Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 maja 2025 20:58
  • Data zakończenia: 19 maja 2025 21:09

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W adresacji IPv6 standardowy podział długości dla adresu sieci oraz identyfikatora hosta wynosi odpowiednio

A. 32 bity / 96 bitów
B. 16 bitów / 112 bitów
C. 96 bitów / 32 bity
D. 64 bity / 64 bity
Odpowiedź 64 bity / 64 bity jest poprawna, ponieważ w standardzie adresacji IPv6, adresy są podzielone na dwie zasadnicze części: część sieciową oraz część identyfikującą hosta. W przypadku IPv6, standardowy podział wynosi 64 bity dla identyfikacji sieci oraz 64 bity dla identyfikacji hosta. Taki podział sprzyja efektywnemu zarządzaniu adresami w dużych sieciach, umożliwiając przypisanie ogromnej liczby adresów do urządzeń w ramach jednej sieci. Przykładem może być organizacja, która musi przypisać adresy do tysięcy urządzeń w sieci lokalnej. Dzięki temu podziałowi, przedsiębiorstwa mogą korzystać z unikalnych adresów dla każdego urządzenia, co jest zgodne z zasadami projektowania sieci według standardu RFC 4291 dotyczącym IPv6. Ponadto, użycie 64-bitowego prefiksu sieciowego jest zgodne z dobrymi praktykami, które zalecają stosowanie zasięgów adresowych sprzyjających efektywności routingu i uproszczonemu zarządzaniu.

Pytanie 2

Zaproponowany fragment ustawień zapory sieciowej umożliwia przesył danych przy użyciu protokołów ```iptables -A INPUT --protocol tcp --dport 443 -j ACCEPT iptables -A INPUT --protocol tcp --dport 143 -j ACCEPT iptables -A OUTPUT --protocol tcp --dport 443 -j ACCEPT iptables -A OUTPUT --protocol tcp --dport 143 -j ACCEPT```

A. HTTP, SMPT
B. HTTPS, IMAP
C. FTP, SSH
D. POP3, TFTP
Wszystkie błędne odpowiedzi dotyczą różnych protokołów, które nie są zgodne z konfiguracją zapory przedstawioną w pytaniu. Odpowiedź wskazująca na FTP i SSH pomija kluczowe aspekty związane z portami. FTP, używany do transferu plików, standardowo działa na portach 21 i 20, co nie znajduje odzwierciedlenia w podanych regułach. SSH, natomiast, działa na porcie 22, co również nie jest zgodne z przedstawionym ruchem. Odpowiedzi związane z POP3 i TFTP wskazują na kolejne nieporozumienia. POP3 zazwyczaj korzysta z portu 110 i nie ma związku z portem 143, który jest już zarezerwowany dla IMAP. TFTP, używając portu 69, również nie zgadza się z wymaganiami związanymi z konfiguracją. Odpowiedzi związane z HTTP i SMTP są mylące, ponieważ port 80 (HTTP) i port 25 (SMTP) nie mają żadnego odniesienia w podanym kodzie iptables. Te różnice mogą prowadzić do nieprawidłowej konfiguracji zapory, co w efekcie naraża system na ataki oraz utrudnia prawidłowe funkcjonowanie aplikacji. Ważne jest zrozumienie, że dla każdej aplikacji sieciowej muszą być odpowiednio dobrane porty, co jest kluczowym elementem w zarządzaniu bezpieczeństwem sieci.

Pytanie 3

Który z rysunków ilustruje topologię sieci w układzie magistrali?

Ilustracja do pytania
A. A
B. D
C. C
D. B
Topologia magistrali to sposób organizacji sieci komputerowej, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego zwanego magistralą. Każde z urządzeń w sieci może komunikować się z innymi, przesyłając dane przez tę wspólną linię. W przypadku topologii magistrali, jak przedstawiono na rysunku B, wszystkie komputery są połączone jednym przewodem, co jest kluczową cechą tej architektury. Topologia ta była popularna w wczesnych sieciach Ethernet i ze względu na prostotę była stosunkowo tania do wdrożenia. Jednak ma swoje ograniczenia takie jak podatność na awarie jednej linii, co może prowadzić do całkowitego zatrzymania komunikacji. W praktyce, topologia magistrali jest obecnie rzadko stosowana, ale jej zrozumienie jest kluczowe do poznania ewolucji sieci komputerowych oraz jej wpływu na obecne technologie. Praktyczne zastosowanie tej wiedzy znajduje się w zrozumieniu fundamentów działania protokołów sieciowych jak CSMA/CD który był stosowany w takich sieciach.

Pytanie 4

W układzie SI jednostką, która mierzy napięcie, jest

A. amper
B. wolt
C. wat
D. herc
Wolt (symbol: V) jest jednostką miary napięcia elektrycznego w układzie SI. Napięcie, często nazywane różnicą potencjałów, jest miarą energii elektrycznej potrzebnej do przesunięcia ładunku elektrycznego między dwoma punktami. W praktyce, wolt jest kluczowy w wielu zastosowaniach, takich jak obwody elektryczne, systemy zasilania i elektronika. Na przykład, standardowe baterie AA mają napięcie rzędu 1,5 V, co oznacza, że mogą zasilać urządzenia wymagające napięcia w tym zakresie. Zrozumienie pojęcia napięcia jest fundamentalne w inżynierii elektrycznej, a także w codziennych zastosowaniach, takich jak ładowanie urządzeń mobilnych czy zasilanie sprzętu elektronicznego. Przy projektowaniu układów elektronicznych inżynierowie muszą brać pod uwagę napięcia, aby zapewnić, że elementy układu będą działać w bezpiecznych i efektywnych warunkach, zgodnych z normami europejskimi i międzynarodowymi, takimi jak IEC.

Pytanie 5

Na jakich portach brama sieciowa powinna umożliwiać ruch, aby klienci w sieci lokalnej mieli możliwość ściągania plików z serwera FTP?

A. 22 i 25
B. 110 i 995
C. 80 i 443
D. 20 i 21
Odpowiedź 20 i 21 jest prawidłowa, ponieważ te numery portów są standardowymi portami używanymi przez protokół FTP (File Transfer Protocol). Port 21 jest portem kontrolnym, który służy do zarządzania połączeniem, w tym do przesyłania poleceń i informacji o stanie. Z kolei port 20 jest używany do przesyłania danych w trybie aktywnym FTP. W praktyce, kiedy użytkownik w sieci lokalnej łączy się z serwerem FTP, jego klient FTP najpierw łączy się z portem 21, aby nawiązać sesję, a następnie ustala połączenie danych na porcie 20. To podejście jest zgodne z zaleceniami standardów IETF dla protokołu FTP, co czyni je najlepszą praktyką w kontekście transferu plików w sieciach lokalnych oraz w Internecie. Warto również zauważyć, że wiele firewalli i systemów zabezpieczeń wymaga, aby te porty były otwarte, aby umożliwić poprawne funkcjonowanie usług FTP.

Pytanie 6

Wskaż tryb operacyjny, w którym komputer wykorzystuje najmniej energii

A. hibernacja
B. gotowość (pracy)
C. uśpienie
D. wstrzymanie
Hibernacja to tryb pracy komputera, który zapewnia minimalne zużycie energii, ponieważ zapisuje aktualny stan systemu na dysku twardym i całkowicie wyłącza zasilanie urządzenia. W tym stanie komputer nie zużywa energii, co czyni go najbardziej efektywnym energetycznie trybem, szczególnie w przypadku dłuższych przerw w użytkowaniu. Przykładem zastosowania hibernacji jest sytuacja, gdy użytkownik planuje dłuższą nieobecność, na przykład podczas podróży służbowej. W przeciwieństwie do trybu uśpienia, który zachowuje na pamięci RAM stan pracy, hibernacja nie wymaga zasilania, co jest zgodne z praktykami oszczędzania energii i ochrony środowiska. W standardzie Energy Star, hibernacja jest rekomendowana jako jedna z najlepszych metod zmniejszania zużycia energii przez komputery. Warto również wspomnieć, że hibernacja przyspiesza uruchamianie systemu, ponieważ przywraca z zapisanej sesji, co jest bardziej efektywne niż uruchamianie od zera.

Pytanie 7

Dysk twardy IDE wewnętrzny jest zasilany przez połączenie typu

A. ATX
B. SATA
C. Molex
D. PCIe
Odpowiedź "Molex" jest prawidłowa, ponieważ wewnętrzne dyski twarde IDE (Integrated Drive Electronics) korzystają z zasilania za pomocą złącza Molex, które jest standardowym złączem stosowanym w komputerach do dostarczania energii elektrycznej do komponentów. Złącze Molex, znane również jako złącze 4-pinowe, jest powszechnie używane od lat 80. XX wieku i do dziś jest wykorzystywane w wielu urządzeniach, w tym w starszych dyskach twardych oraz napędach optycznych. W praktyce, złącze to jest w stanie dostarczyć odpowiednią moc (5V oraz 12V) potrzebną do zasilania dysków twardych. Warto zauważyć, że standardy złącz zasilających ewoluowały w kierunku nowych technologii, takich jak SATA, które mają inne złącza, jednak w przypadku dysków IDE Molex pozostaje normą. Zrozumienie, które złącze jest odpowiednie do konkretnego urządzenia, jest kluczowe podczas budowy i modernizacji systemów komputerowych.

Pytanie 8

Które polecenie w systemie Windows Server 2008 pozwala na przekształcenie serwera w kontroler domeny?

A. gpresult
B. nslookup
C. gpedit
D. dcpromo
Odpowiedź 'dcpromo' jest poprawna, ponieważ jest to narzędzie w systemie Windows Server 2008, które służy do promowania serwera do roli kontrolera domeny. Proces ten jest kluczowy w kontekście zarządzania tożsamościami i dostępem w sieci. Użycie dcpromo uruchamia kreatora, który prowadzi administratora przez różne etapy konfiguracji, takie jak wybór strefy czasowej, domeny, a także ustawienie hasła dla konta administratora usługi Active Directory. Umożliwia to serwerowi przyłączenie się do istniejącej domeny lub utworzenie nowej. W praktyce, promowanie serwera do kontrolera domeny oznacza, że zaczyna on zarządzać politykami bezpieczeństwa, autoryzacją użytkowników oraz zasobami w obrębie danej domeny, co jest zgodne z najlepszymi praktykami w zakresie zarządzania infrastrukturą IT. Użycie dcpromo przyczynia się do bezpieczeństwa i spójności środowiska IT, co jest istotne dla każdej organizacji.

Pytanie 9

Jaki adres IPv4 identyfikuje urządzenie funkcjonujące w sieci o adresie 14.36.64.0/20?

A. 14.36.65.1
B. 14.36.80.1
C. 14.36.17.1
D. 14.36.48.1
Adres IPv4 14.36.65.1 pasuje do sieci 14.36.64.0/20. Z maską /20 pierwsze 20 bitów to część adresu sieciowego, a pozostałe 12 bitów to miejsca, które można wykorzystać dla urządzeń w tej sieci. Czyli w zakładanym zakresie od 14.36.64.1 do 14.36.79.254 adres 14.36.65.1 jak najbardziej się mieści. W praktyce to ważne, żeby mieć pojęcie o adresach IP, bo przydaje się to przy przydzielaniu adresów dla urządzeń i konfigurowaniu routerów czy switchów. Dobrze jest też pamiętać, że używanie odpowiednich masek podsieci to dobry sposób na zorganizowanie sieci, co pomaga lepiej wykorzystać dostępne adresy.

Pytanie 10

Korzystając z polecenia taskmgr, użytkownik systemu Windows może

A. naprawić błędy w systemie plików
B. przeprowadzić aktualizację sterowników systemowych
C. przerwać działanie problematycznej aplikacji
D. odzyskać uszkodzone obszary dysku
Polecenie taskmgr, czyli Menedżer zadań, jest narzędziem dostarczanym przez system Windows, które umożliwia użytkownikom monitorowanie i zarządzanie uruchomionymi procesami oraz aplikacjami. Jedną z kluczowych funkcji taskmgr jest możliwość zakończenia działania wadliwych aplikacji, które mogą powodować spowolnienie systemu lub jego całkowite zawieszenie. Użytkownik może zidentyfikować problematyczne aplikacje na liście procesów, a następnie skorzystać z opcji 'Zakończ zadanie', aby natychmiastowo przerwać ich działanie. Przykładowo, gdy program graficzny przestaje odpowiadać, użytkownik może szybko przejść do Menedżera zadań, aby go zamknąć, co pozwoli na powrót do normalnego funkcjonowania systemu. Dobrą praktyką jest regularne monitorowanie użycia zasobów przez aplikacje, co może pomóc w identyfikacji potencjalnych problemów zanim staną się one krytyczne, co jest szczególnie istotne w środowiskach produkcyjnych, gdzie stabilność systemu ma kluczowe znaczenie.

Pytanie 11

Adres MAC (Medium Access Control Address) to sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. drugiej o długości 32 bitów
B. trzeciej o długości 32 bitów
C. drugiej o długości 48 bitów
D. trzeciej o długości 48 bitów
Adres MAC (Medium Access Control Address) jest unikalnym identyfikatorem przypisywanym do interfejsu sieciowego, który działa na drugiej warstwie modelu OSI, czyli na warstwie łącza danych. Ma długość 48 bitów, co pozwala na stworzenie ogromnej liczby unikalnych adresów, zatem w praktyce każdy sprzęt, który łączy się z siecią, ma przypisany własny adres MAC. Adresy MAC są używane w sieciach Ethernet oraz Wi-Fi do identyfikacji urządzeń w sieci lokalnej. Przykładowo, gdy komputer próbuje wysłać dane do innego urządzenia w tym samym lokalnym segmencie sieci, wykorzystuje adres MAC odbiorcy do skierowania pakietów danych. Warto również zauważyć, że adresy MAC są podstawą dla protokołów takich jak ARP (Address Resolution Protocol), który służy do mapowania adresów IP na adresy MAC. Dlatego też zrozumienie adresów MAC jest kluczowe dla projektowania i zarządzania sieciami komputerowymi zgodnie z najlepszymi praktykami branżowymi.

Pytanie 12

Czym charakteryzuje się technologia Hot swap?

A. opcja podłączenia urządzenia do działającego komputera
B. umożliwienie automatycznego wgrywania sterowników po podłączeniu urządzenia
C. transfer danych wyłącznie w jednym kierunku, lecz z większą prędkością
D. równoczesne przesyłanie i odbieranie informacji
Technologia hot swap to coś super, bo pozwala na podłączanie i odłączanie różnych urządzeń do działającego komputera bez wyłączania go. To naprawdę ułatwia życie, zwłaszcza jak trzeba zmienić dyski twarde, podłączyć urządzenia USB czy karty rozszerzeń. Wyobraź sobie, że w pracy jako administrator możesz dodać nowy dysk do macierzy RAID, a serwer dalej działa, nie ma przestojów. W branży IT czas to pieniądz, więc każdy, kto się tym zajmuje, powinien znać hot swap. Używa się go często w serwerach i urządzeniach sieciowych - bo jak serwer jest wyłączony, to mogą być spore straty. Standardy jak SATA czy PCI Express to zasady, które określają, jak to wszystko działa, co jest ważne dla pewności w działaniu. Dlatego warto ogarnąć tę technologię, jak się chce być dobrym w IT.

Pytanie 13

Członkostwo komputera w danej sieci wirtualnej nie może być ustalane na podstawie

A. nazwa komputera w sieci lokalnej
B. numeru portu w przełączniku
C. znacznika ramki Ethernet 802.1Q
D. adresu MAC karty sieciowej danego komputera
Numer portu przełącznika jest kluczowym elementem w procesie przypisywania urządzeń do sieci wirtualnych. Każdy port przełącznika może być skonfigurowany tak, aby należał do określonego VLAN-u, co oznacza, że ruch z urządzenia podłączonego do tego portu będzie traktowany w kontekście danej sieci wirtualnej. W przypadku, gdy port jest przypisany do VLAN-u, wszystkie urządzenia podłączone do tego portu automatycznie dzielą zasoby sieciowe. Ponadto, znacznik ramki Ethernet 802.1Q jest standardem branżowym, który pozwala na obsługę wielu VLAN-ów na jednym fizycznym połączeniu. Dzięki temu, gdy ramka przechodzi przez przełącznik, znacznik 802.1Q umożliwia rozpoznanie, do którego VLAN-u powinna trafić, co pozwala na efektywną segregację ruchu i zwiększa bezpieczeństwo oraz wydajność sieci. Z kolei adres MAC karty sieciowej komputera identyfikuje urządzenie w warstwie łącza danych i jest używany przez przełączniki do kierowania ruchu w sieci. Różne adresy MAC są przypisywane do różnych interfejsów sieciowych, co również ma znaczenie w kontekście przynależności do VLAN-ów. Dlatego koncepcje bazujące na nazwie komputera w sieci lokalnej, które nie mają wpływu na techniczne aspekty przypisania do sieci wirtualnej, prowadzą do nieporozumień i błędów w rozumieniu funkcjonowania sieci komputerowych. W praktyce, zrozumienie, jak VLAN-y i porty przełączników współdziałają, jest kluczowe dla skutecznego projektowania i zarządzania nowoczesnymi sieciami.

Pytanie 14

Aby sygnały pochodzące z dwóch routerów w sieci WiFi pracującej w standardzie 802.11g nie wpływały na siebie nawzajem, należy skonfigurować kanały o numerach

A. 2 i 7
B. 5 i 7
C. 3 i 6
D. 1 i 5
Ustawienie kanałów 2 i 7 w sieci WiFi standardu 802.11g jest zgodne z zasadami minimalizacji zakłóceń między sygnałami. W standardzie 802.11g, który operuje w paśmie 2,4 GHz, dostępnych jest 14 kanałów, z których tylko pięć (1, 6, 11) jest tak zwanych 'nienakładających się'. To oznacza, że użycie kanałów 2 i 7, które są oddalone od siebie, znacząco zmniejsza ryzyko interferencji. Przykładem może być sytuacja, w której dwa routery znajdują się w bliskiej odległości od siebie; ustawienie ich na kanały 2 i 7 pozwoli na współdzielenie pasma bez zauważalnego pogorszenia jakości sygnału. W praktyce, stosując takie ustawienia, można zrealizować lepszą wydajność sieci w środowiskach o dużym zagęszczeniu urządzeń bezprzewodowych, co jest szczególnie istotne w biurach czy mieszkaniach wielorodzinnych. Dobrą praktyką jest również regularne monitorowanie jakości sygnału i kanałów, aby dostosować ustawienia w razie potrzeby.

Pytanie 15

Pierwsze trzy bity adresu IP w formacie binarnym mają wartość 010. Jaką klasę reprezentuje ten adres?

A. klasy C
B. klasy D
C. klasy A
D. klasy B
Adres IP składa się z 32 bitów, które dzielą się na cztery oktety. Klasy adresów IP są definiowane przez wartość najstarszych bitów. W przypadku adresu klasy A, najstarszy bit ma wartość 0, co oznacza, że adresy klasy A zaczynają się od zakresu 0.0.0.0 do 127.255.255.255. Wartość 010 w systemie binarnym oznacza, że najstarsze trzy bity adresu IP są ustawione jako 010, co w systemie dziesiętnym odpowiada 2. W ten sposób adres IP z tak ustawionymi bitami mieści się w zakresie adresów klasy A. Przykładem praktycznym zastosowania adresów klasy A mogą być sieci dużych organizacji, które wymagają wielu adresów IP w ramach swojej infrastruktury. Standardy dotyczące adresacji IP są regulowane przez IANA oraz RFC 791, które zapewniają ramy dla przydzielania oraz zarządzania adresami IP. Klasa A jest szczególnie istotna w kontekście rozwoju Internetu oraz przydzielania zasobów adresowych, co czyni ją fundamentalnym elementem infrastruktury sieciowej.

Pytanie 16

Według KNR (katalogu nakładów rzeczowych) montaż 4-parowego modułu RJ45 oraz złącza krawędziowego to 0,07 r-g, natomiast montaż gniazd abonenckich natynkowych wynosi 0,30 r-g. Jak wysoki będzie koszt robocizny za zamontowanie 10 pojedynczych gniazd natynkowych z modułami RJ45, jeśli wynagrodzenie godzinowe montera-instalatora wynosi 20,00 zł?

A. 14,00 zł
B. 74,00 zł
C. 60,00 zł
D. 120,00 zł
W przypadku błędnych odpowiedzi, często pojawia się nieporozumienie związane z obliczeniami czasowymi i kosztami robocizny. Na przykład, jeśli ktoś obliczy koszt montażu gniazd bez uwzględnienia modułów RJ45, może dojść do wniosku, że koszt robocizny wynosi 60,00 zł, co jest błędne, ponieważ nie uwzględnia pełnego zakresu prac. Również rozważając montaż tylko modułów RJ45, można obliczyć koszt na 14,00 zł, co jest również niepoprawne w kontekście całego zadania. Kluczowym błędem w tych podejściach jest nieuwzględnianie wszystkich komponentów potrzebnych do wykonania instalacji. Dobrą praktyką jest szczegółowe rozplanowanie poszczególnych kroków montażowych oraz ich czasochłonności, co pozwala na dokładniejsze oszacowanie całkowitych kosztów. Często również występuje pomylenie jednostek roboczogodzin z jednostkami pieniężnymi, co prowadzi do błędnych wniosków co do kosztów. Obliczanie kosztów robocizny powinno zawsze obejmować pełny obraz prac, co w tym przypadku oznacza zarówno montaż gniazd, jak i modułów RJ45. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w branży instalacyjnej oraz dla skutecznego zarządzania projektami.

Pytanie 17

Jakie będzie rezultatem dodawania liczb 10011012 i 110012 w systemie binarnym?

A. 1101101
B. 1100110
C. 1110001
D. 1101100
Odpowiedzi, które nie są poprawne, wynikają z typowych błędów w dodawaniu w systemie binarnym oraz niewłaściwego zrozumienia procesu przenoszenia. W przypadku dodawania binarnego, kluczowe jest zrozumienie, że każda kolumna ma przypisaną wartość, która jest potęgą liczby 2. Błędy mogą pojawić się w momencie, gdy dodajemy liczby i nie uwzględniamy przeniesienia lub mylimy wartości kolumn. Na przykład, w odpowiedzi 1101100, mogło dojść do pomyłki przy dodawaniu, gdzie przeniesienie nie zostało uwzględnione, co prowadzi do błędnego wyniku. Z kolei odpowiedź 1110001 może być wynikiem niepoprawnego zsumowania, gdzie dodano zbyt wiele do wartości w wyższych kolumnach. W przypadku 1101101, możliwe, że poprawnie dodano tylko część bitów, a wynik końcowy nie uwzględniał całości przeniesienia. Typowe błędy myślowe związane z tymi odpowiedziami obejmują zbytnią pewność siebie w dodawaniu i pomijanie podstawowych zasad, takich jak przeniesienie. Kluczowe w nauce dodawania w systemie binarnym jest praktykowanie różnych przykładów i zrozumienie, jak działa system przenoszenia, co pomoże uniknąć tych typowych pułapek.

Pytanie 18

Program w wierszu poleceń systemu Windows, który pozwala na konwersję tablicy partycji z GPT na MBR, to

A. cipher
B. gparted
C. diskpart
D. bcdedit
Odpowiedź 'diskpart' jest poprawna, ponieważ jest to narzędzie wiersza poleceń w systemie Windows, które pozwala na zarządzanie wolumenami dysków oraz partycjami. W przypadku konwersji tablicy partycji GPT na MBR, 'diskpart' oferuje odpowiednie polecenia, takie jak 'convert mbr', które umożliwiają przekształcenie struktury partycji. GPT (GUID Partition Table) jest nowoczesnym sposobem organizacji danych na dysku, który oferuje wiele zalet w porównaniu do starszej metody MBR (Master Boot Record), jednak w niektórych sytuacjach, na przykład w przypadku starszych systemów operacyjnych, może być konieczna konwersja na MBR. Praktyczne zastosowanie 'diskpart' wymaga uruchomienia go z uprawnieniami administratora, a użytkownik powinien być ostrożny, ponieważ niewłaściwe użycie tego narzędzia może prowadzić do utraty danych. Standardowe praktyki bezpieczeństwa zalecają tworzenie kopii zapasowych przed przeprowadzaniem takich operacji. 'Diskpart' jest szeroko stosowany w administracji systemami oraz w sytuacjach, gdy zachodzi konieczność dostosowania struktury partycji do wymagań oprogramowania lub sprzętu.

Pytanie 19

Podstawowym warunkiem archiwizacji danych jest

A. kompresja oraz kopiowanie danych
B. kopiowanie danych
C. kompresja danych
D. kompresja i kopiowanie danych z równoczesnym ich szyfrowaniem
Kompresja danych jest techniką związaną z redukcją rozmiaru plików, co może być użyteczne w kontekście archiwizacji, ale nie jest to warunek niezbędny do jej przeprowadzenia. Wiele osób myli archiwizację z optymalizacją przestrzeni dyskowej, co prowadzi do błędnego przekonania, że kompresja jest kluczowym elementem tego procesu. Mimo że kompresja może ułatwić przechowywanie większej ilości danych w ograniczonej przestrzeni, sama w sobie nie zabezpiecza danych ani nie umożliwia ich odtworzenia, co jest głównym celem archiwizacji. Również kopiowanie danych jest istotne, ale można archiwizować dane bez kompresji, co czyni tę odpowiedź niekompletną. W przypadku odpowiedzi, które łączą kompresję z kopiowaniem, należy zauważyć, że chociaż te elementy mogą być użyte w procesie archiwizacji, ich jednoczesne stosowanie nie jest konieczne dla zapewnienia skutecznej archiwizacji. Użytkownicy często mylą niezbędne kroki archiwizacji z dodatkowymi technikami, co prowadzi do nieprawidłowych wniosków. Archiwizacja powinna koncentrować się na zabezpieczeniu danych poprzez ich kopiowanie w sposób umożliwiający ich późniejsze odzyskanie, bez względu na to, czy dane te zostaną skompresowane.

Pytanie 20

Który z protokołów jest wykorzystywany w telefonii VoIP?

A. FTP
B. HTTP
C. NetBEUI
D. H.323
Protokół FTP (File Transfer Protocol) jest przeznaczony głównie do przesyłania plików w sieciach komputerowych. Nie ma zastosowania w telefonii internetowej, ponieważ nie obsługuje transmisji głosu ani wideo w czasie rzeczywistym. Jego zastosowanie koncentruje się na transferze danych, a nie na komunikacji głosowej. HTTP (Hypertext Transfer Protocol) jest używany do przesyłania dokumentów w sieci WWW, co także nie ma związku z telefonami internetowymi. Z kolei NetBEUI (NetBIOS Extended User Interface) to protokół transportowy, który nie ma zastosowania w kontekście komunikacji głosowej, a jego użycie jest ograniczone do lokalnych sieci komputerowych, co czyni go nieadekwatnym do telefonii internetowej. Wybór niewłaściwego protokołu może prowadzić do nieporozumień dotyczących ich funkcji. Typowym błędem jest założenie, że wszystkie protokoły sieciowe mogą być stosowane zamiennie, co jest nieprawdziwe. Każdy protokół ma swoje specyficzne zastosowania i ograniczenia, dlatego ważne jest, aby zrozumieć różnice między nimi. Wiedza o właściwym doborze protokołów jest kluczowa dla efektywnej implementacji technologii komunikacyjnych w firmach, co może wpływać na jakość świadczonych usług oraz ich niezawodność.

Pytanie 21

Jaką długość ma adres IP wersji 4?

A. 2 bajty
B. 32 bitów
C. 16 bitów
D. 10 bajtów
Adres IP w wersji 4 (IPv4) to kluczowy element w komunikacji w sieciach komputerowych. Ma długość 32 bity, co oznacza, że każdy adres IPv4 składa się z czterech oktetów, a każdy z nich ma 8 bitów. Cała przestrzeń adresowa IPv4 pozwala na przydzielenie około 4,3 miliarda unikalnych adresów. Jest to niezbędne do identyfikacji urządzeń i wymiany danych. Na przykład, adres IP 192.168.1.1 to typowy adres lokalny w sieciach domowych. Standard ten ustala organizacja IETF (Internet Engineering Task Force) w dokumencie RFC 791. W kontekście rozwoju technologii sieciowych, zrozumienie struktury adresów IP oraz ich długości jest podstawą do efektywnego zarządzania siecią, a także do implementacji protokołów routingu i bezpieczeństwa. Obecnie, mimo rosnącego zapotrzebowania na adresy, IPv4 często jest dopełniane przez IPv6, który oferuje znacznie większą przestrzeń adresową, ale umiejętność pracy z IPv4 wciąż jest bardzo ważna.

Pytanie 22

Jaka liczba hostów może być podłączona w sieci o adresie 192.168.1.128/29?

A. 16 hostów
B. 8 hostów
C. 12 hostów
D. 6 hostów
Żeby dobrze zrozumieć liczbę hostów w sieci, trzeba znać zasady adresacji IP i maskowania podsieci. W przypadku 192.168.1.128/29 maksymalnie możesz mieć 8 adresów. Jeśli wybierasz 12, 16 czy nawet 8 hostów, to możesz źle rozumieć, jak się oblicza dostępne adresy. Często zapomina się o tym, że w każdej podsieci musisz zarezerwować jeden adres dla samej sieci, a drugi na rozgłoszenie. Jak wybierasz 8 hostów, to nie pamiętasz, że dwa adresy są zajęte, co tak naprawdę daje ci 6 dostępnych. A jak myślisz, że masz 12 czy 16 hostów, to tak, jakbyś widział więcej adresów, niż w ogóle możesz mieć przy tej masce, co nie jest możliwe. Ważne jest, by wiedzieć, że liczba hostów to 2^(liczba bitów hosta) - 2. To odejmowanie dwóch adresów jest kluczowe. Umiejętność prawidłowego obliczania liczby hostów jest super ważna w pracy sieciowca oraz w projektowaniu sieci, ma to spore znaczenie dla efektywności i bezpieczeństwa.

Pytanie 23

Która z licencji pozwala na darmowe korzystanie z programu, pod warunkiem, że użytkownik zadba o ekologię?

A. Donationware
B. Greenware
C. Adware
D. OEM
Greenware to rodzaj licencji oprogramowania, która pozwala na bezpłatne wykorzystanie programu, pod warunkiem, że użytkownik podejmuje działania na rzecz ochrony środowiska naturalnego. Ta forma licencji kładzie nacisk na odpowiedzialność ekologiczną, co oznacza, że użytkownicy mogą korzystać z oprogramowania bez ponoszenia kosztów, jeśli angażują się w działania na rzecz zrównoważonego rozwoju, takie jak recykling, oszczędzanie energii czy wsparcie dla inicjatyw ekologicznych. Przykładem może być program, który wymaga, aby użytkownik przesłał dowód na podjęcie działań ekologicznych, zanim uzyska pełen dostęp do funkcji. W praktyce, greenware motywuje użytkowników do świadomości ekologicznej, co jest zgodne z globalnymi trendami w zakresie zrównoważonego rozwoju i odpowiedzialności korporacyjnej. Warto także zauważyć, że takiego typu licencje wpisują się w ramy filozofii open source, gdzie dostępność i odpowiedzialność społeczna są kluczowe dla promowania innowacji oraz ochrony zasobów naturalnych.

Pytanie 24

Aby zmierzyć tłumienie łącza światłowodowego w dwóch zakresach transmisyjnych 1310nm oraz 1550nm, powinno się zastosować

A. testera UTP
B. rejestratora cyfrowego
C. miernika mocy optycznej
D. reflektometru TDR
Użycie reflektometru TDR (Time Domain Reflectometer) w kontekście pomiaru tłumienia w łączach światłowodowych jest błędne, ponieważ to urządzenie jest dedykowane głównie do analizy kabli miedzianych. Reflektometr działa na zasadzie wysyłania krótkich impulsów sygnału i mierzenia odbić, co w przypadku kabli optycznych nie dostarcza informacji o tłumieniu. Tak samo rejestrator cyfrowy, choć przydatny w różnych zastosowaniach pomiarowych, nie jest przeznaczony do oceny tłumienia w światłowodach, ponieważ nie dokonuje analiz optycznych. Z kolei tester UTP, który jest narzędziem do diagnozowania i testowania kabli miedzianych, nie ma zastosowania w przypadku technologii optycznych, ponieważ operuje na zupełnie innych zasadach. Typowe błędy myślowe polegają na myleniu technologii światłowodowej z miedzianą, co prowadzi do wyboru niewłaściwych narzędzi. Aby prawidłowo ocenić jakość łącza światłowodowego, kluczowe jest korzystanie z odpowiednich przyrządów, takich jak miernik mocy optycznej, który zapewnia wiarygodne dane i pozwala na podejmowanie świadomych decyzji w zakresie konserwacji i modernizacji infrastruktury.

Pytanie 25

Na schemacie blokowym funkcjonalny blok RAMDAC ilustruje

Ilustracja do pytania
A. pamięć RAM karty graficznej
B. przetwornik cyfrowo-analogowy z pamięcią RAM
C. pamięć ROM karty graficznej
D. przetwornik analogowo-cyfrowy z pamięcią RAM
RAMDAC nie jest pamięcią RAM karty graficznej, ponieważ jego rola nie polega na przechowywaniu danych obrazu, lecz na ich przekształcaniu. Pamięć RAM w kartach graficznych, znana jako VRAM, służy do magazynowania danych potrzebnych do renderowania grafiki. Mylenie RAMDAC z VRAM wynika często z samego podobieństwa nazw oraz historycznego kontekstu, kiedy to RAMDAC i VRAM były fizycznie blisko siebie na płytce PCB kart graficznych. Przetwornik analogowo-cyfrowy z pamięcią RAM nie opisuje poprawnie funkcji RAMDAC, gdyż RAMDAC zajmuje się konwersją danych cyfrowych na sygnały analogowe, nie odwrotnie. Takie błędne założenie może wynikać z nieporozumienia, czym są konwersje AD i DA w kontekście systemów wideo. Pamięć ROM karty graficznej, używana do przechowywania firmware, nie ma żadnej bezpośredniej roli w przetwarzaniu sygnałów wyjściowych wideo. Nieporozumienia te często wynikają z braku precyzyjnego zrozumienia architektury kart graficznych i funkcji poszczególnych komponentów. Zrozumienie roli RAMDAC jest kluczowe dla osób projektujących sprzęt wideo oraz tych zajmujących się jego diagnostyką, gdyż umożliwia optymalizację jakości sygnału i zapewnienie kompatybilności z różnymi urządzeniami wyjściowymi.

Pytanie 26

Ile urządzeń jest w stanie współpracować z portem IEEE1394?

A. 63
B. 1
C. 8
D. 55
Odpowiedź 63 jest jak najbardziej trafna. Standard IEEE 1394, czyli FireWire, rzeczywiście pozwala podłączyć do 63 urządzeń w jednej sieci. Jak to działa? Otóż wszystko bazuje na adresacji 6-bitowej, przez co każde urządzenie dostaje swój unikalny identyfikator. Dzięki temu w jednym łańcuchu możemy podłączać różne sprzęty, jak kamery cyfrowe czy zewnętrzne dyski twarde. W profesjonalnych sytuacjach, na przykład w studiach nagraniowych, to naprawdę ważne, żeby móc obsługiwać tyle różnych urządzeń. Co więcej, standard ten nie tylko umożliwia podłączenie wielu sprzętów, ale także zapewnia szybki transfer danych, co jest super przy przesyłaniu dużych plików multimedialnych. I pamiętaj, że IEEE 1394 jest elastyczny, bo obsługuje też topologię gwiazdy, co jest przydatne w wielu konfiguracjach. W praktyce często korzysta się z hubów, co jeszcze bardziej zwiększa liczbę podłączonych urządzeń.

Pytanie 27

Użytkownik systemu Windows napotyka komunikaty o niewystarczającej pamięci wirtualnej. Jak można rozwiązać ten problem?

A. dodanie dodatkowej pamięci cache procesora
B. powiększenie rozmiaru pliku virtualfile.sys
C. dodanie nowego dysku
D. zwiększenie pamięci RAM
Zamontowanie dodatkowej pamięci cache procesora nie rozwiązuje problemu z pamięcią wirtualną, ponieważ pamięć cache i pamięć RAM pełnią różne funkcje w architekturze komputerowej. Cache procesora to szybka pamięć umieszczona bezpośrednio na procesorze lub blisko niego, która przechowuje najczęściej używane dane i instrukcje, aby przyspieszyć dostęp do nich. Zwiększenie pamięci cache może poprawić wydajność w niektórych zastosowaniach, ale nie wpłynie na ilość dostępnej pamięci RAM, która jest kluczowa dla działania aplikacji wymagających dużych zasobów. Zwiększenie rozmiaru pliku virtualfile.sys, odpowiedzialnego za pamięć wirtualną, może pomóc w zwiększeniu dostępnej pamięci, ale nie jest to tak efektywne jak zwiększenie fizycznej pamięci RAM, ponieważ operacje na dysku są znacznie wolniejsze niż operacje w pamięci. Montowanie dodatkowego dysku również nie rozwiązuje problemu z pamięcią wirtualną, gdyż choć można zwiększyć ilość przestrzeni na pliki wymiany, to nie zwiększa to ilości pamięci RAM, co jest kluczowe dla przetwarzania danych. Te podejścia są często zauważane jako próby ominięcia podstawowego problemu, czyli niewystarczającej fizycznej pamięci, co może prowadzić do frustracji użytkowników i dalszych problemów z wydajnością systemu.

Pytanie 28

GRUB, LILO, NTLDR to

A. firmware dla dysku twardego
B. programy rozruchowe
C. aplikacje do aktualizacji BIOSU
D. wersje głównego interfejsu sieciowego
GRUB, LILO i NTLDR to programy rozruchowe, które pełnią kluczową rolę w procesie uruchamiania systemu operacyjnego. GRUB (Grand Unified Bootloader) jest nowoczesnym bootloaderem, który obsługuje wiele systemów operacyjnych i umożliwia ich wybór podczas startu komputera. LILO (Linux Loader) jest starszym bootloaderem, który również konfiguruje i uruchamia różne systemy operacyjne, ale nie oferuje tak zaawansowanych możliwości jak GRUB, zwłaszcza w kontekście obsługi dynamicznego sprzętu. NTLDR (NT Loader) jest bootloaderem używanym w systemach Windows NT, który zarządza uruchamianiem systemu operacyjnego Windows. W praktyce, wybór odpowiedniego bootloadera zależy od specyfiki środowiska, na którym pracujemy, oraz wymagań dotyczących systemów operacyjnych. Grupa standardów, takich jak UEFI (Unified Extensible Firmware Interface), wprowadza nowoczesne podejście do procesu rozruchu, zastępując tradycyjne BIOSy i wspierając zaawansowane funkcje, takie jak szybki rozruch. Znajomość tych technologii jest niezbędna dla administratorów systemów i inżynierów IT, gdyż odpowiedni dobór bootloadera może znacząco wpłynąć na wydajność oraz niezawodność systemu.

Pytanie 29

Zgodnie z normą 802.3u w sieciach FastEthernet 100Base-FX stosuje się

A. przewód UTP kat. 5
B. światłowód jednomodowy
C. przewód UTP kat. 6
D. światłowód wielomodowy
Światłowód jednomodowy, przewód UTP kat. 6 oraz przewód UTP kat. 5 to media transmisyjne, które nie są odpowiednie dla technologii 100Base-FX zgodnie z normą 802.3u. W przypadku światłowodu jednomodowego, chociaż jest on używany w innych standardach sieciowych, 100Base-FX wymaga zastosowania światłowodu wielomodowego, który charakteryzuje się szerszym rdzeniem. Użycie przewodów UTP, takich jak kat. 5 czy kat. 6, odnosi się do technologii Ethernet, ale nie są one przeznaczone do FastEthernet w technologii 100Base-FX. Wybór niewłaściwego medium może prowadzić do problemów z przepustowością i zasięgiem, co jest szczególnie istotne w systemach komunikacyjnych. Często popełnianym błędem jest mylenie różnych standardów i mediów transmisyjnych, co może wynikać z braku precyzyjnego zrozumienia charakterystyki transmisji optycznej i miedzianej. Ważne jest, aby przy projektowaniu sieci brać pod uwagę specyfikacje i ograniczenia każdego z mediów, aby zapewnić optymalną wydajność i niezawodność sieci. Zastosowanie niewłaściwej technologii może prowadzić do nieefektywnego działania oraz dodatkowych kosztów związanych z naprawami i modernizacjami sieci.

Pytanie 30

Elementem płyty głównej, który odpowiada za wymianę informacji pomiędzy procesorem a innymi komponentami płyty, jest

A. pamięć BIOS
B. system chłodzenia
C. pamięć RAM
D. chipset
Chipset to kluczowy element płyty głównej odpowiedzialny za zarządzanie komunikacją pomiędzy procesorem a innymi komponentami systemu, takimi jak pamięć RAM, karty rozszerzeń oraz urządzenia peryferyjne. Działa jako mostek, który umożliwia transfer danych oraz kontrolę dostępu do zasobów. Współczesne chipsety są podzielone na dwa główne segmenty: północny mostek (Northbridge), który odpowiada za komunikację z procesorem oraz pamięcią, oraz południowy mostek (Southbridge), który zarządza interfejsami peryferyjnymi, takimi jak SATA, USB i PCI. Zrozumienie roli chipsetu jest istotne dla projektowania systemów komputerowych, ponieważ jego wydajność i możliwości mogą znacząco wpłynąć na ogólną efektywność komputera. Dla przykładu, wybierając chipset o wyższej wydajności, użytkownik może poprawić parametry pracy systemu, co jest kluczowe w zastosowaniach wymagających dużej mocy obliczeniowej, takich jak renderowanie grafiki czy obróbka wideo. W praktyce, chipsety są również projektowane z uwzględnieniem standardów branżowych, takich jak PCI Express, co zapewnia ich kompatybilność z najnowszymi technologiami.

Pytanie 31

Z jaką minimalną efektywną częstotliwością taktowania mogą działać pamięci DDR2?

A. 233 MHz
B. 333 MHz
C. 533 MHz
D. 800 MHz
Wybór niższej częstotliwości taktowania, takiej jak 233 MHz, 333 MHz czy 800 MHz, nie jest zgodny z charakterystyką pamięci DDR2. Pamięć DDR2 została zaprojektowana jako kontynuacja standardów DDR, jednak z bardziej zaawansowanymi funkcjami. Częstotliwości 233 MHz oraz 333 MHz to wartości charakterystyczne dla pamięci DDR, a nie DDR2. Użytkownicy mogą mylić te standardy, sądząc, że niższe częstotliwości są kompatybilne również z DDR2, co jest błędne. W przypadku 800 MHz mamy do czynienia z wyższym standardem, który z kolei może być mylony z maksymalną częstotliwością działania, ale nie jest to minimalna wartość skutecznego taktowania dla DDR2. Taktowanie na poziomie 800 MHz jest osiągalne tylko przy zastosowaniu odpowiednich komponentów i nie jest to najniższa efektywna częstotliwość. Często błędne wyobrażenia o standardach pamięci mogą prowadzić do problemów z kompatybilnością w systemach komputerowych, gdyż niektóre płyty główne mogą nie obsługiwać starszych typów pamięci z niższymi częstotliwościami. Ważne jest, aby przy wyborze pamięci kierować się dokumentacją techniczną oraz wymaganiami sprzętowymi, co pozwoli uniknąć potencjalnych problemów z obiegiem danych oraz wydajnością systemu.

Pytanie 32

Podczas uruchamiania komputera wyświetla się komunikat CMOS checksum error press F1 to continue press DEL to setup. Naciśnięcie klawisza DEL spowoduje

A. wymazanie danych z pamięci CMOS
B. usunięcie pliku konfiguracyjnego
C. wejście do ustawień BIOS-u komputera
D. przejście do ustawień systemu Windows
Podejmowanie decyzji na temat działania klawisza DEL w kontekście błędu CMOS często prowadzi do nieporozumień związanych z funkcjonowaniem BIOS-u oraz pamięci CMOS. Wiele osób zakłada, że wciśnięcie DEL spowoduje usunięcie pliku setup, co jest nieprawidłowe, ponieważ plik ten nie istnieje w kontekście operacji BIOS-u. Co więcej, skasowanie zawartości pamięci CMOS również nie jest efektem działania klawisza DEL. Aby skasować zawartość pamięci CMOS, konieczne jest zazwyczaj fizyczne zresetowanie zworki na płycie głównej lub wyjęcie baterii CMOS, co jest zupełnie inną czynnością. Często myli się również rolę BIOS-u z systemem operacyjnym Windows; wciśnięcie DEL nie prowadzi do uruchomienia żadnej konfiguracji systemu Windows. W praktyce, użytkownicy mogą pomylić koncepcję BIOS-u z systemem operacyjnym, co skutkuje błędnymi wnioskami na temat działania komputera. Należy pamiętać, że BIOS działa na poziomie sprzętowym i odpowiada za interakcję z komponentami komputerowymi, zanim system operacyjny przejmie kontrolę, co jest fundamentalnym zrozumieniem niezbędnym do prawidłowej obsługi komputera.

Pytanie 33

Na ilustracji widoczny jest symbol graficzny

Ilustracja do pytania
A. mostu
B. rutera
C. koncentratora
D. regeneratora
Symbol graficzny przedstawiony na rysunku to ikona rutera. Ruter jest urządzeniem sieciowym, które kieruje ruch danych w sieci komputerowej. Działa na warstwie trzeciej modelu OSI, co oznacza, że obsługuje adresowanie IP i trasowanie pakietów między różnymi sieciami. Ruter analizuje adresy IP w nagłówkach pakietów i używa tablic trasowania do określenia najlepszej ścieżki dla przesyłanego ruchu. Dzięki temu może łączyć różne sieci lokalne (LAN) i rozległe (WAN), umożliwiając efektywną transmisję danych. Praktyczne zastosowania ruterów obejmują zarówno sieci domowe, gdzie zarządzają ruchem między urządzeniami, jak i duże sieci korporacyjne, gdzie zapewniają redundancję i równoważenie obciążenia. Standardowe praktyki obejmują zabezpieczanie ruterów przed nieautoryzowanym dostępem poprzez użycie silnych haseł i szyfrowania. Ruter odgrywa kluczową rolę w zapewnieniu stabilności i bezpieczeństwa sieci, co czyni go integralnym elementem infrastruktury IT w każdej nowoczesnej firmie.

Pytanie 34

Na płycie głównej doszło do awarii zintegrowanej karty sieciowej. Komputer nie ma dysku twardego ani innych napędów, takich jak stacja dysków czy CD-ROM. Klient informuje, że w sieci firmowej komputery nie mają napędów, a wszystko "czyta" się z serwera. Aby przywrócić utraconą funkcjonalność, należy zainstalować

A. dysk twardy w komputerze
B. napęd CD-ROM w komputerze
C. kartę sieciową samodzielnie wspierającą funkcję Preboot Execution Environment w gnieździe rozszerzeń
D. kartę sieciową samodzielnie wspierającą funkcję Postboot Execution Enumeration w gnieździe rozszerzeń
Wybór karty sieciowej wspierającej funkcję Preboot Execution Environment (PXE) jest kluczowy w kontekście komputerów, które nie mają lokalnych napędów, a ich operacje są oparte na sieci. PXE pozwala na uruchamianie systemu operacyjnego bezpośrednio z serwera, co jest szczególnie przydatne w środowiskach serwerowych oraz w organizacjach, które korzystają z technologii wirtualizacji lub rozproszonych rozwiązań. W momencie, gdy zintegrowana karta sieciowa ulega uszkodzeniu, zewnętrzna karta sieciowa z obsługą PXE staje się jedynym sposobem na przywrócenie pełnej funkcjonalności. Dobrą praktyką w takich sytuacjach jest wybór kart zgodnych z najnowszymi standardami, co zapewnia bezproblemową komunikację z serwerami. Przykładem zastosowania może być scenariusz, w którym administratorzy IT mogą szybko zainstalować nowe systemy operacyjne na wielu komputerach bez potrzeby fizycznego dostępu do każdego z nich, co znacznie zwiększa efektywność zarządzania infrastrukturą IT.

Pytanie 35

W systemie binarnym liczba szesnastkowa 29A będzie przedstawiona jako:

A. 1001011010
B. 1010010110
C. 1010011010
D. 1000011010
Liczba szesnastkowa 29A składa się z dwóch części: cyfry '2', cyfry '9' oraz cyfry 'A', która w systemie dziesiętnym odpowiada wartości 10. Aby przekształcić tę liczbę na system binarny, należy każdą z jej cyfr zamienić na odpowiednią reprezentację binarną, przy czym każda cyfra szesnastkowa jest przedstawiana za pomocą 4 bitów. Cyfra '2' w systemie binarnym to 0010, cyfra '9' to 1001, a cyfra 'A' to 1010. Łącząc te trzy wartości, otrzymujemy 0010 1001 1010. Dla uproszczenia, można usunąć wiodące zera, co daje wynik 1010011010. Taki proces konwersji jest standardowo stosowany w programowaniu i inżynierii komputerowej, szczególnie w kontekście przetwarzania danych, programowania niskopoziomowego oraz w systemach wbudowanych, gdzie binarna reprezentacja danych jest kluczowa do efektywnego działania algorytmów oraz zarządzania pamięcią.

Pytanie 36

Który z elementów szafy krosowniczej został pokazany na ilustracji?

Ilustracja do pytania
A. Przepust kablowy 2U
B. Wieszak do kabli 2U
C. Maskownica 1U
D. Panel krosowy 1U
Panel krosowy 1U jest kluczowym elementem infrastruktury sieciowej, który umożliwia organizację i zarządzanie okablowaniem w szafach krosowniczych. Dzięki swojej konstrukcji pozwala na łatwe przypisywanie portów i bezproblemową zmianę połączeń, co jest nieocenione w dynamicznych środowiskach IT. Panel krosowy 1U jest zgodny ze standardami przemysłowymi takimi jak TIA/EIA-568, co zapewnia jego kompatybilność z różnymi systemami okablowania. Zwykle jest wyposażony w odpowiednią liczbę portów RJ-45, które pozwalają na podłączenie kabli kategorii 5e, 6 lub nawet wyższych. W praktyce, panel krosowy jest podstawą dla zarządzanych sieci w biurach, centrach danych oraz instytucjach, gdzie kluczowe jest utrzymanie wysokiej jakości i organizacji sieci. Użycie paneli krosowych pozwala na uporządkowanie kabli i ułatwia diagnozowanie problemów sieciowych poprzez szybki dostęp do poszczególnych portów. Montaż panelu w szafie krosowniczej jest prosty, a jego obsługa intuicyjna, co czyni go powszechnym rozwiązaniem w branży IT.

Pytanie 37

Który z protokołów zapewnia bezpieczne połączenie między klientem a witryną internetową banku, zachowując prywatność użytkownika?

A. HTTPS (Hypertext Transfer Protocol Secure)
B. FTPS (File Transfer Protocol Secure)
C. SFTP (SSH File Transfer Protocol)
D. HTTP (Hypertext Transfer Protocol)
FTPS, SFTP oraz HTTP nie zapewniają odpowiedniego poziomu bezpieczeństwa i prywatności, który jest niezbędny podczas interakcji z serwisami bankowymi. FTPS, choć dodaje warstwę bezpieczeństwa do tradycyjnego protokołu FTP, nie jest wystarczająco elastyczny w kontekście współczesnych aplikacji webowych, ponieważ wymaga otwierania różnych portów dla połączeń, co może prowadzić do problemów z firewallem. SFTP, z drugiej strony, jest protokołem używanym głównie do przesyłania plików, opartym na SSH. Choć SFTP jest bezpieczny, nie jest przeznaczony do przesyłania danych w czasie rzeczywistym w kontekście przeglądania stron internetowych, co czyni go mniej odpowiednim dla aplikacji bankowych. HTTP, najbardziej podstawowy protokół bez zabezpieczeń, nie szyfruje danych, co sprawia, że wszelkie przesyłane informacje są podatne na przechwycenie. Wybór niewłaściwego protokołu do komunikacji z bankiem może prowadzić do poważnych konsekwencji, takich jak kradzież tożsamości czy utrata środków. Często użytkownicy nie zdają sobie sprawy z zagrożeń związanych z korzystaniem z niezabezpieczonych połączeń, co prowadzi do nawyków mogących zagrażać ich bezpieczeństwu w sieci. Kluczowe jest zrozumienie, że zaufane protokoły, jak HTTPS, są nie tylko zalecane, ale wręcz wymagane w kontekście współczesnych standardów bezpieczeństwa.

Pytanie 38

Jaką maskę trzeba zastosować, aby podzielić sieć z adresem 192.168.1.0 na 4 podsieci?

A. 255.255.255.128
B. 255.255.255.224
C. 255.255.255.192
D. 255.255.255.0
Wybór maski 255.255.255.0, czyli /24, jest nieodpowiedni w kontekście podziału sieci 192.168.1.0 na 4 podsieci. Ta maska przypisuje 24 bity do identyfikacji sieci, co oznacza, że w ramach tej sieci jest 256 dostępnych adresów, jednak nie pozwala na wygodne podział na mniejsze jednostki. Oznacza to, że wszystkie urządzenia w takim przypadku będą znajdować się w jednej dużej podsieci, co utrudnia zarządzanie oraz zwiększa ryzyko kolizji adresów. Tego rodzaju konfiguracja może prowadzić do problemów z wydajnością, zwłaszcza w większych sieciach, gdzie duża liczba hostów może generować znaczny ruch. Z kolei maska 255.255.255.224, czyli /27, pozwala jedynie na stworzenie 8 podsieci, co jest niewłaściwe, gdyż wymagana jest dokładnie 4-podsieciowa struktura. Ostatecznie, maska 255.255.255.128, czyli /25, umożliwia utworzenie tylko 2 podsieci, co jest niewystarczające w tym przypadku. Te błędy pokazują, że nieprzemyślane podejście do podziału sieci może prowadzić do poważnych nieefektywności oraz problemów z bezpieczeństwem, jak również z zasięgiem i dostępnością adresów IP w dłuższej perspektywie czasowej.

Pytanie 39

Które systemy operacyjne są atakowane przez wirusa MS Blaster?

A. MS Windows 2000/NT/XP
B. DOS
C. Linux
D. MS Windows 9x
Wirus MS Blaster, znany również jako Lovsan i MSBlast, był szczególnie niebezpiecznym złośliwym oprogramowaniem, które celowało w systemy operacyjne Microsoftu, a w szczególności w wersje takie jak Windows 2000, NT oraz XP. Jego głównym celem były luki w zabezpieczeniach systemów operacyjnych, które pozwalały na zdalne zainfekowanie komputera. Użytkownicy Windows 2000, NT i XP mogli być narażeni na atak w wyniku aktywacji usługi DCOM, która była odpowiedzialna za komunikację między aplikacjami. W momencie, gdy wirus zainfekował system, mógł wywołać nie tylko zakłócenia w pracy komputera, ale także aktywować masowy atak DDoS na serwer Windows Update. Aby zabezpieczyć się przed podobnymi zagrożeniami, zaleca się regularne aktualizowanie systemu operacyjnego oraz stosowanie zapór ogniowych i oprogramowania antywirusowego, co zgodne jest z najlepszymi praktykami w zakresie zabezpieczeń IT.

Pytanie 40

Czym jest OTDR?

A. tester kabli miedzianych.
B. spawarka.
C. urządzenie światłowodowe dla przełącznika.
D. reflektometr.
W odpowiedziach, które wskazały inne urządzenia, występują istotne nieporozumienia dotyczące funkcji i zastosowań technologii w obszarze telekomunikacji. Spawarka, jako narzędzie, służy do łączenia włókien optycznych poprzez ich topienie, co jest niezbędne w procesie instalacji, ale nie ma zdolności do diagnostyki czy pomiaru strat sygnału. Użytkownicy mogą mylić spawarkę z OTDR, myśląc, że oba urządzenia pełnią podobne role, co jest nieprawdziwe, ponieważ spawarka nie wykrywa problemów ani nie dostarcza informacji o stanie linii. Kolejną niepoprawną odpowiedzią jest tester okablowania miedzianego, który jest przeznaczony wyłącznie do analizy kabli miedzianych, a więc nie dotyczy technologii światłowodowej. Wybór tego urządzenia w kontekście OTDR pokazuje brak zrozumienia różnic między różnymi rodzajami okablowania. Wreszcie przystawka światłowodowa do przełącznika nie jest instrumentem pomiarowym; jej funkcja polega na łączeniu urządzeń w sieci, a nie na diagnostyce. Te błędne odpowiedzi wskazują na typowe pomyłki związane z mieszaniem funkcji różnych narzędzi i technologii w systemach telekomunikacyjnych, co może prowadzić do niewłaściwych decyzji w zakresie zarządzania sieciami.