Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 29 maja 2025 14:41
  • Data zakończenia: 29 maja 2025 15:06

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podaj możliwą przyczynę osłabienia siły nacisku generowanej przez tłoczysko siłownika hydraulicznego?

A. Niewystarczające smarowanie tłoczyska
B. Otwarty odpowietrznik filtra wlewowego
C. Nieszczelność instalacji
D. Zablokowany zawór przelewowy
Nieszczelność w instalacji to chyba jeden z głównych powodów, dla których siłownik hydrauliczny nie działa tak, jak powinien. Jak system ma nieszczelności, to traci ciśnienie i przez to siłownik nie ma tej mocy, której potrzebuje. W praktyce, to sprawia, że sprzęt, w którym go zainstalowaliśmy, może działać gorzej, co jest dość problematyczne. Zwykle te nieszczelności pojawiają się w miejscach złącz czy uszczelek, a ich znalezienie wymaga czasami użycia specjalistycznych narzędzi, np. detektorów nieszczelności. Z tego, co pamiętam, normy takie jak ISO 4413 mocno podkreślają, jak ważne jest dobre uszczelnienie i regularne przeglądy. Warto monitorować ciśnienie w hydraulice i wdrożyć różne procedury, żeby wcześniej wyłapać takie nieszczelności. Dzięki temu można uniknąć kosztownych napraw i przestojów w produkcji, co zawsze jest na plus.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza imbusowego
B. klucza płaskiego
C. wkrętaka krzyżowego
D. wkrętaka płaskiego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Okresowe wyłączanie sprężarki
B. Codzienna wymiana filtra powietrza
C. Usuwanie kondensatu wodnego
D. Codzienna wymiana oleju w smarownicy
Usuwanie kondensatu wodnego jest kluczowym działaniem w konserwacji układów pneumatycznych, ponieważ kondensat, który gromadzi się w systemie, może prowadzić do wielu problemów operacyjnych. Woda w układzie pneumatycznym może spowodować korozję komponentów, zmniejszenie efektywności działania siłowników oraz obniżenie jakości powietrza dostarczanego do narzędzi pneumatycznych. Zgodnie z normami ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego, wilgotność powietrza jest istotnym czynnikiem do utrzymania w ryzach. Regularne usuwanie kondensatu, na przykład przy użyciu automatycznych osuszczy powietrza lub separatorów kondensatu, jest standardową praktyką, która pomaga zapewnić długą żywotność sprzętu i optymalną wydajność układów pneumatycznych. Przykładem tego może być zastosowanie separatorów wody w linii sprężonego powietrza, co pozwala na efektywne usuwanie wody i minimalizowanie ryzyka uszkodzeń oraz przestojów w pracy systemu.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. blokowania
B. nasycenia
C. zaporowym
D. przewodzenia
Odpowiedzi, które podałeś, jak nasycenie, przewodzenie czy zaporowy, dotyczą różnych stanów pracy tyrystora, ale w tej sytuacji są niepoprawne. Stan nasycenia występuje, gdy tyrystor działa jako przełącznik i przewodzi prąd, ale tu mamy inaczej, bo anoda jest dodatnia, a katoda z bramką ujemna. Więc nie ma mowy o nasyceniu. Podobnie stan przewodzenia jest błędny, bo potrzebny jest impuls na bramkę, a tego nie ma w tym przypadku. Stan zaporowy też jest źle interpretowany, bo odnosi się do takiej sytuacji, gdzie tyrystor nie jest w pełni zablokowany, a w opisywanej sytuacji tak nie jest. Ważne, żeby zrozumieć, jak tyrystory kontrolują przepływ prądu, bo mylenie tych stanów może prowadzić do problemów w obwodach. Dobrze jest pamiętać, że zrozumienie tych spraw jest kluczowe, jeśli chodzi o projektowanie i stosowanie tyrystorów, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 11

W skład systemu do przygotowania sprężonego powietrza nie wchodzi

A. smarownica
B. filtr powietrza
C. reduktor ciśnienia
D. sprężarka
Sprężarka jest kluczowym elementem systemu sprężonego powietrza, odpowiedzialnym za podnoszenie ciśnienia powietrza poprzez kompresję. Jej głównym zadaniem jest wytwarzanie sprężonego powietrza, które jest następnie wykorzystywane w różnych procesach przemysłowych, takich jak zasilanie narzędzi pneumatycznych, transport materiałów czy systemy chłodzenia. W praktyce, sprężarki mogą mieć różne typy, w tym sprężarki tłokowe, śrubowe i membranowe, każdy z nich dostosowany do specyficznych zastosowań. Standardy branżowe, takie jak ISO 8573, definiują wymagania dotyczące jakości sprężonego powietrza, co podkreśla znaczenie sprężarki w zapewnieniu czystości i efektywności systemu. W odpowiedzi na potrzeby przemysłowe, sprężarki są często integrowane z dodatkowymi komponentami, takimi jak filtry, reduktory ciśnienia i smarownice, które wspomagają utrzymanie odpowiednich parametrów pracy systemu, jednak same w sobie nie należą do zespołu przygotowania sprężonego powietrza.

Pytanie 12

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. woltomierz
B. omomierz
C. amperomierz
D. induktor
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Pojemnościowy
C. Hallotronowy
D. Ultradźwiękowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 15

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 2
B. 1
C. 3
D. 4
Pomiar mocy czynnej w układach trójfazowych metodą Arona wymaga zastosowania dwóch watomierzy. Ta metoda polega na pomiarze mocy czynnej w trzechfazowym obwodzie z równocześnie pracującymi watomierzami, co pozwala na obliczenie wartości mocy czynnej w całym układzie. Dwa watomierze są w stanie uchwycić różnice w obciążeniu oraz fazach, co jest kluczowe dla uzyskania dokładnych wyników. Na przykład, w układzie z równym obciążeniem gwiazdowym, watomierze łączy się w sposób pozwalający na zmierzenie mocy dwóch faz, a moc trzeciej fazy oblicza się jako różnicę od wartości całkowitej. Użycie dwóch przyrządów jest zgodne z normą IEC 60051, która mówi o technikach pomiarowych w systemach elektroenergetycznych. Dzięki tej metodzie można precyzyjnie ocenić efektywność energetyczną instalacji oraz zidentyfikować potencjalne straty energii, co jest istotne w kontekście zarządzania energią i optymalizacji wydajności w systemach przemysłowych.

Pytanie 16

Kolejność montażu silnika elektrycznego w wiertarce stołowej powinna być następująca:

A. zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy, podłączyć źródło zasilania
B. podłączyć źródło zasilania, założyć pasek klinowy, zamocować silnik w obudowie wiertarki przy użyciu śrub
C. zamocować silnik w obudowie wiertarki przy użyciu śrub, podłączyć źródło zasilania, założyć pasek klinowy
D. podłączyć źródło zasilania, zamocować silnik w obudowie wiertarki przy użyciu śrub, założyć pasek klinowy
Montaż silnika elektrycznego w wiertarce stołowej powinien być przeprowadzany w określonej kolejności, aby zapewnić prawidłowe działanie urządzenia oraz bezpieczeństwo użytkownika. Pierwszym krokiem jest zamocowanie silnika w obudowie wiertarki przy pomocy śrub. Taka procedura zapewnia stabilność silnika, co jest kluczowe dla jego prawidłowego funkcjonowania oraz minimalizuje ryzyko uszkodzenia mechanicznego. Następnie zakłada się pasek klinowy, który łączy silnik z wrzecionem wiertarki. Pasek klinowy przenosi moc z silnika na narzędzie wiertarskie, dlatego jego prawidłowe umiejscowienie i napięcie są istotne dla efektywności pracy. Ostatnim krokiem jest podłączenie źródła zasilania. Przy takim podejściu unikamy sytuacji, w której silnik mógłby pracować bez odpowiedniego połączenia mechanicznego, co mogłoby prowadzić do uszkodzeń. Zgodność z tymi krokami uznaje się za najlepsze praktyki w branży montażu urządzeń elektrycznych, co zapewnia nie tylko ich wydajność, ale również bezpieczeństwo użytkowników.

Pytanie 17

Którego urządzenia dotyczą podane w tabeli parametry?

Ilość wejść 24 VDC
Ilość wyjść przekaźnikowych
Rozszerzenie we/wyMaksymalna ilość
Maksymalna ilość we/wy
Pojemność programu
Czas przetwarzaniaInstrukcji podstawowych
systemowych
Pamięć danychWewnętrznych bajtów
Słów wewnętrznych
Timery
Liczniki
ZasilanieZnamionowe napięcie zasilania

A. Falownika.
B. Silnika.
C. Czujnika optycznego.
D. Sterownika PLC.
Sterownik PLC, czyli Programmable Logic Controller, jest kluczowym elementem w automatyzacji procesów przemysłowych. Parametry takie jak liczba wejść i wyjść, możliwość rozszerzenia tych wejść i wyjść, pojemność programu oraz czas przetwarzania instrukcji są typowe dla tego urządzenia. Sterowniki PLC są programowalne i umożliwiają realizację złożonych algorytmów sterujących, co jest niezbędne w nowoczesnych liniach produkcyjnych. Na przykład, w przemyśle motoryzacyjnym, sterowniki PLC mogą być używane do kontrolowania procesów montażowych, synchronizując pracę robotów i maszyn. Dodatkowo, możliwość monitorowania danych w czasie rzeczywistym oraz implementacji logiki sekwencyjnej dostosowuje je do różnych zastosowań, co potwierdza ich wszechstronność. Warto również podkreślić, że zastosowanie sterowników PLC zgodnie z zasadami automatyzacji, jak IEC 61131-3, zapewnia efektywność i zgodność z międzynarodowymi standardami.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Wymiana tranzystora wyjściowego w CMOS sterowniku PLC powinna być przeprowadzana z użyciem

A. bawełnianego fartucha ochronnego
B. okularów ochronnych
C. butów z izolowaną podeszwą
D. opaski uziemiającej
Stosowanie okularów ochronnych, butów z izolowaną podeszwą lub bawełnianego fartucha ochronnego w kontekście wymiany tranzystora wyjściowego CMOS sterownika PLC może wydawać się na pierwszy rzut oka odpowiednie, jednak nie adresuje kluczowego zagadnienia ochrony przed elektrostatycznymi wyładowaniami. Okulary ochronne, choć istotne w kontekście ochrony wzroku przed przypadkowymi zanieczyszczeniami czy odpryskami, nie mają wpływu na zapobieganie uszkodzeniom komponentów elektronicznych spowodowanym przez ESD. Z kolei buty z izolowaną podeszwą, mimo że mogą chronić przed porażeniem prądem w niektórych sytuacjach, nie eliminują ryzyka gromadzenia się ładunków elektrostatycznych, co jest kluczowym zagadnieniem podczas pracy z układami CMOS. Bawełniany fartuch ochronny również nie ma zastosowania w kontekście ochrony przed ESD, a jego główną rolą jest ochrona przed zanieczyszczeniami i rozpryskami materiałów chemicznych. W praktyce, błędne podejście do ochrony przed ESD prowadzi do niepotrzebnych uszkodzeń sprzętu, zwiększając koszty napraw i przestojów. Kluczowe jest zrozumienie, że wrażliwość układów CMOS na ESD wymaga stosowania wyspecjalizowanych metod ochrony, a nie standardowych środków ochrony osobistej, które nie odpowiadają na specyfikę zagrożeń związanych z elektrostatycznymi wyładowaniami.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Przyczyną uszkodzenia regulatora jest błąd w obwodzie czujnika temperatury odniesienia. Kod błędu to

Nr błęduPrzyczynaŚrodek zaradczy
ErANiespełnione warunki samonastrajaniaNaciśnij dowolny przycisk. Sprawdź czy wartość mierzona jest mniejsza o 20% od wartości zadanej i czy nie zmienia się więcej niż 1% na minutę.
Er1Zwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er2Rozwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er3Błąd w obwodzie termoelementu - czujnika temperatury odniesieniaSprawdź i ewentualnie wymień czujnik.

A. Er2
B. Er1
C. Er3
D. ErA
Odpowiedź 'Er3' jest poprawna, gdyż zgodnie z dokumentacją techniczno-ruchową regulatora, kod 'Er3' wskazuje na błąd w obwodzie termoelementu, który jest odpowiedzialny za pomiar temperatury odniesienia. W praktyce, błędy w obwodzie czujnika temperatury mogą prowadzić do nieprawidłowych pomiarów, co z kolei może skutkować niewłaściwym funkcjonowaniem całego systemu automatyki. Zarówno w przemyśle, jak i w aplikacjach domowych, prawidłowy pomiar temperatury jest kluczowy dla zapewnienia efektywności energetycznej i bezpieczeństwa. Należy regularnie sprawdzać stan czujników oraz dokonywać ich kalibracji, aby unikać sytuacji, w których błędne odczyty mogą prowadzić do awarii sprzętu lub zagrożeń dla użytkowników. Zgodnie z dobrą praktyką, warto również wdrożyć procedury monitorowania i diagnostyki systemów, co pozwala na wczesne wykrycie potencjalnych usterek.

Pytanie 25

Należy przekształcić energię sprężonej cieczy roboczej w ruch obrotowy o bardzo niskiej i stabilnej prędkości obrotowej, jak również znacznym momencie obrotowym. Elementem wykonawczym jest hydrauliczny

A. silnik zębaty
B. silnik tłokowy
C. siłownik nurnikowy
D. siłownik teleskopowy
Wybór silnika zębatego, siłownika nurnikowego lub siłownika teleskopowego jako alternatywy dla silnika tłokowego jest niewłaściwy z kilku powodów. Silnik zębaty, choć efektywny w kontekście prędkości obrotowych, nie jest przystosowany do generowania dużego momentu obrotowego przy niskich prędkościach, co jest kluczowe w wielu zastosowaniach hydraulicznych. Z kolei siłownik nurnikowy, będący elementem o liniowym ruchu, nie przekształca energii cieczy w ruch obrotowy, co wyklucza go z rozważanej funkcji. Siłownik teleskopowy, mimo że może oferować pewne korzyści w zakresie kompaktowości i wydajności, również nie generuje ruchu obrotowego, co czyni go nieodpowiednim w kontekście tego pytania. Typowe błędy myślowe, które mogą prowadzić do wyboru tych elementów, obejmują mylenie zastosowań silników i siłowników oraz nieadekwatne rozumienie ich podstawowych zasad działania. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoje specyficzne zastosowania i ograniczenia, a wybór niewłaściwego komponentu może prowadzić do obniżenia efektywności całego systemu hydraulicznego. W kontekście przemysłowym, normy takie jak ISO 4414 stanowią wytyczne dotyczące stosowania hydrauliki, co podkreśla znaczenie doboru odpowiednich typów napędów w zależności od specyficznych wymagań aplikacji.

Pytanie 26

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. zmniejszenia reaktancji uzwojeń silnika
B. obniżenia wartości napięcia zasilania
C. spadku obrotów silnika
D. wzrostu obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy mocy
B. krzemowy m.cz.
C. germanowy impulsowy
D. krzemowy w.cz.
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jakie urządzenie jest wykorzystywane do pomiaru kąta?

A. termoelement
B. sensor ultradźwiękowy
C. tachometr
D. resolver
Resolver jest precyzyjnym urządzeniem stosowanym do pomiaru położenia kątowego w różnych aplikacjach inżynieryjnych, takich jak robotyka, automatyka przemysłowa oraz w systemach kontroli ruchu. Działa na zasadzie pomiaru kątów za pomocą dwóch sygnałów elektrycznych, które są proporcjonalne do aktualnego kąta obrotu. Dzięki temu, resolver zapewnia wysoką dokładność oraz możliwość pracy w trudnych warunkach, takich jak wysokie temperatury czy wibracje. Znalezienie zastosowania w systemach sterowania serwonapędami to jeden z przykładów efektywnego wykorzystania resolvera, gdzie precyzja pomiaru jest kluczowa dla prawidłowego działania układów napędowych. W praktyce, stosowanie resolverów przyczynia się do poprawy efektywności operacyjnej oraz minimalizacji błędów w systemach automatyki, co jest zgodne z najlepszymi praktykami w branży inżynieryjnej.

Pytanie 31

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. wibracji
B. prędkości
C. hałasów
D. ciepłoty
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. prądnice synchroniczne
B. ogniwa fotowoltaiczne
C. elementy termoelektryczne
D. akumulatory kwasowe
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. T
B. R
C. Q
D. I
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 37

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik hydrostatyczny
B. Czujnik ultradźwiękowy
C. Czujnik pływakowy
D. Czujnik pojemnościowy
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 38

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. okulary ochronne
B. buty na gumowej podeszwie
C. kask ochronny
D. fartuch ochronny
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. regulacji ciśnienia
B. podwójnego sygnału
C. przełączania obiegu
D. szybkiego spustu
Zawór szybkiego spustu to naprawdę ważny element w systemach hydraulicznych. Dzięki niemu można szybko pozbyć się cieczy z siłownika, co z kolei przyspiesza ruch tłoczyska. Głównym celem tego zaworu jest zmniejszenie oporu hydraulicznego, co sprawia, że siłownik działa szybciej. Można to zaobserwować w maszynach budowlanych, jak koparki czy ładowarki, gdzie szybkość ruchu ramion jest kluczowa. W branży musimy pamiętać, że projektowanie hydrauliki powinno uwzględniać optymalizację przepływu cieczy, a zawór szybkiego spustu to jeden z najlepszych sposobów na osiągnięcie tego. Oczywiście, nie tylko przyspiesza działanie, ale też poprawia precyzję sterowania, co jest niezwykle istotne tam, gdzie liczy się dokładność. Warto też regularnie sprawdzać stan zaworu, żeby mieć pewność, że wszystko działa bez zarzutu w różnych warunkach.