznik przepięć ma na celu ochronę instalacji przed nagłymi wzrostami napięcia, takimi jak te spowodowane wyładowaniami atmosferycznymi. Jego działanie polega na odprowadzaniu nadmiaru energii do ziemi, co nie ma nic wspólnego z różnicą prądów. Bezpiecznik topikowy to urządzenie zabezpieczające, które przerywa obwód w przypadku przekroczenia ustalonego prądu, ale nie zapewnia ochrony przed porażeniem prądem. Z kolei wyłącznik nadmiarowoprądowy reaguje na przeciążenia, czyli sytuacje, w których prąd przekracza normy, nie analizując różnicy między prądem wpływającym a wypływającym. Typowe błędy myślowe prowadzące do błędnych odpowiedzi obejmują mylenie różnych typów zabezpieczeń oraz niedostateczne zrozumienie ich specyfiki. Dlatego kluczowe jest zrozumienie, że odpowiedzialność za bezpieczeństwo elektryczne w instalacjach leży zarówno w odpowiednim doborze urządzeń, jak i ich prawidłowym zastosowaniu zgodnie z normami branżowymi.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie jest standardowe rozwiązanie transmisji DVB w systemach kablowych?

A. DVB-S
B. DVB-H
C. DVB-C
D. DVB-T
Wybór innych standardów, takich jak DVB-T, DVB-H czy DVB-S, wskazuje na nieporozumienie dotyczące zastosowania tych technologii w kontekście sieci kablowych. DVB-T, czyli Digital Video Broadcasting - Terrestrial, jest przeznaczony do transmisji sygnału telewizyjnego w systemie naziemnym. Oznacza to, że jego zastosowanie ogranicza się do regionów, gdzie sygnał radiowy może być odbierany bezpośrednio przez anteny. W przypadku DVB-H, który jest standardem obsługującym mobilne transmisje telewizyjne, jego głównym celem jest dostarczanie sygnału do urządzeń przenośnych, takich jak telefony komórkowe, co sprawia, że nie jest on stosowany w typowych sieciach kablowych. DVB-S, z kolei, odnosi się do transmisji satelitarnej i wymaga specjalistycznych odbiorników satelitarnych, co również ogranicza jego użyteczność w kontekście kabli. Fundamentalnym błędem myślowym w tym przypadku jest założenie, że wszystkie standardy DVB są wymienne i mogą być stosowane w dowolnym środowisku transmisyjnym, podczas gdy każdy z nich ma swoje specyficzne zastosowanie i optymalizacje. W praktyce, efektowne wykorzystanie technologii telekomunikacyjnych wymaga zrozumienia różnic między tymi standardami oraz ich odpowiednich aplikacji w odniesieniu do konkretnej infrastruktury. Dla prawidłowego działania sieci kablowej kluczowe jest zastosowanie odpowiednich standardów, które gwarantują jakość i niezawodność usług transmisyjnych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Kiedy impedancja falowa linii Zf oraz impedancja obciążenia Zobc są równe, to linia długa

A. nie jest dostosowana falowo
B. stanowi dla sygnału wejściowego przerwę
C. jest dostosowana falowo
D. stanowi dla sygnału wejściowego zwarcie
Wybór odpowiedzi, która sugeruje, że linia nie jest dopasowana falowo, odzwierciedla nieporozumienie podstawowej zasady dotyczącej impedancji w systemach transmisyjnych. Impedancja falowa linii Zf i impedancja obciążenia Zobc powinny być zgodne dla osiągnięcia optymalnych wyników. Gdy te wartości są różne, dochodzi do odbicia sygnału na styku linii i obciążenia, co prowadzi do strat energii i zniekształcenia sygnału. Odbicia te mogą wywoływać zakłócenia, które w kontekście przesyłania danych mogą prowadzić do błędów w interpretacji sygnału, co jest szczególnie istotne w systemach cyfrowych. Przykłady takich błędów można zaobserwować w systemach telekomunikacyjnych, gdzie niewłaściwe dopasowanie impedancji może skutkować degradowaniem jakości połączenia lub całkowitym zerwaniem transmisji. Konsekwencją braku dopasowania falowego są również zjawiska takie jak przesunięcie fazowe i zwiększenie wzmocnienia w niektórych częściach systemu, co prowadzi do trudności w synchronizacji. Dlatego kluczowe jest, aby inżynierowie projektujący systemy transmisyjne zwracali szczególną uwagę na dopasowanie impedancji, stosując techniki takie jak użycie transformatorów impedancyjnych czy dopasowanych filtrów, aby zminimalizować ryzyko odbić sygnału i poprawić wydajność systemu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Ilość stabilnych stanów przerzutnika astabilnego wynosi

A. 2
B. 1
C. ∞
D. 0
Odpowiedzi 1, 2 i 4 opierają się na nieprawidłowym zrozumieniu działania przerzutnika astabilnego. Przyjmowanie, że przerzutnik astabilny ma dwa stany stabilne, jest mylne, ponieważ jego natura polega na ciągłej oscylacji między dwoma stanami bez osiągania stabilności. Odpowiedź sugerująca istnienie jednego stanu stabilnego również nie znajduje uzasadnienia, ponieważ w przerzutniku astabilnym nie ma zadeklarowanego stanu, do którego układ mógłby się ustawić i pozostać w nim. Z kolei odpowiedź sugerująca nieskończoną liczbę stanów stabilnych wydaje się być wynikiem nieporozumienia dotyczącego pojęcia stabilności w kontekście przerzutników; w rzeczywistości przerzutnik astabilny zmienia stan nieustannie w regularnych odstępach czasu, co nie ma nic wspólnego z pojęciem stabilności. Typowym błędem myślowym jest mylenie przerzutnika astabilnego z przerzutnikiem bistabilnym, który rzeczywiście może mieć dwa stabilne stany. W praktyce należy uważnie rozróżniać te dwa typy przerzutników w kontekście projektowania i analizy układów elektronicznych, aby unikać nieporozumień i błędów w implementacji. Niezrozumienie tych podstawowych różnic może prowadzić do nieefektywnego projektowania systemów oraz błędnych założeń w automatyzacji procesów.

Pytanie 19

Jaką moc generuje rezystor o rezystancji 10 Ω, przez który przepływa prąd o natężeniu 100 mA?

A. 0,1 W
B. 10 W
C. 0,01 W
D. 1 W
Moc wydzielana w rezystorze można obliczyć korzystając z prawa Ohma oraz wzoru na moc elektryczną. Prawo Ohma mówi, że napięcie (U) na rezystorze jest równe iloczynowi rezystancji (R) i natężenia prądu (I), czyli U = R * I. W naszym przypadku mamy R = 10 Ω i I = 0,1 A (100 mA). Z tego wynika, że U = 10 Ω * 0,1 A = 1 V. Z kolei moc (P) wydzielająca się w rezystorze obliczamy ze wzoru P = U * I. Podstawiając wartości, otrzymujemy P = 1 V * 0,1 A = 0,1 W. Tego typu obliczenia są niezwykle istotne w inżynierii elektrycznej, szczególnie w projektowaniu i analizie obwodów elektrycznych, gdzie poprawne określenie mocy jest kluczowe dla doboru komponentów, ich chłodzenia oraz efektywności energetycznej. W praktyce, wiedza o mocy wydzielanej w rezystorze pomaga w zapobieganiu przegrzewaniu się elementów obwodu i zapewnienia ich długotrwałej pracy zgodnie z normami bezpieczeństwa i niezawodności.

Pytanie 20

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 25
B. 250
C. 100
D. 50
Odpowiedź 50 zwojów uzwojenia wtórnego jest poprawna, ponieważ transformator działa na zasadzie proporcjonalności między liczbą zwojów w uzwojeniu pierwotnym a napięciem na uzwojeniu wtórnym. Zastosowanie wzoru: U1/U2 = N1/N2, gdzie U1 to napięcie pierwotne, U2 to napięcie wtórne, N1 to liczba zwojów w uzwojeniu pierwotnym, a N2 to liczba zwojów w uzwojeniu wtórnym, pozwala nam obliczyć, ile zwojów potrzeba, aby uzyskać pożądane napięcie. W tym przypadku mamy U1 = 230 V, a ponieważ chcemy uzyskać 23 V na każdym z uzwojeń wtórnych, U2 = 23 V. Zatem, stosując wzór: 230 V / 23 V = 500 zwojów / N2, otrzymujemy N2 = 50. W praktyce, takie transformatory są używane w zasilaczach niskonapięciowych, gdzie wymagane jest obniżenie napięcia do wartości bezpiecznych dla urządzeń elektronicznych. Dzięki zrozumieniu tej zasady, inżynierowie mogą projektować układy zasilające z odpowiednimi parametrami elektrycznymi, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w aplikacjach przemysłowych oraz domowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Podczas podłączania czujki akustycznej typu NC do centrali alarmowej w układzie EOL, trzeba szeregowo z kontaktem alarmowym tej czujki podłączyć

A. diodę
B. termistor
C. kondensator
D. rezystor
Podłączenie rezystora szeregowo ze stykiem alarmowym czujki akustycznej typu NC (Normalnie Zamknięty) w konfiguracji EOL (End of Line) jest kluczowe dla zapewnienia właściwego działania systemu alarmowego. Rezystor pełni rolę elementu zabezpieczającego oraz sygnalizującego stan linii. W konfiguracji EOL, rezystor jest umieszczony na końcu obwodu, co pozwala na monitorowanie wartości rezystancji. W przypadku zwarcia, rezystancja liniowa spadnie, co aktywuje alarm. Natomiast w przypadku otwarcia linii, rezystancja wzrośnie, również inicjując sygnał alarmowy. Zastosowanie rezystora zgodnie z normami, takimi jak EN 50131, zapewnia większą niezawodność systemu alarmowego, a także minimalizuje ryzyko fałszywych alarmów. Przykładowo, w instalacjach monitorujących systemy zabezpieczeń, takich jak ochrona obiektów, poprawne użycie rezystora EOL jest standardem branżowym, który zwiększa efektywność i bezpieczeństwo systemu.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Która metoda naprawy uszkodzonego kabla antenowego zapewni wysoką jakość odbioru sygnału?

A. Zlutowanie oraz zaizolowanie przewodu w miejscu uszkodzenia
B. Złączenie kabla przy pomocy tulejek zaciskowych
C. Zainstalowanie złączek typu F i łącznika w miejscu awarii
D. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
Lutowanie i izolowanie przerwanego kabla antenowego może się wydawać szybkim rozwiązaniem, ale takie podejście nie zawsze zapewnia dobrą jakość sygnału. Lutowanie może wprowadzać dodatkowe opory, co z kolei powoduje straty sygnału przez złe połączenia i zmiany w impedancji, co jest ważne dla stabilności sygnału. A ta izolacja, no cóż, nie eliminuje ryzyka zakłóceń, bo nie daje dobrego ekranowania. Użycie kostek do przewodów elektrycznych czy tulejek zaciskowych raczej nie jest dobrym pomysłem. Takie sposoby mogą prowadzić do kiepskiej jakości połączeń i problemów z transmisją sygnału. W kontekście standardów, takie połączenia nie zawsze spełniają wymogi dotyczące ekranowania i zabezpieczeń przed zakłóceniami, co może być problematyczne np. podczas odbioru telewizji cyfrowej czy sygnałów satelitarnych. Typowy błąd to myślenie, że każda forma połączenia wystarczy, ale w profesjonalnych instalkach to się nie sprawdza i może prowadzić do długoterminowych problemów z jakością sygnału.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Multiplekser dysponujący 16 wejściami informacyjnymi ma

A. 2 wejścia adresowe
B. 3 wejścia adresowe
C. 4 wejścia adresowe
D. 5 wejść adresowych
W przypadku poszukiwania liczby wejść adresowych w multiplekserze o 16 wejściach informacyjnych, niektóre odpowiedzi mogą prowadzić do błędnych wniosków. Zrozumienie logiki działania multipleksera jest kluczowe. Liczba adresów, które można utworzyć, jest ściśle związana z liczbą bitów, które można użyć do reprezentacji tych adresów. Jeśli uznamy, że multiplekser wymaga 3 wejść adresowych, to możemy zaadresować jedynie 2^3 = 8 różnych wejść. To znacznie mniej niż 16, co czyni tę odpowiedź błędną. Z drugiej strony, 2 wejścia adresowe pozwoliłyby na zaadresowanie jedynie 4 różnych wejść, a 5 wejść adresowych mogłoby zaadresować 32 wejścia, co jest również niepoprawne w kontekście zapytania. Typowym błędem myślowym jest zakładanie, że liczba wejść adresowych może być dowolna, niezależnie od liczby wejść informacyjnych. W rzeczywistości, projektanci układów cyfrowych muszą ściśle przestrzegać zasad logarytmicznych, aby zapewnić efektywność i odpowiednią funkcjonalność. Prawidłowe zrozumienie tego zagadnienia jest również kluczowe w kontekście przyszłych zastosowań w projektowaniu układów, gdzie precyzyjne posługiwanie się danymi może mieć znaczący wpływ na wydajność oraz złożoność systemów elektronicznych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W trakcie regularnych przeglądów nie przeprowadza się

A. analizy funkcjonowania urządzeń
B. instalacji nowych urządzeń
C. pomiarów weryfikacyjnych
D. oceny stanu technicznego
Instalacja nowych urządzeń nie jest częścią zakresu działań związanych z okresowymi przeglądami. Okresowe przeglądy są kluczowym procesem w zarządzaniu i konserwacji urządzeń technicznych, mającym na celu zapewnienie ich prawidłowego funkcjonowania oraz bezpieczeństwa użytkowników. W ich ramach dokonuje się analizy działania istniejących urządzeń, które obejmuje ocenę efektywności ich pracy oraz identyfikację potencjalnych problemów mogących wpłynąć na ich funkcjonowanie. Przykładem może być regularne sprawdzanie i kalibracja czujników w systemach automatyki przemysłowej, co pozwala na utrzymanie ich w optymalnym stanie. Niezwykle istotnym aspektem przeglądów jest także ocena stanu technicznego, która umożliwia wczesne wykrywanie uszkodzeń lub zużycia komponentów. Pomiary sprawdzające, takie jak testy wydajności czy pomiary napięcia, są kluczowe w zapewnieniu, że urządzenia działają zgodnie z wymaganiami norm i standardów bezpieczeństwa. W związku z tym, instalacja nowych urządzeń powinna być planowana jako osobny proces, związany z modernizacją lub rozbudową infrastruktury, a nie jako część rutynowych przeglądów.

Pytanie 34

Aby podwoić zakres pomiarowy woltomierza o rezystancji wewnętrznej Rw = 150 kΩ, konieczne jest dodanie rezystora Rp o wartości rezystancji w układzie szeregowym

A. 450 kΩ
B. 150 kΩ
C. 75 kΩ
D. 300 kΩ
Wybór innych wartości rezystorów, takich jak 75 kΩ, 300 kΩ czy 450 kΩ, może wynikać z błędnego zrozumienia zasad działania woltomierzy i ich połączeń. Przykładowo, użycie rezystora 75 kΩ implikuje, że całkowita rezystancja w obwodzie wyniesie 150 kΩ + 75 kΩ = 225 kΩ, co nie spełnia wymogu podwojenia rezystancji wewnętrznej woltomierza. Podobnie, dołączenie rezystorów o większych wartościach, takich jak 300 kΩ czy 450 kΩ, również nie pozwala na uzyskanie podwojonego zakresu, ponieważ całkowita rezystancja przekroczyłaby wymaganą wartość, co prowadziłoby do błędnych pomiarów. W praktyce, podczas projektowania obwodów pomiarowych, kluczowe znaczenie ma zrozumienie zasady stosunku rezystancji wewnętrznej do zewnętrznych elementów obwodu. Wprowadzenie rezystora o niewłaściwej wartości mogłoby skutkować znacznymi błędami pomiarowymi, co w kontekście inżynieryjnym i przemysłowym jest niedopuszczalne. Ważne jest, aby przy takich obliczeniach korzystać z odpowiednich wzorów oraz znać zależności pomiędzy poszczególnymi elementami obwodu, co jest fundamentem dobrych praktyk w inżynierii elektrycznej.

Pytanie 35

Jaka jest rezystancja wewnętrzna baterii AAA, jeśli jej napięcie w stanie jałowym wynosi U1=1,5 V, a pod obciążeniem prądem 100 mA U2=1,45 V?

A. 50,0 Ω
B. 0,05 Ω
C. 0,50 Ω
D. 5,00 Ω
Analizując błędne odpowiedzi, warto zwrócić uwagę na koncepcje związane z obliczeniami rezystancji wewnętrznej. Wiele osób może pomylić pojęcie napięcia z obciążeniem i jego wpływem na rezystancję, co prowadzi do oszacowania znacznie wyższych wartości, takich jak 5,00 Ω, 50,0 Ω, czy zbyt niskich, jak 0,05 Ω. Rezystancja wewnętrzna baterii jest miarą, jaką opór stawia bateria podczas przepływu prądu. W przypadku znacznej rezystancji, jak w odpowiedziach 5,00 Ω i 50,0 Ω, wskazują one na poważne problemy z akumulatorem, co mogłoby sugerować starzenie się ogniwa bądź jego uszkodzenie. W rzeczywistości dobry akumulator powinien mieć niską rezystancję wewnętrzną, co potwierdza obliczenie 0,5 Ω. Z kolei niska rezystancja wewnętrzna pozwala na większą wydajność energetyczną, co jest istotne w kontekście zasilania urządzeń wymagających wysokich prądów. Odpowiedź 0,05 Ω może wynikać z błędnego przyjęcia zbyt niskiego napięcia, nieadekwatnego do rzeczywiście mierzonych wartości, co pokazuje, jak istotna jest umiejętność analizy i interpretacji danych pomiarowych. Ponadto przy obliczaniu rezystancji wewnętrznej należy pamiętać, by dokładnie odnotować wartości napięcia i prądu oraz zastosować prawidłowe jednostki, co jest kluczowe w każdym pomiarze elektrycznym.

Pytanie 36

Co oznacza skrót EPG w telewizorach cyfrowych?

A. mechanizm eliminacji błędów w odbieranym sygnale
B. przewodnik programowy wyświetlany na ekranie
C. moduł poprawiający czułość odbiornika
D. system kontroli rodzicielskiej dla wybranych programów
Pojęcia związane z cyfrowymi odbiornikami telewizyjnymi, takie jak kontrola rodzicielska, moduł zwiększający czułość odbiornika i układ eliminujący błędy w odbiorze sygnału, są często mylone z funkcją EPG. Kontrola rodzicielska odnosi się do systemu zabezpieczeń, który umożliwia rodzicom ograniczenie dostępu do nieodpowiednich treści dla dzieci. To narzędzie jest niezwykle ważne, ale nie ma związku z funkcjonowaniem EPG, które koncentruje się na dostarczaniu informacji o programach. Kolejnym błędnym rozumowaniem jest związanie EPG z modułem zwiększającym czułość odbiornika. Tego rodzaju technologia dotyczy fizycznych aspektów odbioru sygnału telewizyjnego i nie ma wpływu na interfejs użytkownika, jakim jest EPG. Układ eliminujący błędy w odbiorze sygnału także nie jest związany z funkcją EPG, gdyż jego zadaniem jest poprawa jakości odbieranego sygnału, a nie dostarczanie informacji o programach. Zrozumienie różnic między tymi funkcjami jest kluczowe dla skutecznego wykorzystania technologii telewizyjnej, a mylenie ich może prowadzić do błędnych założeń o możliwościach cyfrowych odbiorników. Właściwe przypisanie funkcji EPG do jego roli jako przewodnika po programach telewizyjnych jest kluczowe dla pełnego zrozumienia możliwości, jakie oferują nowoczesne systemy telewizyjne.

Pytanie 37

Aktywna bariera podczerwieni może działać, wykorzystując fale elektromagnetyczne o długości wynoszącej

A. 300 nm
B. 900 nm
C. 500 nm
D. 600 nm
Wybór długości fali 500 nm, 600 nm lub 300 nm wynika z nieporozumienia dotyczącego zakresu promieniowania elektromagnetycznego, które jest efektywnie wykorzystywane przez aktywne bariery podczerwieni. Promieniowanie o długości fali 500 nm oraz 600 nm znajduje się w widzialnym zakresie spektrum elektromagnetycznego, co powoduje, że nie są one odpowiednie do detekcji obiektów w warunkach, gdzie zmiana temperatury jest kluczowa dla wykrywania obecności. Detekcja w tym zakresie może być zakłócona przez naturalne światło oraz inne źródła promieniowania widzialnego, co czyni je niewłaściwymi dla systemów, które muszą działać niezawodnie w zmiennych warunkach oświetleniowych. Długość fali 300 nm, natomiast, znajduje się w zakresie ultrafioletu, co również nie jest zgodne z zasadami działania aktywnych barier podczerwieni. Promieniowanie ultrafioletowe jest skutecznie absorbowane przez atmosferę oraz nie jest emitowane w znacznych ilościach przez obiekty, co czyni detekcję w tym zakresie jeszcze mniej praktyczną. Niezrozumienie zasad działania czujników w oparciu o promieniowanie podczerwone może prowadzić do błędnych wniosków na temat ich zastosowania oraz zdolności do skutecznego wykrywania ruchu, co jest kluczowe w kontekście ochrony oraz automatyzacji obiektów.

Pytanie 38

Jaki najniższy stopień ochrony musi mieć obudowa kontrolera przejścia, aby mogła być używana na zewnątrz budynku?

A. IP22
B. IP33
C. IP44
D. IP11
Obudowa kontrolera przejścia oznaczona jako IP44 zapewnia odpowiedni poziom ochrony dla urządzeń wykorzystywanych na zewnątrz budynków. Klasyfikacja IP (Ingress Protection) definiuje, w jaki sposób urządzenie jest chronione przed wnikaniem ciał stałych oraz cieczy. W przypadku IP44, pierwsza cyfra '4' oznacza, że obudowa jest odporna na wnikanie ciał stałych o średnicy większej niż 1 mm, co chroni przed dostępem drobnych elementów, takich jak narzędzia czy druty. Druga cyfra '4' wskazuje na ochronę przed bryzgami wody z dowolnego kierunku, co jest istotne w warunkach atmosferycznych zewnętrznych. Zastosowanie kontrolera z obudową IP44 jest powszechne w systemach automatyki budynkowej, oświetleniu zewnętrznym oraz w aplikacjach, gdzie istnieje ryzyko działania deszczu lub innych czynników pogodowych. Wybór odpowiedniej klasy ochrony jest kluczowy dla zapewnienia trwałości i niezawodności działania sprzętu w trudnych warunkach.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego źródła
B. wspólnego kolektora
C. wspólnej bazy
D. wspólnego emitera
Wtórnik emiterowy, który często nazywamy wzmacniaczem w konfiguracji wspólnego kolektora, to jeden z fundamentalnych typów wzmacniaczy tranzystorowych. Co jest w nim fajne? To, że sygnał wyjściowy bierzemy z kolektora, a nie z emitera. Dzięki temu ten wzmacniacz świetnie nadaje się do sytuacji, gdzie potrzebujemy zwiększyć prąd, ale nie chcemy za bardzo podnosić napięcia sygnału. W praktyce często spotyka się go w interfejsach sygnałowych, gdzie łączy się różne elementy obwodu. Przydatne jest to, że ma niski opór wyjściowy i dużą impedancję wejściową, więc zazwyczaj wykorzystuje się go jako bufor między różnymi etapami układów elektronicznych. W dziedzinie audio ten typ wzmacniacza pozwala świetnie wzmocnić sygnał bez wpływania na jego jakość. Z mojego doświadczenia, stosowanie wtórnika emiterowego pomaga też w eliminacji zakłóceń i zniekształceń, co jest mega istotne w aplikacjach, gdzie precyzja ma znaczenie.